1
|
Li C, Chen Q, Zhou Y, Niu Y, Wang X, Li X, Zheng H, Wei T, Zhao L, Gao H. S100A2 promotes glycolysis and proliferation via GLUT1 regulation in colorectal cancer. FASEB J 2020; 34:13333-13344. [PMID: 32816365 DOI: 10.1096/fj.202000555r] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 01/05/2023] [Imported: 10/18/2024]
Abstract
The deregulation of S100A2 has been implicated in the pathogenesis of several types of cancers. However, the molecular mechanisms underlying the protumorigenic capacities of S100A2 have not been fully elucidated. Here, we demonstrated the molecular mechanisms underlying the roles of S100A2 in glycolysis reprogramming and proliferation of colorectal cancer (CRC) cells. The results indicated that S100A2 overexpression raises glucose metabolism and proliferation. Mechanistically, S100A2 activated the PI3K/AKT signaling pathway, upregulated GLUT1 expression, induced glycolytic reprogramming, and consequently increased proliferation. Clinical data showed significantly increased S100A2 levels in CRC tissues and the Oncomine database. In addition, analysis revealed a positive correlation between S100A2 and GLUT1 mRNA expression in CRC tissues. Together, these results demonstrate that the S100A2/GLUT1 axis can promote the progression of CRC by modulating glycolytic reprogramming. Our results further suggest that targeting S100A2 could present a promising therapeutic avenue for the prevention of colorectal cancer progression.
Collapse
|
|
5 |
31 |
2
|
Ji L, Li X, Zhou Z, Zheng Z, Jin L, Jiang F. LINC01413/hnRNP-K/ZEB1 Axis Accelerates Cell Proliferation and EMT in Colorectal Cancer via Inducing YAP1/TAZ1 Translocation. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:546-561. [PMID: 31927328 PMCID: PMC6953771 DOI: 10.1016/j.omtn.2019.11.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] [Imported: 10/18/2024]
Abstract
Long non-coding RNAs (lncRNAs) are crucial molecules in tumorigenesis and tumor growth in various human cancers, including colorectal cancer (CRC). Studies have revealed that lncRNAs can regulate cellular processes in cancers by interacting with proteins, for example RNA-binding proteins (RBPs). In this study, we recognize a novel lncRNA called LINC01413 that is upregulated in CRC tissues through lncRNAs microarray. Subsequently, we confirmed that an elevated level of LINC01413 expression in CRC tissues was strongly correlated to clinicopathological features, such as tumor size, tumor stage, lymph node metastasis, and distant metastasis, and its association with poor overall survival was also revealed. Additionally, LINC01413 facilitates cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro. Also, silenced LINC01413 restrains tumor growth in vivo. Moreover, LINC01413 binds with hnRNP-K and induces YAP1 (yes-associated protein 1)/TAZ1 (tafazzin) nuclear translocation to regulate the expression of ZEB1 in CRC cells. Taken together, this research suggested LINC01413 as a positive regulator in CRC progression through the LINC01413/hnRNP-K/TAZ1/YAP1/ZEB1 axis, broadening a new view on CRC treatment.
