126
|
Torres-Rojas MF, Mandujano-Lazaro G, Lopez-Camarillo C, Ramirez-Moreno E, Mendez-Alvarez D, Rivera G, Marchat LA. S-Dihydrodaidzein and 3-(1,3-benzoxazol-2-yl)-benzamide, Two New Potential β-estrogen Receptor Ligands with Anti-adipogenic Activity. Med Chem 2024; 20:434-442. [PMID: 38192145 DOI: 10.2174/0115734064285786231230185457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] [Imported: 03/10/2025]
Abstract
BACKGROUND The elucidation of molecular pathways associated with adipogenesis has evidenced the relevance of estrogen and estrogen receptor beta (ERβ). The positive effects of ERβ ligands on adipogenesis, energy expenditure, lipolysis, food intake, and weight loss, make ERβ an attractive target for obesity control. From ligand-based virtual screening, molecular docking, and molecular dynamic simulations, six new likely ERβ ligands (C1 to C6) have been reported with potential for pharmacological obesity treatment. OBJECTIVE In this study, the effect of molecules C1-C6 on adipogenesis using the murine 3T3-L1 cell line was evaluated. METHODS Cell viability was assessed by MTT assays. Lipid accumulation and gene expression were investigated by ORO staining and real-time quantitative RT-PCR experiments, respectively. RESULTS Cell viability was not significantly affected by C1-C6 at concentrations up to 10 μM. Interestingly, treatment with 10 μM of C1 (S-Dihydrodaidzein) and C2 (3-(1,3-benzoxazol-2-yl)- benzamide) for 72 h inhibited adipocyte differentiation; moreover, ORO staining evidenced a reduced intracellular lipid accumulation (40% at day 7). Consistently, mRNA expression of the adipogenic markers, PPARγ and C/EBPα, was reduced by 50% and 82%, respectively, in the case of C1, and by 83% and 59%, in the case of C2. CONCLUSION Altogether, these results show the two new potential β-estrogen receptor ligands, C1 and C2, to exhibit anti-adipogenic activity. They could further be used as lead structures for the development of more efficient drugs for obesity control.
Collapse
|
|
1 |
|
127
|
Salgado‐Martínez AI, Avila‐Bonilla RG, Ramírez‐Moreno E, Castañón‐Sánchez CA, López‐Camarillo C, Marchat LA. Unraveling the relevance of the polyadenylation factor EhCFIm25 in Entamoeba histolytica through proteomic analysis. FEBS Open Bio 2021; 11:2819-2835. [PMID: 34486252 PMCID: PMC8487052 DOI: 10.1002/2211-5463.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] [Imported: 03/10/2025] Open
Abstract
We recently reported that silencing of the polyadenylation factor EhCFIm25 in Entamoeba histolytica, the protozoan which causes human amoebiasis, affects trophozoite proliferation, death, and virulence, suggesting that EhCFIm25 may have potential as a new biochemical target. Here, we performed a shotgun proteomic analysis to identify modulated proteins that could explain this phenotype. Data are available via ProteomeXchange with identifier PXD027784. Our results revealed changes in the abundance of 75 proteins. Interestingly, STRING analysis, functional GO-term annotations, KEGG analyses, and literature review showed that modulated proteins are mainly related to glycolysis and carbon metabolism, cytoskeleton dynamics, and parasite virulence, as well as gene expression and protein modifications. Further studies are needed to confirm the hypotheses emerging from this proteomic analysis, to thereby acquire a comprehensive view of the molecular mechanisms involved.
Collapse
|
research-article |
4 |
|
128
|
Torres-Romero JC, Villalpando JL, Lara-Riegos J, Valdés J, Azuara-Liceaga E, Euan-Canto A, López-Camarillo C, Alvarez-Sánchez ME. In silico analysis of putative metal response elements (MREs) in the zinc-responsive genes from Trichomonas vaginalis and the identification of novel palindromic MRE-like motif. Biometals 2020; 33:229-240. [PMID: 32920708 DOI: 10.1007/s10534-020-00246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 09/07/2020] [Indexed: 11/24/2022] [Imported: 03/10/2025]
Abstract
Zinc is an essential micronutrient that plays an important role as a co-factor to several proteins, including zinc-responsive transcription factors. Trichomonas vaginalis is able to survive in the presence of high zinc concentrations in the male urogenital tract. Several genes in T. vaginalis have been shown to respond to changes in zinc concentrations, however, the zinc-dependent mechanism remains undetermined. Recently, we identified in T. vaginalis the zinc finger protein, TvZNF1, which is an ortholog of the mammal metal transcription factor (MTF1). We searched for several of the zinc-responsive genes in T. vaginalis to determine whether if they contain metal response elements (MRE), cis-acting DNA elements that specifically bind MTF1. Six highly conserved over-represented sequence motifs (TvMREs), which share similarity with other eukaryotic MREs, were identified in the zinc-responsive genes in T. vaginalis. We also demonstrated that some of the TvMREs assemble as divalent complexes either as two closely spaced TvMREs or as two overlapping TvMREs forming a palindromic-like sequence: TGCC(N3)GGCA. Electrophoretic mobility shift assays were used to detect the zinc-dependent binding of TvZNF1 and nuclear proteins from T. vaginalis to this specific palindromic motif. Our results support a novel mechanism used by T. vaginalis for the transcriptional regulation of associated zinc-responsive genes through a MTF1/MRE-like system.
