1
|
Li H, Li S, Yang H, Wang Y, Wang J, Zheng N. l-Proline Alleviates Kidney Injury Caused by AFB1 and AFM1 through Regulating Excessive Apoptosis of Kidney Cells. Toxins (Basel) 2019; 11:toxins11040226. [PMID: 30995739 PMCID: PMC6521284 DOI: 10.3390/toxins11040226] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 11/21/2022] [Imported: 08/29/2023] Open
Abstract
The toxicity and related mechanisms of aflatoxin B1 (AFB1) and aflatoxin M1 (AFM1) in the mouse kidney were studied, and the role of l-proline in alleviating kidney damage was investigated. In a 28-day toxicity mouse model, thirty mice were divided into six groups: control (without treatment), l-proline group (10 g/kg body weight (b.w.)), AFB1 group (0.5 mg/kg b.w.), AFM1 (3.5 mg/kg b.w.), AFB1 + l-proline group and AFM1 + l-proline group. Kidney index and biochemical indicators were detected, and pathological staining was observed. Using a human embryonic kidney 293 (HEK 293) cell model, cell apoptosis rate and apoptotic proteins expressions were detected. The results showed that AFB1 and AFM1 activated pathways related with oxidative stress and caused kidney injury; l-proline significantly alleviated abnormal expressions of biochemical parameters and pathological kidney damage, as well as excessive cell apoptosis in the AF-treated models. Moreover, proline dehydrogenase (PRODH) was verified to regulate the levels of l-proline and downstream apoptotic factors (Bax, Bcl-2, and cleaved Caspase-3) compared with the control (p < 0.05). In conclusion, l-proline could protect mouse kidneys from AFB1 and AFM1 through alleviating oxidative damage and decreasing downstream apoptosis, which deserves further research and development.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
33 |
2
|
Yao Q, Fan L, Zheng N, Blecker C, Delcenserie V, Li H, Wang J. 2'-Fucosyllactose Ameliorates Inflammatory Bowel Disease by Modulating Gut Microbiota and Promoting MUC2 Expression. Front Nutr 2022; 9:822020. [PMID: 35252301 PMCID: PMC8892212 DOI: 10.3389/fnut.2022.822020] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022] [Imported: 08/29/2023] Open
Abstract
Gut microbiota dysbiosis, together with goblet cells dysfunction has been observed in ulcerative colitis cases. This study aims to evaluate the potential of 2'-fucosyllactose (2'-FL) supplementation in inhibiting intestinal inflammation through regulating gut microbiota, protecting goblet cells, and stimulating mucin secretion. 2'-FL was orally administered to C57BL/6J mice daily (400 mg/kg bw) for 21 days and 5% dextran sulfate sodium (DSS) was used to induce the colitis in the last 7 days. Meanwhile, fecal microbiota transplantation (FMT) was conducted to test the roles of gut microbiota in the remission of colitis by 2'-FL. Gut microbiota alteration was analyzed through 16S ribosomal RNA (16S rRNA) sequencing. Periodic acid-Schiff (PAS), immunofluorescence staining, as well as mucin 2 (MUC2) and NOD-like receptor family pyrin domain containing 6 (NLRP6) messenger RNA (mRNA) expression in colon fragments was performed and detected. The results showed that the DSS + 2'-FL mice were found to have a slower rate of weight loss, lower disease activity index (DAI) scores, and longer colon lengths than the DSS group (p < 0.05), so in the FMT recipient mice which received fecal microbiota from the DSS + 2'-FL group. In addition, the data revealed that 2'-FL relieved the disorder of DSS-induced gut microbiota, including decreasing the high abundance of mucin-utilizing bacteria in the DSS group, such as Bacteroides, Lachnospiraceae NK4A136, Lachnospiraceae, and Bacteroides vulgatus. PAS and immunofluorescence staining showed that 2'-FL treatment promoted the recovery of goblet cells and enhanced MUC2 and NLRP6 expression, which was also observed in the FM (DSS + 2'-FL) group. Moreover, NLRP6, which has been proved to be a negative regulator for Toll-like receptor 4/myeloid differential protein-8/nuclear factor-kappa B (TLR4/MyD88/NF-κB) pathway, was upregulated by 2'-FL in colon tissue. In conclusion, this study suggests that 2'-FL ameliorates colitis in a gut microbiota-dependent manner. The underlying protective mechanism associates with the recovery of goblet cells number and improves MUC2 secretion through TLR4-related pathway.