Collapse
|
research-article |
5 |
29 |
3
|
Li X, Huang J, Yu T, Fang X, Lou L, Xin S, Ji L, Jiang F, Lou Y. Fusobacterium nucleatum Promotes the Progression of Colorectal Cancer Through Cdk5-Activated Wnt/β-Catenin Signaling. Front Microbiol 2021; 11:545251. [PMID: 33488528 PMCID: PMC7815597 DOI: 10.3389/fmicb.2020.545251] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] [Imported: 10/18/2024] Open
Abstract
BACKGROUND/AIMS Growing evidence supports the direct link of Fusobacterium nucleatum with colorectal cancer (CRC). However, to date, the underlying mechanism of action remains poorly understood. In this study, we examined the effects of F. nucleatum on the progression of CRC and investigated whether cyclin-dependent kinase 5 (Cdk5) is involved in the effect through activating the Wnt/β-catenin signaling pathway. MATERIALS AND METHODS CRC tissues and matched histologically normal specimens were collected from patients who were diagnosed with CRC and underwent surgical treatment in our hospital between January 2018 and January 2019. Two human CRC cell lines, including DLD-1 and SW480, were utilized mainly for in vitro mechanistic investigations. RESULTS The abundance of F. nucleatum was significantly greater in CRC tissues than in cancer-free specimens, which was significantly correlated with the progression of CRC. In vitro investigations revealed that F. nucleatum significantly enhanced the proliferation and migration of CRC cells. Furthermore, F. nucleatum significantly induced the expression of Cdk5 and activation of the Wnt/β-catenin signaling pathway. Notably, knockdown of Cdk5 significantly abrogated the effects of F. nucleatum on cellular processes and Wnt/β-catenin signaling in relation to the progression of CRC. CONCLUSION The results of this study demonstrate that F. nucleatum orchestrates a molecular network involving the direct role of Cdk5 in activating Wnt/β-catenin signaling to modulate CRC progression. Thus, in-depth investigations of F. nucleatum-associated molecular pathways may offer valuable insight into the pathogenesis of CRC, which may help further the development of treatment for this disease.
Collapse
|
research-article |
4 |
26 |
4
|
Li X, Xin S, Zheng X, Lou L, Ye S, Li S, Wu Q, Ding Q, Ji L, Nan C, Lou Y. Inhibition of the Occurrence and Development of Inflammation-Related Colorectal Cancer by Fucoidan Extracted from Sargassum fusiforme. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9463-9476. [PMID: 35858119 PMCID: PMC9354242 DOI: 10.1021/acs.jafc.2c02357] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 05/14/2023] [Imported: 10/18/2024]
Abstract
Fucoidan has many biological activities, including the inhibitory effect on the development of various cancer types. This study showed that lipopolysaccharide-induced inflammation in FHC cells (normal human colonic epithelial cells) could be reversed using fucoidan at different concentrations. The fucoidan-induced anti-inflammatory effect was also confirmed through in vivo experiments in mice. Compared to the mice of the model group, the ratio of Firmicutes/Bacteroidetes in feces increased and the diversity of gut microbial composition was restored in mice after fucoidan intervention. In colorectal cancer (CRC) cells DLD-1 and SW480, fucoidan inhibited cell proliferation and promoted cell apoptosis. It also blocked the cell cycle of DLD-1 and SW480 at the G0/G1 phase. The animal model of inflammation-related CRC showed that the incidence of tumors in mice was significantly reduced by fucoidan intervention. Furthermore, the administration of fucoidan decreased the expression levels of inflammatory factors such as TNF-α IL-6 and IL-1β in the colonic tissues. Therefore, fucoidan can effectively prevent the development of colitis-associated CRC.
Collapse
|
research-article |
3 |
12 |
5
|
Li X, Lin H, Jiang F, Lou Y, Ji L, Li S. Knock-Down of HOXB8 Prohibits Proliferation and Migration of Colorectal Cancer Cells via Wnt/β-Catenin Signaling Pathway. Med Sci Monit 2019; 25:711-720. [PMID: 30677006 PMCID: PMC6357822 DOI: 10.12659/msm.912218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/06/2018] [Indexed: 12/15/2022] [Imported: 10/18/2024] Open
Abstract
BACKGROUND There has been no research on the mechanism of HOXB8 action on colorectal cancer so far. This study was designed to investigate the mechanism of HOXB8 regulating colorectal cancer cell proliferation and invasion in vivo and in vitro. MATERIAL AND METHODS HOXB8 shRNA, HOXB8 overexpression, and negative control vector were designed and stably transfected into HCT116 cells. MTT assays were performed to detect cell proliferation. Western blot was utilized to detect HOXB8 expression level in HCT116 stable cells. The invasive and migration abilities were detected by Transwell assay and wound-healing assay. RESULTS HOXB8 knockdown inhibited cell proliferation. The invasiveness of HCT116 cells was significantly reduced following HOXB8 depletion compared with that in the shRNA control group, whereby the rates were reduced by 67% in HOXB8 knockdown group. The wound-healing rate of HOXB8 over-expression cells was significantly increased comparing with that of cells in the blank control group (P<0.05). HOXB8 knockdown promotes apoptosis of HCT116 cells. The expression of E-cadherin was restrained in the HOXB8 over-expression group and increased in the HOXB8 knockdown group. CONCLUSIONS Knock-down of HOXB8 prohibits the proliferation and migration of colorectal cancer cells via the Wnt/β-catenin signaling pathway and the downregulation of various factors, such as MMP2, c-Myc, CyclinD1,and vimentin. Our data suggested that HOXB8 has great potential to be developed as a novel therapeutic agent for the treatment of human colorectal cancer.