Collapse
|
|
5 |
|
129
|
Acuña-Aguilar LE, Conejo-Dávila AS, Miki-Yoshida M, Hernández-de la Cruz ON, Sánchez-Sánchez G, López-Camarillo C, Salas-Leiva JS, Zaragoza-Contreras EA, Reyes-Martínez R, Orrantia-Borunda E. The Improved Cytotoxic Capacity of Functionalized Nanodiamonds with Metformin in Breast and Ovarian Cancer Cell Lines. Processes (Basel) 2023; 11:2616. [DOI: 10.3390/pr11092616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025] [Imported: 03/10/2025] Open
Abstract
Nanodiamonds (ND-COOH) are used as drug delivery systems because of their attractive properties, as they allow for optimized transport of therapeutic agents in cellular models. Metformin (MET) is a drug used in diabetes mellitus therapy and exhibits anti-cancer properties. In this study, dispersed nanodiamonds were functionalized with metformin by directly binding them to 1,6-hexanediol (ND-MET), and their effects on the cytotoxicity of breast and ovarian cancer cells were evaluated in vitro. A simple synthesis of ND-MET was performed and characterized using FT-IR, XPS, Boehm titration, RAMAN, XDR, TEM, and dynamic light scattering (DLS). Data showed an increased intensity of the C-N bond band, indicating the presence of metformin in ND-MET. We detected signals at 1427 cm−1 and 1288 cm−1 corresponding to the C-N and C-H bonds, and adsorptions at 1061 cm−1 and 3208 cm−1 corresponding to the N-O and N-H bonds, respectively. The deconvolution of the C1s binding energy was also found at 286.24 eV. The biological effects of ND-MET were tested in both SKOV3 ovarian cancer and Hs-578T and MDA-MB-231 triple-negative breast cancer cell lines. In SKOV3 cells, the IC50 for the ND-MET complex was 35 ± 14 µg/mL, while for Hs-578T and MDA-MB-231 breast cancer cells, the IC50 for ND-MET was 759 ± 44 µg/mL and 454 ± 49 µg/mL, respectively. Our data showed that ND-MET could be used as an intracellular delivery system for metformin in cancer cells. Cell viability assays evidenced a reduced viability of all cell lines in a time and dose-dependent manner, with a significant sensitivity observed in SKOV3 ovarian cancer cells treated with ND-MET.
Collapse
|
|
2 |
|
130
|
López-Camarillo C, Slaby O, Silva-Cázares MB. Editorial: Strategic molecular biomarkers and microRNAs in cancer. Front Oncol 2022; 12:1031349. [PMID: 36313649 PMCID: PMC9598417 DOI: 10.3389/fonc.2022.1031349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] [Imported: 03/10/2025] Open
|
Editorial |
3 |
|
131
|
García-Hernández AP, Corona DN, Carlos-Reyes Á, Sierra-Martínez M, Acosta-Altamirano G, Cisneros-Villanueva M, Pérez-Navarro Y, Ibarra-Sierra E, Marchat LA, López-Camarillo C. The lncRNA AFAP1-AS1 is upregulated in metastatic triple-negative breast tumors and controls hypoxia-activated vasculogenic mimicry and angiogenesis. BMC Cancer 2024; 24:1332. [PMID: 39472818 PMCID: PMC11523880 DOI: 10.1186/s12885-024-13019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] [Imported: 03/02/2025] Open
Abstract
BACKGROUND Vasculogenic mimicry (VM) is an alternative intratumoral microcirculation system that depends on the capacity of tumor cells to reorganize and grow in three-dimensional (3D) channel architectures like the capillaries formed by endothelial cells. Both VM and angiogenesis may coordinately function to feed cancer cells, allowing tumor growth. Long noncoding RNAs (lncRNAs) regulate critical cellular functions in cancer cells, including cell proliferation, apoptosis, angiogenesis, invasion, and metastasis. The lncRNA, known as actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1), has been described as an oncogene in diverse types of cancers. However, its role in VM and metastasis in triple-negative breast cancer (TNBC) is unknown. METHODS Reverse transcription and quantitative polymerase chain reaction (RT‒qPCR) experiments were performed to evaluate the expression of 10 selected lncRNAs from literature in metastatic and nonmetastatic biopsies from TNBC patients. The expression of AFAP1-AS1 was analyzed in Genotype-Tissue Expression Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) datasets. The AFAP1-AS1 expression was knocked in TNBC Hs578T cells by transfection of specific siRNAs. Channel-like formation assays were performed using 3D cultures over Matrigel in hypoxia-treated Hs578T cancer cells with diminished expression of AFAP1-AS1. The angiogenesis tests were conducted using human umbilical vein endothelial cells (HUVECs) and AFAP1-AS1- silenced Hs578T cells on 3D cell cultures. The presence of VM (CD31-/PAS+) in tumor tissues from TNBC patients with and without metastasis was assessed through immunohistochemistry using endothelial marker CD31 antibodies and periodic acid-Schiff (PAS) staining. RESULTS Compared with normal mammary tissues, AFAP1-AS1 expression was higher in breast cancer tissues. Moreover, AFAP1-AS1 expression was upregulated in the TNBC subtype compared to receptor-positive breast tumors. In addition, the expression of AFAP1-AS1 was correlated with the expression of the thirteen genes characteristic of a previously reported hypoxia signature. Interestingly, AFAP1-AS1 was upregulated in primary TNBC tumors from patients who developed metastasis compared with the nonmetastatic group. Functional analysis revealed that the knockdown of AFAP1-AS1 in Hs578T cells significantly impaired the hypoxia-induced VM, accompanied by a decrease in the development of 3D channel networks. Similarly, AFAP1-AS1 knockdown counteracts the angiogenic potential of cancer cells, as indicated by a reduction in the number of polygons, sprouting cells, and nodes in HUVEC cells. Remarkably, an increase in CD31-/PAS + staining of 3D channel networks in primary breast tumors from metastatic patients was found compared with the nonmetastatic group. Finally, we found that the number of blood vessels increased in the nonmetastatic group more than in the metastatic cohort. CONCLUSIONS Our data suggested that AFAP1-AS1 controls both VM and angiogenesis in Hs578T breast cancer cells and that increased metastasis is associated with VM in TNBC patients.