Collapse
|
research-article |
2 |
19 |
3
|
Furosine, a Maillard Reaction Product, Triggers Necroptosis in Hepatocytes by Regulating the RIPK1/RIPK3/MLKL Pathway. Int J Mol Sci 2019; 20:ijms20102388. [PMID: 31091743 PMCID: PMC6566718 DOI: 10.3390/ijms20102388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/22/2022] [Imported: 08/29/2023] Open
Abstract
As one of the typical Maillard reaction products, furosine has been widely reported in a variety of heat-processed food. Though furosine was shown to be toxic on organs, its toxicity mechanism is still unclear. The present study aimed to investigate the toxicity mechanism of furosine in liver tissue. An intragastric gavage mice model (42-day administration, 0.1/0.25/0.5 g/kg of furosine per day) and a mice primary hepatocyte model were employed to investigate the toxicity mechanism of furosine on mice liver tissue. A metabonomics analysis of mice liver, serum, and red blood cells (RBC) was performed. The special metabolic mediator of furosine, lysophosphatidylcholine 18:0 (LPC (18:0)) was identified. Then, the effect of the upstream gene phospholipase A2 gamma (PLA2-3) on LPC (18:0), as well as the effect of furosine (100 mg/L) on the receptor-interacting serine/threonine-protein kinase (RIPK)1/RIPK3/mixed lineage kinase domain-like protein (MLKL) pathway and inflammatory factors, was determined in liver tissue and primary hepatocytes. PLA2-3 was found to regulate the level of LPC (18:0) and activate the expression of RIPK1, RIPK3, P-MLKL, and of the inflammatory factors including tumor necrosis factor α (TNF-α) and interleukin (IL-1β), both in liver tissue and in primary hepatocytes. Upon treatment with furosine, the upstream sensor PLA2-3 activated the RIPK1/RIPK3/MLKL necroptosis pathway and caused inflammation by regulating the expression of LPC (18:0), which further caused liver damage.
Collapse
|
Journal Article |
5 |
7 |
4
|
Li H, Xing L, Zhao N, Wang J, Zheng N. Furosine Induced Apoptosis by the Regulation of STAT1/STAT2 and UBA7/UBE2L6 Genes in HepG2 Cells. Int J Mol Sci 2018; 19:ijms19061629. [PMID: 29857509 PMCID: PMC6032202 DOI: 10.3390/ijms19061629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022] [Imported: 08/29/2023] Open
Abstract
As a typical product in the Miallard reaction, research on the quantitative detection of furosine is abundant, while its bioactivities and toxic effects are still unclear. Our own work recently demonstrated the induction of furosine on apoptosis in HepG2 cells, while the related mechanism remained elusive. In this study, the effects of furosine on cell viability and apoptosis were detected to select the proper dosage, and transcriptomics detection and data analysis were performed to screen out the special genes. Additionally, SiRNA fragments of the selected genes were designed and transfected into HepG2 cells to validate the role of these genes in inducing apoptosis. Results showed that furosine inhibited cell viability and induced cell apoptosis in a dose-dependent manner, as well as activated expressions of the selected genes STAT1 (signal transducer and activator of transcription 1), STAT2 (signal transducer and activator of transcription 2), UBA7 (ubiquitin-like modifier activating enzyme 7), and UBE2L6 (ubiquitin-conjugating enzyme E2L6), which significantly affected downstream apoptosis factors Caspase-3 (cysteinyl aspartate specific proteinase-3), Bcl-2 (B-cell lymphoma gene-2), Bax (BCL2-Associated gene X), and Caspase-9 (cysteinyl aspartate specific proteinase-9). For the first time, we revealed furosine induced apoptosis through two transcriptional regulators (STAT1 and STAT2) and two ubiquitination-related enzymes (UBA7 and UBE2L6).
Collapse
|
Journal Article |
6 |
6 |
5
|
Lactoferrin Induces the Synthesis of Vitamin B6 and Protects HUVEC Functions by Activating PDXP and the PI3K/AKT/ERK1/2 Pathway. Int J Mol Sci 2019; 20:ijms20030587. [PMID: 30704032 PMCID: PMC6387185 DOI: 10.3390/ijms20030587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/18/2019] [Accepted: 01/26/2019] [Indexed: 12/12/2022] [Imported: 08/29/2023] Open
Abstract
As a nutritional active protein in foods, multiple studies of the biological activities of lactoferrin had been undertaken, including antioxidant, antiviral, anti-inflammatory, antitumor, antibiosis, and antiparasitic effects, while the mechanism related with its protection of cardiovascular system remained elusive. In the present work, the effect of lactoferrin on the viability of HUVECs (human umbilical vein endothelial cells) was detected to select the proper doses. Moreover, transcriptomics detection and data analysis were performed to screen out the special genes and the related pathways. Meanwhile, the regulation of lactoferrin in the functional factors thromboxane A2 (TXA2) and prostacyclin (PGI2) was detected. Then, the small interfering RNA (SiRNA) fragment of the selected gene pyridoxal phosphatase (PDXP) was transfected into HUVECs to validate its role in protecting HUVECs function. Results showed that lactoferrin inhibited the expression of TXA2 and activated expression of PGI2, as well as activated expression of PDXP, which significantly up-regulated the synthesis of vitamin B6 (VB6) and the phosphoinositide 3-kinase (PI3K)/ serine/threonine-protein kinase (AKT)/ extracellular regulated protein kinases (ERK) 1/2 pathway. For the first time, we revealed that lactoferrin could induce the synthesis of VB6 and protect HUVECs function through activating PDXP gene and the related pathway.
