26
|
Synthesis and characterization of Cu(II)-based anticancer chemotherapeutic agent targeting topoisomerase Iα: In vitro DNA binding, pBR322 cleavage, molecular docking studies and cytotoxicity against human cancer cell lines. Eur J Med Chem 2014; 74:509-23. [PMID: 24508781 DOI: 10.1016/j.ejmech.2013.12.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/23/2013] [Accepted: 12/26/2013] [Indexed: 02/07/2023] [Imported: 09/12/2023]
|
|
11 |
39 |
27
|
Heteroleptic Copper(I) Complexes of "Scorpionate" Bis-pyrazolyl Carboxylate Ligand with Auxiliary Phosphine as Potential Anticancer Agents: An Insight into Cytotoxic Mode. Sci Rep 2017; 7:45229. [PMID: 28338061 PMCID: PMC5364558 DOI: 10.1038/srep45229] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/21/2017] [Indexed: 12/23/2022] [Imported: 09/12/2023] Open
Abstract
New copper(I) complexes [CuCl(PPh3)(L)] (1: L = LA = 4-carboxyphenyl)bis(3,5-dimethylpyrazolyl)methane; (2: L = LB = 3-carboxyphenyl)bis(3,5-dimethylpyrazolyl)methane) were prepared and characterised by elemental analysis and various spectroscopic techniques such as FT-IR, NMR, UV–Vis, and ESI-MS. The molecular structures of complexes 1 and 2 were analyzed by theoretical B3LYP/DFT method. Furthermore, in vitro DNA binding studies were carried out to check the ability of complexes 1 and 2 to interact with native calf thymus DNA (CT-DNA) using absorption titration, fluorescence quenching and circular dichroism, which is indicative of more avid binding of the complex 1. Moreover, DNA mobility assay was also conducted to study the concentration-dependent cleavage pattern of pBR322 DNA by complex 1, and the role of ROS species to have a mechanistic insight on the cleavage pattern, which ascertained substantial roles by both hydrolytic and oxidative pathways. Additionally, we analyzed the potential of the interaction of complex 1 with DNA and enzyme (Topo I and II) with the aid of molecular modeling. Furthermore, cytotoxic activity of complex 1 was tested against HepG2 cancer cell lines. Thus, the potential of the complex 1 is promising though further in vivo investigations may be required before subjecting it to clinical trials.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
38 |
28
|
Mathur S, Tabassum S. Template synthesis of novel carboxamide dinuclear copper (II) complex: spectral characterization and reactivity towards calf-thymus DNA. Biometals 2007; 21:299-310. [PMID: 17963023 DOI: 10.1007/s10534-007-9119-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022] [Imported: 09/12/2023]
|
|
18 |
38 |
29
|
Khan RA, Asim A, Kakkar R, Gupta D, Bagchi V, Arjmand F, Tabassum S. A Chloro-Bridged Heterobimetallic (η6-Arene)ruthenium–Organotin Complex as an Efficient Topoisomerase Iα Inhibitor. Organometallics 2013. [DOI: 10.1021/om301223k] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] [Imported: 09/12/2023]
|
|
12 |
37 |
30
|
Höti N, Zhu DE, Song Z, Wu Z, Tabassum S, Wu M. p53-dependent apoptotic mechanism of a new designer bimetallic compound tri-phenyl tin benzimidazolethiol copper chloride (TPT-CuCl2): in vivo studies in Wistar rats as well as in vitro studies in human cervical cancer cells. J Pharmacol Exp Ther 2004; 311:22-33. [PMID: 15173313 DOI: 10.1124/jpet.104.069104] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] [Imported: 09/12/2023] Open
Abstract
We have studied the effect of tri-phenyl tin benzimadazolethiolcopper chloride (TPT-CuCl(2)), a novel bimetallic compound, on the regulation of apoptosis in HeLa cells, MCF-7 cells, and in vivo Wistar rat model. TPT-CuCl(2) induces significant apoptosis in HeLa cell line characterized by DNA fragmentation and chromosome condensation. Comet assay revealed that TPT-CuCl(2) targets and causes severe damage to the DNA. Treatment of HeLa cells with TPT-CuCl(2) rescues the accumulation of p53 from the suppression of human papilloma virus E6, resulting in a dramatic up-regulation of Bax and Bak and down-regulation of the antiapoptotic factor Survivin. Apoptotic induction by TPT-CuCl(2) was shown to mediate in a p53-depedent manner; loss of p53 impairs the release of cytochrome c and Smac/DIABLO from mitochondria to cytosol. Moreover, we have shown that TPT-CuCl(2) induced-apoptosis was through an intrinsic mitochondrial pathway, which was inhibited by viral oncoprotein E1B19K. Caspase-3 was found to be indispensable in TPT-CuCl(2)-triggered apoptosis signaling pathway, because caspase-3 deficient cell line MCF-7 was resistant to TPT-CuCl(2). Furthermore, in vivo studies using C6 glioblastoma xenograft rat model revealed that TPT-CuCl(2) exhibits significant antiproliferative activity against tumor development with minimal cytotoxicity toward normal physiological function of the experimental rats. These findings imply the attractiveness of TPT-CuCl(2) as a drug candidate for further development.