Collapse
|
research-article |
1 |
|
132
|
Ayala-Ham A, Aguilar-Medina M, León-Félix J, Romero-Quintana JG, Bermúdez M, López-Gutierrez J, Jiménez-Gastélum G, Avendaño-Félix M, Lizárraga-Verdugo E, Castillo-Ureta H, López-Camarillo C, Ramos-Payan R. Extracellular matrix hydrogel derived from bovine bone is biocompatible in vitro and in vivo. Biomed Mater Eng 2022; 33:491-504. [PMID: 35466925 DOI: 10.3233/bme-211387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] [Imported: 03/10/2025]
Abstract
BACKGROUND Nowadays, biomaterials used as a scaffold must be easy to deliver in the bone defect area. Extracellular matrix (ECM) hydrogels are highly hydrated polymers that can fill irregular shapes and act as bioactive materials. OBJECTIVE This work aims to show the effects of ECM hydrogels derived from bovine bone (bECMh) on proliferation, cytotoxicity and expression of pro-inflammatory cytokines in three cells types involved in tissue regeneration, as well as biocompatibility in vivo. METHODS In vitro, we used an extract of bECMh to test it on macrophages, fibroblasts, and adipose-derived mesenchymal stem cells (AD-MCSs). Cell proliferation was measured using the MTT assay, cytotoxicity was measured by quantifying lactate dehydrogenase release and the Live/Dead Cell Imaging assays. Concentrations of IL-6, IL-10, IL-12p70, MCP-1 and TNF-α were quantified in the supernatants using a microsphere-based cytometric bead array. For in vivo analysis, Wistar rats were inoculated into the dorsal sub-dermis with bECMh, taking as reference the midline of the back. The specimens were sacrificed at 24 h for histological study. RESULTS In vitro, this hydrogel behaves as a dynamic biomaterial that increases fibroblast proliferation, induces the production of pro-inflammatory cytokines in macrophages, among which MCP-1 and TNF-α stand out. In vivo, bECMh allows the colonization of host fibroblast-like and polymorphonuclear cells, without tissue damage or inflammation. CONCLUSIONS The results indicate that bECMh is a biocompatible material that could be used as a scaffold, alone or in conjunction with cells or functional biomolecules, enhancing proliferation and allowing the filling of bone defects to its further regeneration.
Collapse
|
|
3 |
|
133
|
Trujano-Camacho S, Cantú-de León D, Pérez-Yepez E, Contreras-Romero C, Coronel-Hernandez J, Millan-Catalan O, Rodríguez-Dorantes M, López-Camarillo C, Gutiérrez-Ruiz C, Jacobo-Herrera N, Pérez-Plasencia C. HOTAIR Promotes the Hyperactivation of PI3K/Akt and Wnt/β-Catenin Signaling Pathways via PTEN Hypermethylation in Cervical Cancer. Cells 2024; 13:1484. [PMID: 39273054 PMCID: PMC11394386 DOI: 10.3390/cells13171484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] [Imported: 03/02/2025] Open
Abstract
The mechanisms underlying the sustained activation of the PI3K/AKT and Wnt/β-catenin pathways mediated by HOTAIR in cervical cancer (CC) have not been extensively described. To address this knowledge gap in the literature, we explored the interactions between these pathways by driving HOTAIR expression levels in HeLa cells. Our findings reveal that HOTAIR is a key regulator in sustaining the activation of both signaling pathways. Specifically, altering HOTAIR expression-either by knockdown or overexpression-significantly influenced the transcriptional activity of the PI3K/AKT and Wnt/β-catenin pathways. Additionally, we discovered that HIF1α directly induces HOTAIR transcription, which in turn leads to the epigenetic silencing of the PTEN promoter via DNMT1. This process leads to the sustained activation of both pathways, highlighting a novel regulatory axis involving HOTAIR and HIF1α in cervical cancer. Our results suggest a new model in which HOTAIR sustains reciprocal activation of the PI3K/AKT and Wnt/β-catenin pathways through the HOTAIR/HIF1α axis, thereby contributing to the oncogenic phenotype of cervical cancer.
Collapse
|
research-article |
1 |
|
134
|
Contreras-Romero C, Pérez-Yépez EA, Martinez-Gutierrez AD, Campos-Parra A, Zentella-Dehesa A, Jacobo-Herrera N, López-Camarillo C, Corredor-Alonso G, Martínez-Coronel J, Rodríguez-Dorantes M, de León DC, Pérez-Plasencia C. Gene Promoter-Methylation Signature as Biomarker to Predict Cisplatin-Radiotherapy Sensitivity in Locally Advanced Cervical Cancer. Front Oncol 2022; 12:773438. [PMID: 35359376 PMCID: PMC8963763 DOI: 10.3389/fonc.2022.773438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] [Imported: 03/10/2025] Open
Abstract
Despite efforts to promote health policies focused on screening and early detection, cervical cancer continues to be one of the leading causes of mortality in women; in 2020, estimated 30,000 deaths in Latin America were reported for this type of tumor. While the therapies used to treat cervical cancer have excellent results in tumors identified in early stages, those women who are diagnosed in locally advanced and advanced stages show survival rates at 5 years of <50%. Molecular patterns associated with clinical response have been studied in patients who present resistance to treatment; none of them have reached clinical practice. It is therefore necessary to continue analyzing molecular patterns that allow us to identify patients at risk of developing resistance to conventional therapy. In this study, we analyzed the global methylation profile of 22 patients diagnosed with locally advanced cervical cancer and validated the genomic results in an independent cohort of 70 patients. We showed that BRD9 promoter region methylation and CTU1 demethylation were associated with a higher overall survival (p = 0.06) and progression-free survival (p = 0.0001), whereas DOCK8 demethylation was associated with therapy-resistant patients and a lower overall survival and progression-free survival (p = 0.025 and p = 0.0001, respectively). Our results suggest that methylation of promoter regions in specific genes may provide molecular markers associated with response to treatment in cancer; further investigation is needed.