Collapse
|
research-article |
6 |
12 |
6
|
Bai H, Wang Y, Li X, Mao H, Li Y, Han S, Shi Z, Chen X. Isolation and characterization of a novel alphanodavirus. Virol J 2011; 8:311. [PMID: 21682922 PMCID: PMC3141682 DOI: 10.1186/1743-422x-8-311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/19/2011] [Indexed: 11/10/2022] [Imported: 10/18/2024] Open
Abstract
BACKGROUND Nodaviridae is a family of non-enveloped isometric viruses with bipartite positive-sense RNA genomes. The Nodaviridae family consists of two genera: alpha- and beta-nodavirus. Alphanodaviruses usually infect insect cells. Some commercially available insect cell lines have been latently infected by Alphanodaviruses. RESULTS A non-enveloped small virus of approximately 30 nm in diameter was discovered co-existing with a recombinant Helicoverpa armigera single nucleopolyhedrovirus (HearNPV) in Hz-AM1 cells. Genome sequencing and phylogenetic assays indicate that this novel virus belongs to the genus of alphanodavirus in the family Nodaviridae and was designated HzNV. HzNV possesses a RNA genome that contains two segments. RNA1 is 3038 nt long and encodes a 110 kDa viral protein termed protein A. The 1404 nt long RNA2 encodes a 44 kDa protein, which exhibits a high homology with coat protein precursors of other alphanodaviruses. HzNV virions were located in the cytoplasm, in association with cytoplasmic membrane structures. The host susceptibility test demonstrated that HzNV was able to infect various cell lines ranging from insect cells to mammalian cells. However, only Hz-AM1 appeared to be fully permissive for HzNV, as the mature viral coat protein essential for HzNV particle formation was limited to Hz-AM1 cells. CONCLUSION A novel alphanodavirus, which is 30 nm in diameter and with a limited host range, was discovered in Hz-AM1 cells.
Collapse
|
research-article |
14 |
8 |
7
|
Li X, Xu X, Jin A, Jia Q, Zhou H, Kang S, Lou Y, Gao J, Lu J. Self-assembled HCV core virus-like particles targeted and inhibited tumor cell migration and invasion. NANOSCALE RESEARCH LETTERS 2013; 8:401. [PMID: 24074276 PMCID: PMC3856463 DOI: 10.1186/1556-276x-8-401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 09/22/2013] [Indexed: 05/25/2023] [Imported: 10/18/2024]
Abstract
We used a baculovirus expression system to express fusion proteins of HCV core, RGD (Arg-Gly-Asp) peptide, and IFN-α2a fragments in Sf9 cells. Western blotting and electron microscopy demonstrate that HCV core, peptides RGD, and IFN-α2a fusion proteins assemble into 30 to 40 nm nano-particles (virus-like particles, VLPs). Xenograft assays show that VLPs greatly reduced tumor volume and weight with regard to a nontreated xenograft. Migration and invasion results show that VLPs can inhibit the migration and invasion of the breast cancer cells MDA-MB231. This study will provide theoretical and experimental basis for the establishment of safe and effective tumor-targeted drug delivery systems and clinical application of VLPs carrying cell interacting cargo.