Collapse
|
|
21 |
35 |
31
|
Tabassum S, Afzal M, Arjmand F. New heterobimetallic Cu(II)-Sn2(IV) complex as potential topoisomerase I inhibitor: in vitro DNA binding, cleavage and cytotoxicity against human cancer cell lines. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 115:63-72. [PMID: 22884481 DOI: 10.1016/j.jphotobiol.2012.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 06/15/2012] [Accepted: 06/26/2012] [Indexed: 11/17/2022] [Imported: 09/12/2023]
Abstract
The new heterobimetallic Cu(II)-Sn(2)(IV)/Ni(II)-Sn(2)(IV) complexes 1 and 2 bearing bioactive pharmacophore ligand scaffold; 1,10-phenanthroline and ethylenediamine were synthesized and characterized by spectroscopic (IR, UV-vis, NMR, ESI-MS) and analytical methods. The in vitro DNA binding studies of 1 and 2 with CT-DNA were carried out by employing various biophysical methods which reveal strong electrostatic binding via phosphate backbone of DNA helix, in addition to partial intercalation in the minor groove and stabilized by intramolecular hydrogen bonding. To gain further insight into the molecular recognition at the target site, UV-vis titrations of 1 with 5'-GMP was carried out and validated by (1)H and (31)P NMR. Complex 1 cleaved pBR322 DNA via oxidative pathway and exhibited high inhibition activity against Topo-I at 20 μM. Furthermore, the cytotoxicity of 1 was examined on a panel of human tumor cell lines of different histological origins showing promising antitumor activity.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
34 |
32
|
Khan RA, Arjmand F, Tabassum S, Monari M, Marchetti F, Pettinari C. Organometallic ruthenium(II) scorpionate as topo IIα inhibitor; in vitro binding studies with DNA, HPLC analysis and its anticancer activity. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2014.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] [Imported: 09/12/2023]
|
|
11 |
34 |
33
|
Ahmad M, Afzal M, Tabassum S, Kalińska B, Mrozinski J, Bharadwaj PK. Synthesis and structure elucidation of a cobalt(II) complex as topoisomerase I inhibitor: In vitro DNA binding, nuclease and RBC hemolysis. Eur J Med Chem 2014; 74:683-93. [PMID: 24287075 DOI: 10.1016/j.ejmech.2013.10.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 10/06/2013] [Accepted: 10/10/2013] [Indexed: 11/26/2022] [Imported: 09/12/2023]
|
|
11 |
32 |
34
|
Parveen S, Arjmand F, Tabassum S. Clinical developments of antitumor polymer therapeutics. RSC Adv 2019; 9:24699-24721. [PMID: 35528643 PMCID: PMC9069890 DOI: 10.1039/c9ra04358f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/18/2019] [Indexed: 01/04/2023] [Imported: 09/12/2023] Open
Abstract
Polymer therapeutics encompasses polymer-drug conjugates that are nano-sized, multicomponent constructs already in the clinic as antitumor compounds, either as single agents or in combination with other organic drug scaffolds. Nanoparticle-based polymer-conjugated therapeutics are poised to become a leading delivery strategy for cancer treatments as they exhibit prolonged half-life, higher stability and selectivity, water solubility, longer clearance time, lower immunogenicity and antigenicity and often also specific targeting to tissues or cells. Compared to free drugs, polymer-tethered drugs preferentially accumulate in the tumor sites unlike conventional chemotherapy which does not discriminate between the cancer cells and healthy cells, thereby causing severe side-effects. It is also desirable that the drug reaches its site of action at a particular concentration and the therapeutic dose remains constant over a sufficiently long period of time. This can be achieved by opting for new formulations possessing polymeric systems of drug carriers. However, many challenges still remain unanswered in polymeric drug conjugates which need to be readdressed and therefore, can broaden the scope of this field. This review highlights some of the antitumor polymer therapeutics including polymer-drug conjugates, polymeric micelles, polymeric liposomes and other polymeric nanoparticles that are currently under investigation.