Collapse
|
research-article |
3 |
|
135
|
Tovar-Hernández K, Salinas-Vera YM, Carlos-Reyes Á, García-Hernández AP, Marchat LA, Mandujano-Lázaro G, Ríos-Castro E, Velasco-Suárez A, Mendez-Gómez I, Tecalco-Cruz ÁC, Ibarra-Sierra E, López-Camarillo C. Adipocytes reprogram the proteome of breast cancer cells in organotypic three-dimensional cell cultures. Sci Rep 2024; 14:27029. [PMID: 39505903 PMCID: PMC11542085 DOI: 10.1038/s41598-024-76053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] [Imported: 03/02/2025] Open
Abstract
While epidemiological evidence has long linked obesity with an increased risk of breast cancer, the intricate interactions between adipocytes and cancer cells within the tumor microenvironment remain largely uncharted territory. The use of organotypic three-dimensional (3D) cell cultures that more accurately mimic the spatial architecture of tumors represents an innovative approach to this complex issue. In the present study, we investigated the effects of adipocytes on the proteome of Hs578t breast cancer cells cultured in a 3D microenvironment. Using different treatments, we rigorously optimized the experimental conditions to induce the optimal differentiation of 3T3-L1 fibroblasts into mature adipocytes. Then, we grow the Hs578t cells in a simulated microenvironment using an on-top model for organotypic 3D cultures. Our data showed that cancer cells formed 3D stellate-like architectures when grown over an extracellular matrix proteins-enriched scaffold for 48 h. Proteomic profiling using LC-MS/MS mass spectrometry of Hs578t cells grown in 3D conditions with or without the adipocyte-enriched culture discovered 916 unique proteins. Of these, 605 showed no significant changes in abundance, whereas 87 proteins were significantly upregulated and 224 downregulated after interaction with fat cells (p < 0.05, FC > 2.0). Bioinformatic analysis of upregulated proteins indicated that the most enriched GO terms and molecular functions were related to lipids transport, cell differentiation, hypoxia response, and cell junctions. In addition, several modulated proteins have been previously associated with breast cancer progression. Interestingly, lipid transport proteins, including PITPNM2, ATP2C1, ABCA12, HDLBP, and APOB, showed perturbations in their expression, which were also associated with low overall survival in breast cancer patients. Functional studies showed that the knockdown of apolipoprotein B (APOB) expression in Hs578t cells reduced the size of 3D cellular structures. Moreover, APOB-knocked cells cocultured with adipocytes for 48 h exhibited a significant decrease of intracellular lipids, whereas an increase in the adipocytes was found. Our results indicate that the 3D microenvironment and the adipocytes crosstalk reprogram the proteome of breast cancer cells. These data help us understand the environmental effects in gene expression and contribute to discovering novel tumor proteins with potential intervention in breast cancer therapy.
Collapse
|
research-article |
1 |
|
136
|
Ibarra-Sierra E, Bermúdez M, Villegas-Mercado CE, Silva-Cázares MB, López-Camarillo C. LncRNAs Regulate Vasculogenic Mimicry in Human Cancers. Cells 2025; 14:616. [PMID: 40277941 PMCID: PMC12025595 DOI: 10.3390/cells14080616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/11/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025] [Imported: 05/04/2025] Open
Abstract
Vasculogenic mimicry (VM) has recently been discovered as an alternative mechanism for nourishing cancer cells in vivo. During VM, tumor cells align and organize themselves into three-dimensional (3D) channel-like structures to transport nutrients and oxygen to the internal layers of tumors. This mechanism mainly occurs in aggressive solid tumors and has been associated with poor prognosis in oncologic patients. Long non-coding RNAs (lncRNAs) are essential regulators of protein-encoding genes involved in cancer development and progression. These single-stranded RNA molecules regulate critical cellular functions in cancer cells including cell proliferation, apoptosis, angiogenesis, VM, therapy response, migration, invasion, and metastasis. Recently, high-throughput RNA-sequencing technologies have identified thousands of lncRNAs, but only a small percentage of them have been functionally characterized in human cancers. The vast amount of data about its genomic expression in tumors can allow us to dissect their functions in cancer biology and make them suitable biomarkers for cancer diagnosis and prognosis. In this study, we reviewed the current knowledge about the role of lncRNAs in regulating VM in cancer. We also examined the molecular mechanisms of lncRNAs and highlight several commonalities in the cellular functions associated with VM between diverse cancer types. Future directions for research focused on deciphering their function in VM are delineated. Finally, the potential of selected lncRNAs as novel therapeutic targets in RNA-based molecular interventions is also discussed.
Collapse
|
Review |
1 |
|
137
|
Contreras-Sanzón E, Carlos-Reyes Á, Sierra-Martínez M, Acosta-Altamirano G, Luna-Rivero C, Núñez-Corona D, García-Hernández AP, Ibarra-Sierra E, Vidrio-Morgado H, Alvarez-Sánchez ME, Marchat LA, López-Camarillo C. Metastatic breast tumors downregulate miR-145 regulating the hypoxia-induced vasculogenic mimicry. Transl Oncol 2023; 33:101680. [PMID: 37121177 PMCID: PMC10172997 DOI: 10.1016/j.tranon.2023.101680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/06/2023] [Accepted: 04/22/2023] [Indexed: 05/02/2023] [Imported: 03/02/2025] Open
Abstract
Tumor cells grow in three-dimensional (3D) channels-like structures denoted as vasculogenic mimicry (VM), which provides a route for nutrients and oxygen acquisition. VM is activated by hypoxia and associated with metastasis and poor prognosis. MetastamiRs are microRNAs regulating metastasis, however, if they control VM in breast cancer remains poorly understood. The aim of this study was to evaluate the expression of VM-associated microRNAs in tumors of metastatic breast cancer patients. Firstly, we constructed microRNAs/mRNAs coregulation networks using expression data from TCGA databases. Dozens of microRNAs regulating genes involved in VM and metastasis were found. Of these, we selected 10 microRNAs for further characterization. The presence of VM in histological samples from patients with or without metastasis was evaluated using CD31-/PAS+ immunophenotyping. Remarkably, data showed that VM was significantly increased in tumors from patients with metastasis in comparison with no-metastatic group. Gene expression analysis indicated that miR-145, miR-142-3p, miR-31, miR-148a, miR-200b-3p and miR-526b were downregulated in primary tumors from patients with metastatic disease and positive for VM. Moreover, modulated microRNAs showed a predictive clinical value in overall survival in a cohort (n=1262) of breast cancer patients. Of these, we evaluated the role of miR-145 in formation of hypoxia-induced 3D channels-like using an in vitro model that recapitulates the early stages of VM. Data showed that miR-145 mimics was able to abolish the VM development in both metastatic Hs578t and MDA-MB-231 breast cancer cells. In conclusion, manipulation of miR-145 levels may represent a therapeutic approach in metastatic breast cancer patients that developed VM.