Collapse
|
research-article |
12 |
7 |
8
|
Ye S, Wang L, Li S, Ding Q, Wang Y, Wan X, Ji X, Lou Y, Li X. The correlation between dysfunctional intestinal flora and pathology feature of patients with pulmonary tuberculosis. Front Cell Infect Microbiol 2022; 12:1090889. [PMID: 36619765 PMCID: PMC9811264 DOI: 10.3389/fcimb.2022.1090889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] [Imported: 10/18/2024] Open
Abstract
INTRODUCTION Recent studies have provided insights into the important contribution of gut microbiota in the development of Pulmonary Tuberculosis (PTB). As a chronic consumptive infectious disease, PTB involves many pathological characteristics. At present, research on intestinal flora and clinical pathological Index of PTB is still rare. METHODS We performed a cross-sectional study in 63 healthy controls (HCs) and 69 patients with untreated active PTB to assess the differences in their microbiota in feces via 16S rRNA gene sequencing. RESULTS Significant alteration of microbial taxonomic and functional capacity was observed in PTB as compared to the HCs. The results showed that the alpha diversity indexes of the PTB patients were lower than the HCs (P<0.05). Beta diversity showed differences between the two groups (P<0.05). At the genus level, the relative abundance of Bacteroides, Parabacteroides and Veillonella increased, while Faecalibacterium, Bifidobacterium, Agathobacter and CAG-352 decreased significantly in the PTB group, when compared with the HCs. The six combined genera, including Lactobacillus, Faecalibacterium, Roseburia, Dorea, Monnoglobus and [Eubacterium]_ventriosum_group might be a set of diagnostic biomarkers for PTB (AUC=0.90). Besides, the predicted bacterial functional pathway had a significant difference between the two groups (P<0.05), which was mainly related to the nutrient metabolism pathway. Significant alterations in the biochemical index were associated with changes in the relative abundance of specific bacteria, the short chain fatty acid (SCFA)-producing bacteria enriched in HCs had a positively correlated with most of the biochemical indexes. DISCUSSION Our study indicated that the gut microbiota in PTB patients was significantly different from HCs as characterized by the composition and metabolic pathway, which related to the change of biochemical indexes in the PTB group. It was hypothesized that the abovementioned changes in the gut microbiota could exert an impact on the clinical characteristics of PTB through the regulation of the nutrient utilization pathway of the host by way of the gut-lung axis.
Collapse
|
research-article |
3 |
6 |
9
|
Wen Z, Jia Q, Kang X, Lou Y, Zou L, Yang J, Gao J, Han L, Li X. Antitumor activity of recombinant RGD-IFN-α2a-core fusion protein in vitro. Anticancer Drugs 2017; 28:31-39. [PMID: 27759573 PMCID: PMC5131691 DOI: 10.1097/cad.0000000000000421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 07/24/2016] [Indexed: 12/14/2022] [Imported: 10/18/2024]
Abstract
Interferon (IFN) regulates immune responses and antitumor activity. Arginine-glycine-aspartic acid (RGD) peptides can specifically bind to integrin αvβ3, a transmembrane receptor that is highly expressed on the surface of various cancer cells. In this study, we expressed recombinant RGD-IFN-α2a-core fusion proteins and assessed their antitumor activity in vitro. Two RGD-IFN-α2a-core fusion proteins and a negative control protein were expressed in vitro. These two RGD-IFN-α2a-core fusion proteins could bind the tumor cell surface specifically and did not bind to normal cells. RGD-IFN-α2a-core fusion protein treatment of tumor cells significantly reduced cell viability and induced apoptosis in a dose-dependent manner. At the 'mRNA' level, both proteins could upregulate CASP3 expression. These data indicate that both laboratory-engineered RGD-IFN-α2a-core fusion proteins could bind the surface of tumor cells and induce apoptosis in vitro. Further studies will investigate the in-vivo antitumor activities of the RGD-IFN-α2a-core fusion proteins.