Collapse
|
Review |
6 |
32 |
35
|
Lupidi G, Marchetti F, Masciocchi N, Reger DL, Tabassum S, Astolfi P, Damiani E, Pettinari C. Synthesis, structural and spectroscopic characterization and biomimetic properties of new copper, manganese, zinc complexes: Identification of possible superoxide-dismutase mimics bearing hydroxyl radical generating/scavenging abilities. J Inorg Biochem 2010; 104:820-30. [PMID: 20452028 DOI: 10.1016/j.jinorgbio.2010.03.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/22/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022] [Imported: 09/12/2023]
|
|
15 |
31 |
36
|
Biochemical pathways of copper complexes: progress over the past 5 years. Drug Discov Today 2021; 26:1086-1096. [PMID: 33486113 DOI: 10.1016/j.drudis.2021.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022] [Imported: 09/12/2023]
Abstract
Copper is an essential trace element with vital roles in many metalloenzymes; it is also prominent among nonplatinum anticancer metallodrugs. Copper-based complexes are endogenously biocompatible, tenfold more potent than cisplatin, exhibit fewer adverse effects, and have a wide therapeutic window. In cancer biology, copper acts as an antitumor agent by inhibiting cancer via multiple pathways. Herein, we present an overview of advances in copper complexes as 'lead' antitumor drug candidates, and in understanding their biochemical and pharmacological pathways over the past 5 years. This review will help to develop more efficacious therapeutics to improve clinical outcomes for cancer treatments.
Collapse
|
Review |
4 |
31 |
37
|
Arjmand F, Sayeed F, Parveen S, Tabassum S, Juvekar AS, Zingde SM. Design and synthesis of (S)- and (R)-enantiomers of [4-(2-hydroxy-1-phenylethylimino)pent-2-ol]dimethyltin( iv) and 2,2-dimethyl-4-phenyl-1,3,2-oxazastannolidine: in vitro antitumor activity against human tumor cell lines and in vivo assay of (S)-enantiomers. Dalton Trans 2013; 42:3390-3401. [DOI: 10.1039/c2dt32155f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] [Imported: 09/12/2023]
|
|
12 |
29 |
38
|
Yousuf I, Bashir M, Arjmand F, Tabassum S. Multispectroscopic insight, morphological analysis and molecular docking studies of CuII-based chemotherapeutic drug entity with human serum albumin (HSA) and bovine serum albumin (BSA). J Biomol Struct Dyn 2018; 37:3290-3304. [PMID: 30124142 DOI: 10.1080/07391102.2018.1512899] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] [Imported: 09/12/2023]
|
|
7 |
29 |
39
|
Tabassum S, Khan RA, Arjmand F, Juvekar AS, Zingde SM. Synthesis of carbohydrate-conjugate heterobimetallic Cu(II)-Sn(2)(IV) and Zn(II)-Sn(2)(IV) complexes; their interactions with CT DNA and nucleotides; DNA cleavage, in-vitro cytotoxicity. Eur J Med Chem 2010; 45:4797-806. [PMID: 20813437 DOI: 10.1016/j.ejmech.2010.07.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/01/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022] [Imported: 09/12/2023]
Abstract
The new heterobimetallic Ni(II)-Sn(2)(IV) (1), Cu(II)-Sn(2)(IV) (2) and Zn(II)-Sn(2)(IV) (3) complexes, containing D-glucosamine, 1,8-diamino-3,6-diazaoctane and imidazole were isolated and characterized by spectral and analytical methods. The proposed geometry of Ni(II) and Cu(II) in 1 and 2 was square pyramidal, Zn(II) in 3 exhibited tetrahedral while Sn(IV) exhibits hexacoordinate environment, respectively. The X-ray powder diffraction (XRPD) confirmed the amorphous nature of all the complexes. The interaction studies of 2 and 3 with CT DNA were carried out by various biophysical techniques to show the mode of binding. The interaction of 2 and 3 with nucleotides viz 5'-GMP and 5'-TMP, respectively were further confirmed by (1)H, (31)P and (119)Sn NMR spectroscopy. The complex 2 exhibited effective cleavage activity with pBR322 DNA. Furthermore, the cytotoxicity of 2 was examined on a panel of human tumor cell lines of different histological origins and showed good activity against Colo205 and A2780 (GI50 < 10 μg/ml).