Collapse
|
brief-report |
2 |
|
138
|
Carlos-Reyes A, Romero-Garcia S, López-Camarillo C, Barreto G, Prado-Garcia H. Editorial: Molecular basis of epigenetic regulation in cancer therapies. Front Genet 2023; 13:1115353. [PMID: 36704341 PMCID: PMC9871485 DOI: 10.3389/fgene.2022.1115353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] [Imported: 03/10/2025] Open
|
Editorial |
2 |
|
139
|
Herrera-Orozco H, García-Castillo V, López-Urrutia E, Martinez-Gutierrez AD, Pérez-Yepez E, Millán-Catalán O, Cantú de León D, López-Camarillo C, Jacobo-Herrera NJ, Rodríguez-Dorantes M, Ramos-Payán R, Pérez-Plasencia C. Somatic Copy Number Alterations in Colorectal Cancer Lead to a Differentially Expressed ceRNA Network (ceRNet). Curr Issues Mol Biol 2023; 45:9549-9565. [PMID: 38132443 PMCID: PMC10742218 DOI: 10.3390/cimb45120597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] [Imported: 03/02/2025] Open
Abstract
Colorectal cancer (CRC) represents the second deadliest malignancy worldwide. Around 75% of CRC patients exhibit high levels of chromosome instability that result in the accumulation of somatic copy number alterations. These alterations are associated with the amplification of oncogenes and deletion of tumor-ppressor genes and contribute to the tumoral phenotype in different malignancies. Even though this relationship is well known, much remains to be investigated regarding the effect of said alterations in long non-coding RNAs (lncRNAs) and, in turn, the impact these alterations have on the tumor phenotype. The present study aimed to evaluate the role of differentially expressed lncRNAs coded in regions with copy number alterations in colorectal cancer patient samples. We downloaded RNA-seq files of the Colorectal Adenocarcinoma Project from the The Cancer Genome Atlas (TCGA) repository (285 sequenced tumor tissues and 41 non-tumor tissues), evaluated differential expression, and mapped them over genome sequencing data with regions presenting copy number alterations. We obtained 78 differentially expressed (LFC > 1|< -1, padj < 0.05) lncRNAs, 410 miRNAs, and 5028 mRNAs and constructed a competing endogenous RNA (ceRNA) network, predicting significant lncRNA-miRNA-mRNA interactions. Said network consisted of 30 lncRNAs, 19 miRNAs, and 77 mRNAs. To understand the role that our ceRNA network played, we performed KEGG and GO analysis and found several oncogenic and anti-oncogenic processes enriched by the molecular players in our network. Finally, to evaluate the clinical relevance of the lncRNA expression, we performed survival analysis and found that C5orf64, HOTAIR, and RRN3P3 correlated with overall patient survival. Our results showed that lncRNAs coded in regions affected by SCNAs form a complex gene regulatory network in CCR.
Collapse
|
research-article |
2 |
|
140
|
Avila-Bonilla R, Velazquez-Guzman J, Reyes-Zepeda E, Gutierrez-Avila J, Reyes-López C, Cisneros-Sarabia A, Saavedra E, Lopéz-Sandoval A, Ramírez-Moreno E, López-Camarillo C, Marchat L. Comparative genomics and interactomics of polyadenylation factors for the prediction of new parasite targets: Entamoeba histolytica as a working model. Biosci Rep 2023; 43:BSR20221911. [PMID: 36651565 PMCID: PMC9912109 DOI: 10.1042/bsr20221911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] [Imported: 03/10/2025] Open
Abstract
Protein-protein interactions (PPI) play a key role in predicting the function of a target protein and drug ability to affect an entire biological system. Prediction of PPI networks greatly contributes to determine a target protein and signal pathways related to its function. Polyadenylation of mRNA 3'-end is essential for gene expression regulation and several polyadenylation factors have been shown as valuable targets for controlling protozoan parasites that affect human health. Here, by using a computational strategy based on sequence-based prediction approaches, phylogenetic analyses, and computational prediction of PPI networks, we compared interactomes of polyadenylation factors in relevant protozoan parasites and the human host, to identify key proteins and define potential targets for pathogen control. Then, we used Entamoeba histolytica as a working model to validate our computational results. RT-qPCR assays confirmed the coordinated modulation of connected proteins in the PPI network and evidenced that silencing of the bottleneck protein EhCFIm25 affects the expression of interacting proteins. In addition, molecular dynamics simulations and docking approaches allowed to characterize the relationships between EhCFIm25 and Ehnopp34, two connected bottleneck proteins. Interestingly, the experimental identification of EhCFIm25 interactome confirmed the close relationships among proteins involved in gene expression regulation and evidenced new links with moonlight proteins in E. histolytica, suggesting a connection between RNA biology and metabolism as described in other organisms. Altogether, our results strengthened the relevance of comparative genomics and interactomics of polyadenylation factors for the prediction of new targets for the control of these human pathogens.