Collapse
|
research-article |
8 |
6 |
10
|
Liang Y, Chen H, Ji L, Du J, Xie X, Li X, Lou Y. Talin2 regulates breast cancer cell migration and invasion by apoptosis. Oncol Lett 2018; 16:285-293. [PMID: 29928413 PMCID: PMC6006181 DOI: 10.3892/ol.2018.8641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 02/12/2018] [Indexed: 01/04/2023] [Imported: 10/18/2024] Open
Abstract
Talin is a key component molecule of the extracellular matrix-integrin-cytoskeleton. It serves an important role in the activation of integrin, which, in turn, is known to mediate physiological and pathological processes, including cell adhesion, growth, tumorigenesis, and metastasis. In vertebrates, there are two Talin genes, Talin1 and Talin2. Talin1 is known to regulate focal adhesion dynamics, cell migration and cell invasion; however, the precise role of Talin2 in cancer remains unclear. In the present study, the functional role of Talin2 was examined in the MDA-MB-231 breast cancer cell line. Talin2 knockdown significantly inhibited growth, migratory capacity and invasiveness of MDA-MB-231 cells, and promoted apoptosis. The expression levels of Talin2 in breast cancer cells and in the peritumoral normal breast tissues were also determined by immunohistochemistry. Talin2 was identified to be overexpressed in breast cancer tissues compared with that in the peritumoral breast tissues. In addition, the knockdown of Talin2 by specific RNA interference markedly inhibited cell growth, and caused the downregulation of the apoptotic markers, cleaved Caspase-3 and phosphorylation of poly ADP-ribose polymerase. These findings demonstrate that Talin2 expression is upregulated in human breast cancer and that downregulation of Talin2 may serve as a useful therapeutic target in patients with breast cancer.
Collapse
|
research-article |
7 |
6 |
11
|
Lu J, Zou L, Liu B, Li X, Tan J, Zhao A, Xiong C, Li X, Lu J, Gao J. Development of a time-resolved fluoroimmunoassay of CFP-10 for rapid diagnosis of tuberculous pleural effusion. Tuberculosis (Edinb) 2015; 95:426-431. [PMID: 26055814 DOI: 10.1016/j.tube.2015.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 04/01/2015] [Accepted: 04/08/2015] [Indexed: 11/25/2022] [Imported: 10/18/2024]
Abstract
Tuberculous pleural effusion is the second most common form of extrapulmonary tuberculosis, which is very difficult to rapidly distinguish from malignant pleural effusion in the clinical setting. A time-resolved fluoroimmunoassay (TRF) of CFP-10, a low molecular weight protein secreted by pathogenic Mycobacterium tuberculosis, was developed to differentiate tuberculous pleural effusion from malignant one. The measuring range was 0.3-187.5 ng/ml with the dose-response coefficient of 0.9998 and detection limit of 0.036 ng/ml. The intra-assay and inter-assay coefficients of variation were 3.6-9.2% and 10.0-12.4%, respectively. The concentration of CFP-10 in malignant pleural effusion was less than 0.8 ng/ml. The negative predictive value was 93.1% in malignant pleural effusion (n = 247) while the positive predictive value was 83.0% in tuberculous pleural effusion (n = 235). Moreover, there was a statistically significant difference in the CFP-10 concentration of pleural effusion between the groups before and after clinical therapy of tuberculosis (P < 0.001, n = 81). In addition, the stability of the diagnostic reagents lasted at least 1 year at 4 °C. Therefore, the TRF of CFP-10 may be used for the rapid diagnosis of tuberculous pleural effusion and further monitoring the clinical therapeutic efficacy of tuberculosis.