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
28 |
40
|
Shi Z, Tabassum S, Jiang W, Zhang J, Mathur S, Wu J, Shi Y. Identification of a potent inhibitor of human dual-specific phosphatase, VHR, from computer-aided and NMR-based screening to cellular effects. Chembiochem 2008; 8:2092-9. [PMID: 17933004 DOI: 10.1002/cbic.200700397] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] [Imported: 09/12/2023]
Abstract
Human vaccinia H1-related phosphatase (VHR) is a dual-specific phosphatase (DSPs) that plays an important role in the mitogen-activated protein (MAP) kinase cascade regulation. It is also a potential drug target for diseases that are related to immune response. By combining a virtual and NMR-based ligand-screening strategy, we successfully identified four VHR inhibitors, of which GATPT ((glucosamine-aminoethoxy)triphenyltin) can bind to VHR with a K(i) value of 2.54 muM. The putative binding mode of GATPT was constructed by a molecular docking simulation to provide structural insights into the ligand-binding mechanism. Furthermore, we found that this compound can significantly inhibit the dephosphorylation of the extracellular regulated kinases (ERKs), and c-Jun N-terminal kinases (JNKs) and block the G(1)-S phase transition in the cell cycle. Therefore, GATPT is a promising lead structure for designing more effective inhibitors of VHR.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
27 |
41
|
Tabassum S, Mathur S, Arjmand F, Mishra K, Banerjee K. Design, synthesis, characterization and DNA-binding studies of a triphenyltin(IV) complex of N-glycoside (GATPT), a sugar based apoptosis inducer: in vitro and in vivo assessment of induction of apoptosis by GATPT. Metallomics 2012; 4:205-217. [PMID: 22183270 DOI: 10.1039/c2mt00137c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] [Imported: 09/12/2023]
Abstract
The novel organotin complex 1-{(2-hydroxyethyl)amino}-2-amino-1,2-dideoxy-D-glucose triphenyltin(iv) (GATPT) was synthesized by the reaction of N-glycoside ligand and triphenyltin(iv) chloride. GATPT was characterized by elemental analyses, polarimetry, IR, CD, UV and multinuclear ((1)H, (13)C, (119)Sn) 1D and 2D NMR. The interaction of GATPT with calf thymus DNA was studied by using viscometry, absorption, emission and circular dichoric spectral methods. The DNA binding results suggested the intercalative mode of binding for GATPT with DNA along with simultaneous electrostatic interaction between the Sn(iv) center and the phosphate backbone of the DNA helix. GATPT was tested for its cytotoxic properties against SY5Y, PC-12 and N2A neuronal tumor cell lines. GATPT induced significant apoptosis in the PC-12 cell line characterized by DNA fragmentation and chromosome condensation. Treatment of PC-12 cells with GATPT resulted in a dramatic up-regulation of Bax and Bak and down-regulation of the anti-apoptotic factor Bcl-2. Apoptotic induction by GATPT was shown to be mediated in a p53-dependent manner and loss of p53 impaired the release of cytochrome c from mitochondria to cytosol. Caspase-3 was found to be indispensable for the GATPT triggered apoptosis signaling pathway. Furthermore, in vivo studies using a nude mice model revealed that GATPT exhibits significant antiproliferative activity against tumor development with minimal cytotoxicity. These findings warrant further clinical investigations of GATPT as a therapeutic agent for cancer chemotherapy.