Collapse
|
Journal Article |
5 |
5 |
6
|
Li H, Zhang C, Zhang M, Yao Q, Yang H, Fan L, Zheng N. Angustoline Inhibited Esophageal Tumors Through Regulating LKB1/AMPK/ELAVL1/LPACT2 Pathway and Phospholipid Remodeling. Front Oncol 2020; 10:1094. [PMID: 32733803 PMCID: PMC7358378 DOI: 10.3389/fonc.2020.01094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022] [Imported: 08/29/2023] Open
Abstract
Esophageal cancer is a type of gastrointestinal carcinoma and is among the 10 most common causes of cancer death worldwide. However, the specific mechanism and the biomarkers in the proliferation and metastasis of esophageal tumors are still unclear. Therefore, the development of several natural products which could inhibit esophageal tumors deserve attention. In the present study, different sources of cancer cells were used to select the sensitive cell line (esophageal cancer cell KYSE450) and the proper dose of angustoline, which were utilized in the following cell viability, migration and invasion assays. Then the lipidomic detection of clinical samples (tissue and blood plasma) from esophageal cancer patients was performed, to screen out the specific phospholipid metabolites [PC (16:0/18:1) and LPC (16:0)]. Considering lysophosphatidylcholine acyltransferase 2 (LPCAT2) was tightly relative with phospholipids conversion, serine/threonine-protein kinase 11 (LKB1), 5'-monophosphate (AMP)-activated protein kinase (AMPK) and embryonic lethal, and abnormal vision, drosophila-like 1 (ELAVL1) were investigated, to evaluate their expression levels in esophageal tumor tissue and KYSE450 cells. Additionally, KYSE450 tumor bearing mouse model was constructed, the role of angustoline in inhibiting esophageal tumors through regulating LKB1/AMPK/ELAVL1/LPCAT2 pathway was validated, and found that the conversion from LPC (16:0) to PC (16:0/18:1) was blocked by angustoline in some degree. The above results for the first time proved that angustoline suppressed esophageal tumors through activating LKB1/AMPK and inhibiting ELAVL1/LPCAT2, which consequently blocked phospholipid remodeling from LPC (16:0) to PC (16:0/18:1).
Collapse
|
research-article |
4 |
3 |
7
|
Li H, Li C, Zhang B, Jiang H. Lactoferrin suppresses the progression of colon cancer under hyperglycemia by targeting WTAP/m 6A/NT5DC3/HKDC1 axis. J Transl Med 2023; 21:156. [PMID: 36855062 PMCID: PMC9972781 DOI: 10.1186/s12967-023-03983-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] [Imported: 08/29/2023] Open
Abstract
BACKGROUND Although the relationship between type 2 diabetes (T2D) and the increased risk of colorectal carcinogenesis is widely defined in clinical studies, the therapeutic methods and molecular mechanism of T2D-induced colon cancer and how does hyperglycemia affect the progression is still unknown. Here, we studied the function of lactoferrin (LF) in suppressing the progression of colon cancer in T2D mice, and uncovered the related molecular mechanisms in DNA 5mC and RNA m6A levels. METHODS We examined the effects of LF (50% iron saturation) on the migration and invasion of colon tumor cells under high concentration of glucose. Then, transcriptomics and DNA methylation profilings of colon tumor cells was co-analyzed to screen out the special gene (NT5DC3), and the expression level of NT5DC3 in 75 clinical blood samples was detected by q-PCR and western blot, to investigate whether NT5DC3 was a biomarker to distinguish T2D patients and T2D-induced colon cancer patients from healthy volunteers. Futhermore, in T2D mouse with xenografted colon tumor models, the inhibitory effects of LF and NT5DC3 protein on colon tumors were investigated. In addition, epigenetic alterations were measured to examine the 5mC/m6A modification sites of NT5DC3 regulated by LF. Utilizing siRNA fragments of eight m6A-related genes, the special gene (WTAP) regulating m6A of NT5DC was proved, and the effect of LF on WTAP/NT5DC3/HKDC1 axis was finally evaluated. RESULTS A special gene NT5DC3 was screened out through co-analysis of transcriptomics and DNA methylation profiling, and HKDC1 might be a downstream sensor of NT5DC3. Mechanistically, LF-dependent cellular DNA 5mC and RNA m6A profiling remodeling transcriptionally regulate NT5DC3 expression. WTAP plays a key role in regulating NT5DC3 m6A modification and subsequently controls NT5DC3 downstream target HKDC1 expression. Moreover, co-treatment of lactoferrin and NT5DC3 protein restrains the growth of colon tumors by altering the aberrant epigenetic markers. Strikingly, clinical blood samples analysis demonstrates NT5DC3 protein expression is required to direct the distinction of T2D or T2D-induced colon cancer with healthy humans. CONCLUSIONS Together, this study reveals that lactoferrin acts as a major factor to repress the progression of colon cancer under hyperglycemia, thus, significantly expanding the landscape of natural dietary mediated tumor suppression.