Collapse
|
|
10 |
3 |
12
|
Li X, Ding Q, Wan X, Wu Q, Ye S, Lou Y. Fecal microbiota transplantation attenuates Alzheimer's disease symptoms in APP/PS1 transgenic mice via inhibition of the TLR4-MyD88-NF-κB signaling pathway-mediated inflammation. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2025; 21:2. [PMID: 39780269 PMCID: PMC11715513 DOI: 10.1186/s12993-024-00265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] [Imported: 02/03/2025]
Abstract
Alzheimer's disease (AD) is a prevalent and progressive neurodegenerative disorder that is the leading cause of dementia. The underlying mechanisms of AD have not yet been completely explored. Neuroinflammation, an inflammatory response mediated by certain mediators, has been exhibited to play a crucial role in the pathogenesis of AD. Additionally, disruption of the gut microbiota has been found to be associated with AD, and fecal microbiota transplantation (FMT) has emerged as a potential therapeutic approach. However, the precise mechanism of FMT in the treatment of AD remains elusive. In this study, FMT was performed by transplanting fecal microbiota from healthy wild-type mice into APP/PS1 mice (APPswe, PSEN1dE9) to assess the effectiveness of FMT in mitigating AD-associated inflammation and to reveal its precise mechanism of action. The results demonstrated that FMT treatment improved cognitive function and reduced the expression levels of inflammatory factors by regulating the TLR4/MyD88/NF-κB signaling pathway in mice, which was accompanied by the restoration of gut microbial dysbiosis. These findings suggest that FMT has the potential to ameliorate AD symptoms and delay the disease progression in APP/PS1 mice.
Collapse
|
research-article |
1 |
|
13
|
Yu T, Ji L, Lou L, Ye S, Fang X, Li C, Jiang F, Gao H, Lou Y, Li X. Fusobacterium nucleatum Affects Cell Apoptosis by Regulating Intestinal Flora and Metabolites to Promote the Development of Colorectal Cancer. Front Microbiol 2022; 13:841157. [PMID: 35369440 PMCID: PMC8971960 DOI: 10.3389/fmicb.2022.841157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/23/2022] [Indexed: 11/15/2022] [Imported: 10/18/2024] Open
Abstract
BACKGROUND/AIMS Intestinal flora, especially Fusobacterium nucleatum (Fn), can affect the development of colorectal cancer (CRC). In this study, we examined the composition of intestinal flora and their metabolites in the tissues, serum and feces of CRC patients. MATERIALS AND METHODS CRC tissues, adjacent normal colonic tissues, fecal and serum samples were collected from CRC patients who received surgical treatment between January 2018 and January 2020. Fecal and serum samples were collected from healthy individuals for comparison. In addition, fecal samples were collected from BALB/c female mice. SW480, a human CRC cell line, was utilized for in vitro studies. The experiments involved 1H-NMR-based metabolomics analysis, targeted and untargeted mass spectrometry analysis, and intestinal flora 16S rDNA V4 region sequencing. RESULTS The abundance of Bacteroides and propionic acid concentration were decreased and that of Lactobacillus and lactic acid concentration were increased in CRC tissues. In addition, the abundances of Ruminococcus, Prevotella, and Sutterell were decreased in CRC patients. The levels of leucine and isoleucine were decreased in the serum and tumor tissues of CRC patients. Aspartate, glutamate and glutathione levels were elevated in the tissues of CRC patients only. The serum glutamine, tyrosine, valine, alanine, and histidine levels were decreased significantly. Lactic acid inhibited and propionic acid promoted apoptosis among SW480 CRC cells. CONCLUSION Fn affected the apoptosis of CRC cells and promoted the progression of CRC by affecting the distribution of intestinal flora, which altered the concentrations of metabolites such as lactic acid, propionic acid. Intestinal flora could regulate amino acid metabolism.