Collapse
|
|
13 |
25 |
42
|
Afsan Z, Roisnel T, Tabassum S, Arjmand F. Structure elucidation {spectroscopic, single crystal X-ray diffraction and computational DFT studies} of new tailored benzenesulfonamide derived Schiff base copper(II) intercalating complexes: Comprehensive biological profile {DNA binding, pBR322 DNA cleavage, Topo I inhibition and cytotoxic activity}. Bioorg Chem 2020; 94:103427. [PMID: 31735357 DOI: 10.1016/j.bioorg.2019.103427] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/10/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] [Imported: 09/12/2023]
Abstract
New tailored copper(II)-based intercalating complexes [Cu(L1)2] (1) and [Cu(L2)2] (2) were synthesized from Schiff base scaffold HL1 and HL2(E)-4-(2-((2-hydroxy-3-methoxybenzylidene)amino)ethyl)benzenesulfonamide and (E)-4-(2-((2-hydroxybenzylidene)amino)ethyl)benzenesulfonamide, respectively. The structure elucidation of complexes 1 and 2 was carried out by employing various spectroscopic techniques viz., FT-IR, UV-vis, ESI-MS, EPR and single X-ray crystal diffraction studies. The complexes 1 and 2 were crystallized in monoclinic P21/n and triclinic P-1 space group, respectively possessing square planar geometry around Cu(II) coordinated with N,O-donor Schiff base ligands. An analysis of Hirshfeld surfaces of complexes 1 and 2 were performed to ascertain different intra and intermolecular non-covalent interactions (H-bonding, CH⋯ πetc.) responsible for the stabilization of crystal lattices. Calculations based on Density functional theory (B3LYP/DFT), have been carried out to obtain energies of Frontier molecular orbitals. Comparative in vitro binding profile of complexes 1 and 2 with ct-DNA was evaluated employing various biophysical techniques viz., UV-vis, fluorescence, circular dichroism and cyclic voltammetry which suggested non-covalent intercalative binding mode with more avid binding propensity of complex 1 compared to complex 2. The cleavage experiments of complex 1 was performed by gel electrophoretic assay which revealed efficient cleavage mediated via oxidative pathway. Furthermore, topoisomerase I enzymatic activity of complex 1 was carried out employing gel electrophoretic assay which demonstrated significant inhibitory effects at a low concentration of 25 µM. The cytotoxic potential of complex 1 was analyzed by SRB assay on a panel of selected human cancer cell lines which revealed selective activity for MCF-7 (breast cancer) cell line with GI50 = 16.21 µg/ml.
Collapse
|
|
5 |
25 |
43
|
Usman M, Arjmand F, Khan RA, Alsalme A, Ahmad M, Tabassum S. Biological evaluation of dinuclear copper complex/dichloroacetic acid cocrystal against human breast cancer: design, synthesis, characterization, DFT studies and cytotoxicity assays. RSC Adv 2017; 7:47920-47932. [DOI: 10.1039/c7ra08262b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] [Imported: 09/12/2023] Open
Abstract
Binuclear copper(ii) cocrystal “[Cu2(valdien)2⋯2Cl2CHCOOH],” 1 was synthesized from H2valdien scaffold and anticancer drug pharmacophore “dichloroacetic acid” embedded with two Cu(ii) connected via a hydrogen bonded network.