Collapse
|
research-article |
2 |
|
141
|
Millan-Catalan O, Pérez-Yépez EA, Martínez-Gutiérrez AD, Rodríguez-Morales M, López-Urrutia E, Coronel-Martínez J, Cantú de León D, Jacobo-Herrera N, Peralta-Zaragoza O, López-Camarillo C, Rodríguez-Dorantes M, Pérez-Plasencia C. A microRNA Profile Regulates Inflammation-Related Signaling Pathways in Young Women with Locally Advanced Cervical Cancer. Cells 2024; 13:896. [PMID: 38891028 PMCID: PMC11172105 DOI: 10.3390/cells13110896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] [Imported: 03/02/2025] Open
Abstract
Cervical cancer (CC) remains among the most frequent cancers worldwide despite advances in screening and the development of vaccines against human papillomavirus (HPV), involved in virtually all cases of CC. In mid-income countries, a substantial proportion of the cases are diagnosed in advanced stages, and around 40% of them are diagnosed in women under 49 years, just below the global median age. This suggests that members of this age group share common risk factors, such as chronic inflammation. In this work, we studied samples from 46 patients below 45 years old, searching for a miRNA profile regulating cancer pathways. We found 615 differentially expressed miRNAs between tumor samples and healthy tissues. Through bioinformatic analysis, we found that several of them targeted elements of the JAK/STAT pathway and other inflammation-related pathways. We validated the interactions of miR-30a and miR-34c with JAK1 and STAT3, respectively, through dual-luciferase and expression assays in cervical carcinoma-derived cell lines. Finally, through knockdown experiments, we observed that these miRNAs decreased viability and promoted proliferation in HeLa cells. This work contributes to understanding the mechanisms through which HPV regulates inflammation, in addition to its canonical oncogenic function, and brings attention to the JAK/STAT signaling pathway as a possible diagnostic marker for CC patients younger than 45 years. To our knowledge to date, there has been no previous description of a panel of miRNAs or even ncRNAs in young women with locally advanced cervical cancer.
Collapse
|
research-article |
1 |
|
142
|
García-Hernández AP, Sánchez-Sánchez G, Carlos-Reyes A, López-Camarillo C. Functional roles of microRNAs in vasculogenic mimicry and resistance to therapy in human cancers: an update. Expert Rev Clin Immunol 2024; 20:913-926. [PMID: 38712535 DOI: 10.1080/1744666x.2024.2352484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/03/2024] [Indexed: 05/08/2024] [Imported: 03/10/2025]
Abstract
INTRODUCTION Vasculogenic mimicry (VM) alludes to the ability of cancer cells to organize on three-dimensional channel-like structures to obtain nutrients and oxygen. This mechanism confers an aggressive phenotype, metastatic potential, and resistance to chemotherapy resulting in a poor prognosis. Recent studies have been focused on the identification of microRNAs (miRNAs) that regulate the VM representing potential therapeutic targets in cancer. AREAS COVERED An overview of the roles of miRNAs on VM development and their functional relationships with tumor microenvironment. The functions of cancer stem-like cells in VM, and resistance to therapy are also discussed. Moreover, the modulation of VM by natural compounds is explored. The clinical significance of deregulated miRNAs as potential therapeutic targets in tumors showing VM is further highlighted. EXPERT OPINION The miRNAs are regulators of protein-encoding genes involved in VM; however, their specific expression signatures with clinical value in large cohorts of patients have not been established yet. We considered that genomic profiling of miRNAs could be useful to define some hallmarks of tumors such as stemness, drug resistance, and VM in cancer patients. However, additional studies are needed to establish the relevant role of miRNAs as effective therapeutic targets in tumors that have developed VM.
Collapse
|
Review |
1 |
|
143
|
Silva-Cázares MB, Pérez-Plasencia C, López-Camarillo C. Regulatory Roles of Non-Coding RNAs in Cancer. Cells 2023; 12:1298. [PMID: 37174698 PMCID: PMC10177348 DOI: 10.3390/cells12091298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] [Imported: 03/10/2025] Open
Abstract
For several decades, scientific research in cancer biology has focused mainly on the involvement of protein-coding genes [...].
Collapse
|
Editorial |
2 |
|
144
|
Tecalco-Cruz AC, Macías-Silva M, Sosa-Garrocho M, Poot-Hernández AC, Peralta-Alvarez CA, Ramírez-Jarquín JO, Cortes-González CC, Figueroa-Rivera L, López-Camarillo C. Molecular interplay between the upregulated levels of Sad1 and UNC84 Domain Containing 2 (SUN2) and gene expression in medulloblastoma cells. Mol Biol Rep 2024; 51:1164. [PMID: 39560853 DOI: 10.1007/s11033-024-10078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024] [Imported: 03/02/2025]
Abstract
BACKGROUND SUN2 is a nuclear envelope protein associated with the nuclear lamina and with proteins linked to nuclear export, splicing, and nucleo-cytoskeleton communication. Studies of SUN2 in cancer have been limited but have suggested that it has tumor-suppressive activity in some carcinomas. Medulloblastoma is a pediatric tumor that develops in the cerebellum and is currently classified into four molecular groups: WNT (Wingless), SHH (Sonic Hedgehog), 3, and 4. SUN2 expression profiles appear to be altered in brain cancer but have not been previously evaluated in medulloblastoma. METHODS AND RESULTS The University of Alabama at Birmingham Cancer (UALCAN) data analysis portal, Gene Expression Profiling Interactive Analysis (GEPIA), the Oncopression gene expression compendium, and the R2 genomics analysis and visualization platform were used to analyze SUN2 expression in cancer, which was found to vary by cancer type; in particular, SUN2 expression was found to be upregulated in medulloblastoma. We also explored the effects of reduced SUN2 protein levels (by RNA interference) on gene expression profiles using a cDNA microarray in DAOY medulloblastoma-derived cells. We found that SUN2 protein is upregulated in medulloblastoma, mainly in the SHH group, which correlates with poor survival. Furthermore, the reduced SUN2 expression in medulloblastoma cells is associated with the downregulation of the expression of other genes, including members of the bitter taste-sensing type 2 receptor (TAS2R) family. CONCLUSIONS This study shows that SUN2 is upregulated in medulloblastoma-with molecular interplay in gene expression-which has group-dependent implications for medulloblastoma development. In particular, the upregulation of SUN2 is associated with a progression of the SHH group of medulloblastoma.