Collapse
|
research-article |
3 |
|
14
|
Wu QL, Fang XT, Wan XX, Ding QY, Zhang YJ, Ji L, Lou YL, Li X. Fusobacterium nucleatum-induced imbalance in microbiome-derived butyric acid levels promotes the occurrence and development of colorectal cancer. World J Gastroenterol 2024; 30:2018-2037. [PMID: 38681125 PMCID: PMC11045493 DOI: 10.3748/wjg.v30.i14.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Accepted: 02/29/2024] [Indexed: 04/12/2024] [Imported: 10/18/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) ranks among the most prevalent malignant tumors globally. Recent reports suggest that Fusobacterium nucleatum (F. nucleatum) contributes to the initiation, progression, and prognosis of CRC. Butyrate, a short-chain fatty acid derived from the bacterial fermentation of soluble dietary fiber, is known to inhibit various cancers. This study is designed to explore whether F. nucleatum influences the onset and progression of CRC by impacting the intestinal metabolite butyric acid. AIM To investigate the mechanism by which F. nucleatum affects CRC occurrence and development. METHODS Alterations in the gut microbiota of BALB/c mice were observed following the oral administration of F. nucleatum. Additionally, DLD-1 and HCT116 cell lines were exposed to sodium butyrate (NaB) and F. nucleatum in vitro to examine the effects on proliferative proteins and mitochondrial function. RESULTS Our research indicates that the prevalence of F. nucleatum in fecal samples from CRC patients is significantly greater than in healthy counterparts, while the prevalence of butyrate-producing bacteria is notably lower. In mice colonized with F. nucleatum, the population of butyrate-producing bacteria decreased, resulting in altered levels of butyric acid, a key intestinal metabolite of butyrate. Exposure to NaB can impair mitochondrial morphology and diminish mitochondrial membrane potential in DLD-1 and HCT116 CRC cells. Consequently, this leads to modulated production of adenosine triphosphate and reactive oxygen species, thereby inhibiting cancer cell proliferation. Additionally, NaB triggers the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, blocks the cell cycle in HCT116 and DLD-1 cells, and curtails the proliferation of CRC cells. The combined presence of F. nucleatum and NaB attenuated the effects of the latter. By employing small interfering RNA to suppress AMPK, it was demonstrated that AMPK is essential for NaB's inhibition of CRC cell proliferation. CONCLUSION F. nucleatum can promote cancer progression through its inhibitory effect on butyric acid, via the AMPK signaling pathway.
Collapse
|
Basic Study |
1 |
|
15
|
Li T, Wu T, Li X, Qian C. Transcriptional switches in melanoma T Cells: Facilitating polarizing into regulatory T cells. Int Immunopharmacol 2024; 137:112484. [PMID: 38885605 DOI: 10.1016/j.intimp.2024.112484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] [Imported: 10/18/2024]
Abstract
Melanoma is a malignant skin tumor with a high mortality rate. Regulatory T cells (Tregs) are immune cells with immunosuppressive roles, however, the precise mechanisms governing Treg involvement in melanoma remain enigmatic. Experimental findings unveiled different transcription factor switches between normal and tumor T cell, with heightened FOXP3 and BATF in the latter. These factors induced immunosuppressive molecules and Treg maintenance genes, polarizing tumor T cells into Tregs. Spatial transcriptomics illuminated the preferential settlement of Tregs at the melanoma periphery. Within this context, FOXP3 in Tregs facilitated direct enhancement of specific ligand gene expression, fostering communication with neighboring cells. Novel functional molecules bound to FOXP3 or BATF in Tregs, such as SPOCK2, SH2D2A, and ligand molecules ITGB2, LTA, CLEC2C, CLEC2D, were discovered, which had not been previously reported in melanoma Treg studies. Furthermore, we validated our findings in a large number of clinical samples and identified the Melanoma Treg-Specific Regulatory Tag Set (Mel TregS). ELISA analysis showed that the protein levels of Mel TregS in melanoma Tregs were higher than in normal Tregs. We then utilized SERS technology to measure the signal values of Mel TregS in exosome, and successfully discriminated between healthy individuals and melanoma patients, as well as early and late-stage patients. This approach significantly enhanced detection sensitivity. In sum, our research elucidated fresh insights into the mechanisms governing Treg self-maintenance and communication with surrounding cells in melanoma. We also introduced an innovative method for clinical disease monitoring through SERS technology.
Collapse
|
|
1 |
|