101
|
Ruiz-Ojeda FJ, Plaza-Diaz J, Morales J, Álvarez-Calatayud G, Climent E, Silva Á, Martinez-Blanch JF, Enrique M, Tortajada M, Ramon D, Alvarez B, Chenoll E, Gil Á. Effects of a Novel Infant Formula on the Fecal Microbiota in the First Six Months of Life: The INNOVA 2020 Study. Int J Mol Sci 2023; 24:3034. [PMID: 36769356 PMCID: PMC9917896 DOI: 10.3390/ijms24033034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] [Imported: 05/15/2025] Open
Abstract
Exclusive breastfeeding is highly recommended for infants for at least the first six months of life. However, for some mothers, it may be difficult or even impossible to do so. This can lead to disturbances in the gut microbiota, which in turn may be related to a higher incidence of acute infectious diseases. Here, we aimed to evaluate whether a novel starting formula versus a standard formula provides a gut microbiota composition more similar to that of breastfed infants in the first 6 months of life. Two hundred and ten infants (70/group) were enrolled in the study and completed the intervention until 12 months of age. For the intervention period, infants were divided into three groups: Group 1 received formula 1 (INN) with a lower amount of protein, a proportion of casein to whey protein ratio of about 70/30 by increasing the content of α-lactalbumin, and with double the amount of docosahexaenoic acid/arachidonic acid than the standard formula; INN also contained a thermally inactivated postbiotic (Bifidobacterium animalis subsp. lactis). Group 2 received the standard formula (STD) and the third group was exclusively breastfed (BF) for exploratory analysis. During the study, visits were made at 21 days, 2, 4, and 6 months of age, with ±3 days for the visit at 21 days of age, ±1 week for the visit at 2 months, and ±2 weeks for the others. Here, we reveal how consuming the INN formula promotes a similar gut microbiota composition to those infants that were breastfed in terms of richness and diversity, genera, such as Bacteroides, Bifidobacterium, Clostridium, and Lactobacillus, and calprotectin and short-chain fatty acid levels at 21 days, 2 and 6 months. Furthermore, we observed that the major bacteria metabolic pathways were more alike between the INN formula and BF groups compared to the STD formula group. Therefore, we assume that consumption of the novel INN formula might improve gut microbiota composition, promoting a healthier intestinal microbiota more similar to that of an infant who receives exclusively human milk.
Collapse
|
research-article |
2 |
|
102
|
Aragón-Vela J, González-Acevedo O, De la Cruz-Márquez JC, Rojas Ruíz FJ, Marín MM, Casuso RA, Plaza-Diaz J, Huertas JFR. The Effects of Acute Deep Seawater Supplementation on Muscle Function after Triathlon. J Clin Med 2024; 13:2258. [PMID: 38673531 PMCID: PMC11051008 DOI: 10.3390/jcm13082258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] [Imported: 05/15/2025] Open
Abstract
(1) Background: Trainers and athletes have always sought to reduce the failure of muscle function during long endurance events. However, nowadays, it is a topic that is generating much debate in the scientific field. Currently, deep-sea water (DSW) intake seems to be a suitable hydration alternative for this type of endurance event. Therefore, the aim of this study was to determine whether DSW consumption during a triathlon event could preserve muscle function after exercise. (2) Methods: Nineteen trained male triathletes (age = 39.0 ± 4.25 years; BMI = 23.67 ± 1.81 kg/m2) randomly performed three triathlons, one of them consuming DSW (Totum SPORT 30 AB, Laboratories Quinton International, S.L., Spain), the other consuming isotonic placebo and the last with tap water-hydration. A vertical jump test with countermovement and an isometric muscle strength test were conducted before and after the triathlon test. (3) Results: There was a significant difference between treatment × time during the isometric muscle strength test. Based on the Tukey post hoc analysis, the peak net force decreased statistically in the placebo (p = 0.045) and control conditions (p = 0.026), but not in the experimental condition (p = 0.121). In addition, all of the conditions studied obtained similar results in the countermovement vertical jump after exercise. (4) Conclusions: As a result, consumption of DSW seems to delay the failure of muscle function specifically in isometric exercises but does not improve performance in sports. Thus, DSW does not alter muscle capacity in a negative way; therefore, its consumption may be recommended.