Collapse
|
research-article |
1 |
2 |
8
|
Li H, Wang B, Wang Y. 2'-Fucosyllactose Suppresses Angiogenesis and Alleviates Toxic Effects of 5-Fu in a HCT116 Colon Tumor-Bearing Model. Molecules 2022; 27:7255. [PMID: 36364081 PMCID: PMC9658278 DOI: 10.3390/molecules27217255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 08/29/2023] [Imported: 08/29/2023] Open
Abstract
The present study was aimed at examining the anti-tumor effects and molecular mechanisms of 2'-fucosyllactose (2'-FL). At the beginning, the viabilities of four types of colon cancer cells were analyzed after exposure to increasing concentrations of 2'-FL, and HCT116 cells were selected as the sensitive ones, which were applied in the further experiments; then, interestingly, 2'-FL (102.35 µM) was found to induce apoptosis of HCT116 cells, which coincides with significant changes in VEGFA/VEGFR2/p-PI3K/p-Akt/cleaved Caspase3 proteins. Next, in a tumor-bearing nude mouse model, HCT116 was chosen as the sensitive cell line, and 5-fluorouracil (5-Fu) was chosen as the positive medicine. It was noteworthy that both 2'-FL group (2.41 ± 0.57 g) and 2'FL/5-Fu group (1.22 ± 0.35 g) had a significantly lower tumor weight compared with the control (3.87 ± 0.79 g), suggesting 2'-FL could inhibit colon cancer. Since 2'-FL reduced the number of new blood vessels and the malignancy of tumors, we confirmed that 2'-FL effectively inhibited HCT116 tumors, and its mechanism was achieved by regulating the VEGFA/VEGFR2/PI3K/Akt/Caspase3 pathway. Moreover, though HE staining and organ index measurement, 2'-FL was validated to alleviate toxic effects on liver and kidney tissue when combining with 5-Fu. In conclusion, 2'-FL had certain anti-tumor and detoxification effects.
Collapse
|
research-article |
2 |
1 |
9
|
Wang H, Wu Z, Fan X, Wu C, Lu S, Geng L, Stalin A, Zhu Y, Zhang F, Huang J, Liu P, Li H, You L, Wu J. Identification of key pharmacological components and targets for Aidi injection in the treatment of pancreatic cancer by UPLC-MS, network pharmacology, and in vivo experiments. Chin Med 2023; 18:7. [PMID: 36641437 PMCID: PMC9840244 DOI: 10.1186/s13020-023-00710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023] [Imported: 08/29/2023] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal cancers worldwide. Aidi injection (ADI) is a representative antitumor medication based on Chinese herbal injection, but its antitumor mechanisms are still poorly understood. MATERIALS AND METHODS In this work, the subcutaneous xenograft model of human pancreatic cancer cell line Panc-1 was established in nude mice to investigate the anticancer effect of ADI in vivo. We then determined the components of ADI using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) and explored the possible molecular mechanisms against pancreatic cancer using network pharmacology. RESULTS In vivo experiments, the volume, weight, and degree of histological abnormalities of implanted tumors were significantly lower in the medium and high concentration ADI injection groups than in the control group. Network pharmacology analysis identified four active components of ADI and seven key targets, TNF, VEGFA, HSP90AA1, MAPK14, CASP3, P53 and JUN. Molecular docking also revealed high affinity between the active components and the target proteins, including Astragaloside IV to P53 and VEGFA, Ginsenoside Rb1 to CASP3 and Formononetin to JUN. CONCLUSION ADI could reduce the growth rate of tumor tissue and alleviate the structural abnormalities in tumor tissue. ADI is predicted to act on VEGFA, P53, CASP3, and JUN in ADI-mediated treatment of pancreatic cancer.
Collapse
|
research-article |
1 |
|