Collapse
|
|
1 |
|
145
|
Pérez-Navarro Y, Salinas-Vera YM, López-Camarillo C, Figueroa-Angulo EE, Alvarez-Sánchez ME. The role of long non-coding RNA NORAD in digestive system tumors. Noncoding RNA Res 2025; 10:55-62. [PMID: 39296642 PMCID: PMC11406672 DOI: 10.1016/j.ncrna.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] [Imported: 03/02/2025] Open
Abstract
In recent years, it has been discovered that the expression of long non-coding RNAs is highly deregulated in several types of cancer and contributes to its progression and development. Recently, it has been described that in tumors of the digestive system, such as colorectal cancer, pancreatic cancer, and gastric cancer, DNA damage-activated lncRNA (NORAD) was frequently up-regulated. The purpose of this review is to elucidate the functions of NORAD in tumors of the digestive system, emphasizing its involvement in important cellular processes such as invasion, metastasis, proliferation, and apoptosis. NORAD acts as a ceRNA (competitive endogenous RNA) that sponges microRNAs and regulates the expression of target genes involved in tumorigenesis. Thus, the mechanisms underlying the effects of NORAD are complex and involve multiple signaling pathways. This review consolidates current knowledge on the role of NORAD in digestive cancers and highlights the need for further research to explore its potential as a therapeutic target. Understanding the intricate functions of NORAD could elucidate the way for innovative approaches to cancer treatment.
Collapse
|
Review |
1 |
|
146
|
Olvera-Valencia M, Garcia-Castillo V, Ramos-Payan R, Aguilar-Medina M, Trujano-Camacho S, López-Saavedra A, Marchat LA, López-Camarillo C, Sumagin R, Pérez-Yepez E, Pérez-Plasencia C. Development of a reliable method for human triple-negative breast cancer organotypic culture: Improving imaging and genomic studies in 3D cultures. J Tissue Eng 2025; 16:20417314251326668. [PMID: 40342587 PMCID: PMC12059422 DOI: 10.1177/20417314251326668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/25/2025] [Indexed: 05/11/2025] [Imported: 06/04/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is highly aggressive and lacks targeted therapies, posing a major challenge in oncology. Traditional two-dimensional (2D) cell cultures fail to capture the tumor microenvironment's complexity, whereas three-dimensional (3D) cultures provide a more accurate model of tumor biology. We developed an advanced 3D culture system for TNBC cell lines BT-20 and MDA-MB-231, enhancing the hanging-drop method with Matrigel to restore essential extracellular matrix interactions. Confocal imaging showed MDA-MB-231 cells forming clusters typical of aggressive carcinoma, while BT-20 cells organized into duct-like structures. Molecular analysis of PI3K and β-catenin target genes revealed distinct expression patterns, with PI3K overexpressed and β-catenin downregulated in 3D cultures. Moreover, β-catenin distribution in the 3D cell culture closely resembles its pattern in tissue. These findings underscore the value of 3D models in understanding TNBC progression and in supporting the exploration of novel therapeutic strategies.
Collapse
|
research-article |
1 |
|
147
|
Avendaño-Felix M, Aguilar-Medina M, Romero-Quintana JG, Ayala-Ham A, Beltran AS, Olivares-Quintero JF, López-Camarillo C, Pérez-Plasencia C, Bermúdez M, Lizárraga-Verdugo E, López-Gutierrez J, Sanchez-Schmitz G, Ramos-Payán R. SOX9 knockout decreases stemness properties in colorectal cancer cells. J Gastrointest Oncol 2023; 14:1735-1745. [PMID: 37720443 PMCID: PMC10502562 DOI: 10.21037/jgo-22-1163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/31/2023] [Indexed: 09/19/2023] [Imported: 03/10/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of death worldwide. SRY-box transcription factor 9 (SOX9) participates in organogenesis and cell differentiation in normal tissues but has been involved in carcinogenesis development. Cancer stem cells (CSCs) are a small population of cells present in solid tumors that contribute to increased tumor heterogeneity, metastasis, chemoresistance, and relapse. CSCs have properties such as self-renewal and differentiation, which can be modulated by many factors. Currently, the role of SOX9 in the maintenance of the stem phenotype has not been well elucidated, thus, in this work we evaluated the effect of the absence of SOX9 in the stem phenotype of CRC cells. METHODS We knockout (KO) SOX9 in the undifferentiated CRC cell line HCT116 and evaluated their stemness properties using sphere formation assay, differentiation assay, and immunophenotyping. RESULTS SOX9-KO affected the epithelial morphology of HCT116 cells and stemness characteristics such as its pluripotency signature with the increase of SOX2 as a compensatory mechanism to induce SOX9 expression, the increase of KLF4 as a differentiation feature, as well as the inhibition of the stem cell markers CD44 and CD73. In addition, SOX9-KO cells gain the epithelial-mesenchymal transition (EMT) phenotype with a significant upregulation of CDH2. Furthermore, our results showed a remarkable effect on first- and second-sphere formation, being SOX9-KO cells less capable of forming high-size-resistant spheres. Nevertheless, CSCs surface markers were not affected during the differentiation assay. CONCLUSIONS Collectively, our findings supply evidence that SOX9 promotes the maintenance of stemness properties in CRC-CSCs.