Collapse
|
|
8 |
24 |
44
|
Tabassum S, Asim A, Khan RA, Arjmand F, Rajakumar D, Balaji P, Akbarsha MA. A multifunctional molecular entity Cu II–Sn IV heterobimetallic complex as a potential cancer chemotherapeutic agent: DNA binding/cleavage, SOD mimetic, topoisomerase Iα inhibitory and in vitro cytotoxic activities. RSC Adv 2015; 5:47439-47450. [DOI: 10.1039/c5ra07333b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] [Imported: 09/12/2023] Open
Abstract
New chiral l-valine-derived Schiff base complexes with the bioactive heterocyclic ligand scaffold pyrazole (Hpz) were designed and synthesized with a view to find their potential as anticancer chemotherapeutic drug candidates.
Collapse
|
|
10 |
24 |
45
|
Zehra S, Gómez-Ruiz S, Siddique HR, Tabassum S, Arjmand F. Water soluble ionic Co(II), Cu(II) and Zn(II) diimine-glycinate complexes targeted to tRNA: structural description, in vitro comparative binding, cleavage and cytotoxic studies towards chemoresistant prostate cancer cells. Dalton Trans 2020; 49:16830-16848. [PMID: 33179662 DOI: 10.1039/d0dt02657c] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] [Imported: 09/12/2023]
Abstract
Four new water soluble Co(ii), Cu(ii) and Zn(ii) ionic metal complexes (1-4) [Cu(diimine)(H2O)2(glycinate)]+[glycinate]-, [Co(diimine)(H2O)4]+[glycinate]- and [Zn(diimine) (H2O)4]+[glycinate]-, where diimine = 2,2'-bipyridine (1-3) and 1,10-phenanthroline (4) were synthesized and thoroughly characterized by spectroscopic and single X-ray crystallographic studies. Complex 1 possesses a triclinic crystal system with a penta-coordinated geometry whereas complexes 2-4 crystallized in an isostructural monoclinic system having distorted octahedral geometry. Density functional theory (DFT) studies for complexes 1-4 were performed to correlate their geometrical parameters and to calculate the energy of frontier molecular orbitals. The corroborative results of spectroscopic and voltammetric studies with ct-DNA and tRNA revealed that the complexes bind noncovalently via an electrostatic mode of binding with specificity for tRNA as compared to ct-DNA. Gel electrophoresis experiments revealed that all the complexes unwind the plasmid pBR322 DNA at low micromolar concentrations (2-9 μM) following an oxidative mechanism for Cu(ii) and Co(ii) complexes (1, 2 and 4) whereas the Zn(ii) complex (3) mediates DNA cleavage by the hydrolytic pathway. The tRNA cleavage showed concentration and time dependent activity of the complexes to promote RNA hydrolysis. Furthermore, the BSA binding ability of complexes 1-4 was monitored, which revealed that the complexes could quench the intrinsic fluorescence in a static manner. Complexes 1-4 were found to be non-toxic towards normal prostate epithelial cells, PNT2, but were potent against chemoresistant metastatic prostate cancer cells, Du145, with GI50 values ranging from 12.75-37 μM. Complexes 1 and 2 also showed cytotoxic activity against cancer stem cells having GI50 values of 14.70 and 14.90 μM, respectively. Molecular docking studies were performed with DNA and tRNA which further validated the spectroscopic analysis demonstrating the higher binding affinity of the complexes towards tRNA.
Collapse
|
|
5 |
23 |
46
|
Tabassum S, Khan RA, Arjmand F, Sen S, Kayal J, Juvekar AS, Zingde SM. Synthesis and characterization of glycoconjugate tin(IV) complexes: In vitro DNA binding studies, cytotoxicity, and cell death. J Organomet Chem 2011. [DOI: 10.1016/j.jorganchem.2011.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] [Imported: 09/12/2023]
|
|
14 |
22 |
47
|
Kouser R, Zehra S, Khan RA, Alsalme A, Arjmand F, Tabassum S. "Turn-on" benzophenone based fluorescence and colorimetric sensor for the selective detection of Fe 2+ in aqueous media: Validation of sensing mechanism by spectroscopic and computational studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119156. [PMID: 33189980 DOI: 10.1016/j.saa.2020.119156] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 05/05/2023] [Imported: 09/12/2023]
Abstract
A diaminobenzophenone Schiff base derived probe 1, was synthesized and structure elucidation was carried out by spectroscopic studies viz., FT-IR, UV-vis, 1H, and 13C NMR and mass spectrometry. The sensing phenomenon with different metal ions (Cr3+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+) was investigated by employing absorption and fluorescence titrations, which demonstrated that probe 1 exhibited selective fluorescent sensing behavior towards Fe2+ ion among various other metal ions. The porobes selceteclivity towards Fe2+ was also examined by colorimetric assay which revealed a change in the color from light yellow to brown upon addition of Fe2+ ion. A remarkable increase in the fluorescence intensity of probe 1 was observed towards Fe2+ ion, which was found to be associated with the inhibition of photoinduced electron-transfer (PET) and CN isomerization processes, respectively. The chemosensor exhibited an association constant value of 6.173 × 107 M-2 as determined by using non-linear least square fit data. Job's plot calculated the binding stoichiometry, and the sensing phenomenon of Fe2+ towards the probe was further supported by Density Functional Theory (DFT) calculations and 1H NMR studies. The detection limit of probe 1 was found to be 0.0363 µM, which is below the permissible limits according to the WHO guideline (5 μM) for Fe2+ ions in the drinking water. Furthermore, the practical application of probe 1 was studied by analyzing the content of Fe2+ in different water samples.
Collapse
|
|
4 |
22 |
48
|
Tabassum S, Chandra Sharma G, Arjmand F, Azam A. DNA interaction studies of new nano metal based anticancer agent: validation by spectroscopic methods. NANOTECHNOLOGY 2010; 21:195102. [PMID: 20407140 DOI: 10.1088/0957-4484/21/19/195102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023] [Imported: 09/12/2023]
Abstract
A new nano dimensional heterobimetallic Cu-Sn containing complex as a potential drug candidate was designed, synthesized and characterized by analytical and spectral methods. The electronic absorption and electron paramagnetic resonance parameters of the complex revealed that the Cu(II) ion exhibits a square pyramidal geometry with the two pyrazole nitrogen atoms, the amine nitrogen atom and the carboxylate oxygen of the phenyl glycine chloride ligand located at the equatorial sites and the coordinated chloride ion occupying an apical position. (119)Sn NMR spectral data showed a hexa-coordinated environment around the Sn(IV) metal ion. TEM, AFM and XRD measurements illustrate that the complex could induce the condensation of CT-DNA to a particulate nanostructure. The interaction of the Cu-Sn complex with CT-DNA was investigated by UV-vis absorption and emission spectroscopy, as well as cyclic voltammetric measurements. The results indicated that the complex interacts with DNA through an electrostatic mode of binding with an intrinsic binding constant K(b) = 8.42 x 10(4) M( - 1). The Cu-Sn complex exhibits effective cleavage of pBR322 plasmid DNA by an oxidative cleavage mechanism, monitored at different concentrations both in the absence and in the presence of reducing agents.
Collapse
|
|
15 |
21 |
49
|
Parveen S, Tabassum S, Arjmand F. Synthesis of chiral R/S-pseudopeptide-based Cu( ii) & Zn( ii) complexes for use in targeted delivery for antitumor therapy: enantiomeric discrimination with CT-DNA and pBR322 DNA hydrolytic cleavage mechanism. RSC Adv 2017; 7:6587-6597. [DOI: 10.1039/c6ra24770a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] [Imported: 09/12/2023] Open
Abstract
The detailed mechanism of the hydrolytic cleavage pathway of 1S with pBR322 d DNA and the molecular docked model with DNA are shown below.
Collapse
|
|
8 |
21 |
50
|
Arjmand F, Afsan Z, Sharma S, Parveen S, Yousuf I, Sartaj S, Siddique HR, Tabassum S. Recent advances in metallodrug-like molecules targeting non-coding RNAs in cancer chemotherapy. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] [Imported: 09/12/2023]
|
|
6 |
20 |