Collapse
|
research-article |
2 |
|
148
|
Nieto-Coronel T, Alette OG, Yacab R, Fernández-Figueroa EA, Lopez-Camarillo C, Marchat L, Astudillo-de la Vega H, Ruiz-Garcia E. PI3K Mutation Profiles on Exons 9 (E545K and E542K) and 20 (H1047R) in Mexican Patients With HER-2 Overexpressed Breast Cancer and Its Relevance on Clinical-Pathological and Survival Biological Effects. Int J Breast Cancer 2024; 2024:9058033. [PMID: 39444377 PMCID: PMC11496583 DOI: 10.1155/2024/9058033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 06/30/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] [Imported: 03/02/2025] Open
Abstract
Background: Trastuzumab resistance is associated with overexpressing the human epidermal growth factor receptor 2 (HER-2), which results from the altered phosphoinositide 3-kinase (PI3K) pathway in breast cancer patients. Objective: We quantified the frequency of PI3K enzyme single and double-point mutations in Mexican patients with HER-2 overexpressing breast cancer and its association with clinical-pathological variables. Methods: We embedded HER-2 breast samples in paraffin from 60 patients, extracted their DNA, and evaluated PI3K mutations in 49 HER-2-positive breast tumors. We focused on mutations for one exon 20 (H1047R) and two exon 9 PI3K (E545K, E542K) hotspots and characterized them as single and double-point mutations. The mean patient follow-up was 86 months. Results: Of 49 patients who tested positive for HER-2 breast cancer, 14.28% showed mutations in PI3K, 71.42% single-point, and 28.56% double-point mutations. We found single-point mutations in H1047R (42.85%) and E545K (28.57%). Only two patients exhibited double-point mutations: one in E542K/E545K and another in H1047R/E545K (14.28% each). Although we observed lower survival in patients with mutations in PI3K, we did not find a significant association between these factors (p = 0.191). However, single and double-point mutations in PI3K were significantly associated with the clinical stages of diagnosis and tumor size (p = 0.027 and p = 0.04, respectively). Conclusion: Single and double-point mutations in PI3K are related to tumor size and advanced clinical-pathological traits in Mexican patients with HER-2 overexpression, and future molecular studies are necessary to understand these findings.
Collapse
|
research-article |
1 |
|
149
|
Gastélum-López MDLÁ, Aguilar-Medina M, García Mata C, López-Gutiérrez J, Romero-Quintana G, Bermúdez M, Avendaño-Felix M, López-Camarillo C, Pérez-Plascencia C, Beltrán AS, Ramos-Payán R. Organotypic 3D Cell-Architecture Impacts the Expression Pattern of miRNAs-mRNAs Network in Breast Cancer SKBR3 Cells. Noncoding RNA 2023; 9:66. [PMID: 37987362 PMCID: PMC10661268 DOI: 10.3390/ncrna9060066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] [Imported: 03/02/2025] Open
Abstract
BACKGROUND Currently, most of the research on breast cancer has been carried out in conventional two-dimensional (2D) cell cultures due to its practical benefits, however, the three-dimensional (3D) cell culture is becoming the model of choice in cancer research because it allows cell-cell and cell-extracellular matrix (ECM) interactions, mimicking the native microenvironment of tumors in vivo. METHODS In this work, we evaluated the effect of 3D cell organization on the expression pattern of miRNAs (by Small-RNAseq) and mRNAs (by microarrays) in the breast cancer SKBR3 cell line and analyzed the biological processes and signaling pathways regulated by the differentially expressed protein-coding genes (DE-mRNAs) and miRNAs (DE-microRNAs) found in the organoids. RESULTS We obtained well-defined cell-aggregated organoids with a grape cluster-like morphology with a size up to 9.2 × 105 μm3. The transcriptomic assays showed that cell growth in organoids significantly affected (all p < 0.01) the gene expression patterns of both miRNAs, and mRNAs, finding 20 upregulated and 19 downregulated DE-microRNAs, as well as 49 upregulated and 123 downregulated DE-mRNAs. In silico analysis showed that a subset of 11 upregulated DE-microRNAs target 70 downregulated DE-mRNAs. These genes are involved in 150 gene ontology (GO) biological processes such as regulation of cell morphogenesis, regulation of cell shape, regulation of canonical Wnt signaling pathway, morphogenesis of epithelium, regulation of cytoskeleton organization, as well as in the MAPK and AGE-RAGE signaling KEGG-pathways. Interestingly, hsa-mir-122-5p (Fold Change (FC) = 15.4), hsa-mir-369-3p (FC = 11.4), and hsa-mir-10b-5p (FC = 20.1) regulated up to 81% of the 70 downregulated DE-mRNAs. CONCLUSION The organotypic 3D cell-organization architecture of breast cancer SKBR3 cells impacts the expression pattern of the miRNAs-mRNAs network mainly through overexpression of hsa-mir-122-5p, hsa-mir-369-3p, and hsa-mir-10b-5p. All these findings suggest that the interaction between cell-cell and cell-ECM as well as the change in the culture architecture impacts gene expression, and, therefore, support the pertinence of migrating breast cancer research from conventional cultures to 3D models.
Collapse
|
research-article |
2 |
|
150
|
Vázquez-Romo R, Millan-Catalan O, Ruíz-García E, Martínez-Gutiérrez AD, Alvarado-Miranda A, Campos-Parra AD, López-Camarillo C, Jacobo-Herrera N, López-Urrutia E, Guardado-Estrada M, Cantú de León D, Pérez-Plasencia C. Pathogenic variant profile in DNA damage response genes correlates with metastatic breast cancer progression-free survival in a Mexican-mestizo population. Front Oncol 2023; 13:1146008. [PMID: 37182128 PMCID: PMC10174330 DOI: 10.3389/fonc.2023.1146008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] [Imported: 03/10/2025] Open
Abstract
INTRODUCTION Metastatic breast cancer causes the most breast cancer-related deaths around the world, especially in countries where breast cancer is detected late into its development. Genetic testing for cancer susceptibility started with the BRCA 1 and 2 genes. Still, recent research has shown that variations in other members of the DNA damage response (DDR) are also associated with elevated cancer risk, opening new opportunities for enhanced genetic testing strategies. METHODS We sequenced BRCA1/2 and twelve other DDR genes from a Mexican-mestizo population of 40 metastatic breast cancer patients through semiconductor sequencing. RESULTS Overall, we found 22 variants -9 of them reported for the first time- and a strikingly high proportion of variations in ARID1A. The presence of at least one variant in the ARID1A, BRCA1, BRCA2, or FANCA genes was associated with worse progression-free survival and overall survival in our patient cohort. DISCUSSION Our results reflected the unique characteristics of the Mexican-mestizo population as the proportion of variants we found differed from that of other global populations. Based on these findings, we suggest routine screening for variants in ARID1A along with BRCA1/2 in breast cancer patients from the Mexican-mestizo population.
Collapse
|
research-article |
2 |
|