Collapse
|
research-article |
1 |
|
103
|
Granito A, Plaza-Diaz J. Welcome to Gastroenterology Insights. GASTROENTEROLOGY INSIGHTS 2020; 11:10-10. [DOI: 10.3390/gastroent11010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/26/2024] [Imported: 05/15/2025] Open
Abstract
It is with great pleasure that we announce to you that MDPI has been in charge of the publication of Gastroenterology Insights since 20 July 2020 [...]
Collapse
|
|
5 |
|
104
|
Plaza-Diaz J, Ruiz-Ojeda FJ, Morales J, de la Torre AIC, García-García A, de Prado CN, Coronel-Rodríguez C, Crespo C, Ortega E, Martín-Pérez E, Ferreira F, García-Ron G, Galicia I, Santos-García-Cuéllar MT, Maroto M, Ruiz P, Martín-Molina R, Viver-Gómez S, Gil A. Effects of a Novel Infant Formula on Weight Gain, Body Composition, Safety and Tolerability to Infants: The INNOVA 2020 Study. Nutrients 2022; 15:147. [PMID: 36615804 PMCID: PMC9823847 DOI: 10.3390/nu15010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] [Imported: 05/15/2025] Open
Abstract
Exclusive breastfeeding is recommended for the first six months of life to promote adequate infant growth and development, and to reduce infant morbidity and mortality. However, whenever some mothers are not able to breastfeed their infants, infant formulas mimicking human milk are needed, and the safety and efficacy of each formula should be tested. Here, we report the results of a multicenter, randomized, blinded, controlled clinical trial that aimed to evaluate a novel starting formula on weight gain and body composition of infants up to 6 and 12 months, as well as safety and tolerability. For the intervention period, infants were divided into three groups: group 1 received formula 1 (Nutribén® Innova 1 (Alter Farmacia S.A., Madrid, Spain) or INN (n = 70)), with a lower amount of protein, a lower casein to whey protein ratio by increasing the content of α-lactalbumin, and a double amount of docosahexaenoic acid/arachidonic acid than the standard formula; it also contained a thermally inactivated postbiotic (Bifidobacterium animalis subsp. lactis, BPL1TM HT). Group 2 received the standard formula or formula 2 (Nutriben® Natal (Alter Farmacia S.A., Madrid, Spain) or STD (n = 70)) and the third group was exclusively breastfed for exploratory analysis and used as a reference (BFD group (n = 70)). During the study, visits were made at 21 days and 2, 4, 6, and 12 months of age. Weight gain was higher in both formula groups than in the BFD group at 6 and 12 months, whereas no differences were found between STD and INN groups either at 6 or at 12 months. Likewise, body mass index was higher in infants fed the two formulas compared with the BFD group. Regarding body composition, length, head circumference and tricipital/subscapular skinfolds were alike between groups. The INN formula was considered safe as weight gain and body composition were within the normal limits, according to WHO standards. The BFD group exhibited more liquid consistency in the stools compared to both formula groups. All groups showed similar digestive tolerance and infant behavior. However, a higher frequency of gastrointestinal symptoms was reported by the STD formula group (n = 291), followed by the INN formula (n = 282), and the BFD groups (n = 227). There were fewer respiratory, thoracic, and mediastinal disorders among BFD children. Additionally, infants receiving the INN formula experienced significantly fewer general disorders and disturbances than those receiving the STD formula. Indeed, atopic dermatitis, bronchitis, and bronchiolitis were significantly more prevalent among infants who were fed the STD formula compared to those fed the INN formula or breastfed. To evaluate whether there were significant differences between formula treatments, beyond growth parameters, it would seem necessary to examine more precise health biomarkers and to carry out long-term longitudinal studies.
Collapse
|
Randomized Controlled Trial |
3 |
|
105
|
Wong CH, Zhang Z, Eid W, Plaza-Diaz J, Kabir P, Wan S, Jia JJ, Mercier E, Thakali O, Pisharody L, Hegazy N, Stephenson SE, Fang W, Nguyen TB, Ramsay NT, McKay RM, Corchis-Scott R, MacKenzie AE, Graber TE, D' Aoust PM, Delatolla R. Rapidly developed, optimized, and applied wastewater surveillance system for real-time monitoring of low-incidence, high-impact MPOX outbreak. JOURNAL OF WATER AND HEALTH 2023; 21:1264-1276. [PMID: 37756194 PMCID: wh_2023_145 DOI: 10.2166/wh.2023.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] [Imported: 05/15/2025]
Abstract
Recent MPOX viral resurgences have mobilized public health agencies around the world. Recognizing the significant risk of MPOX outbreaks, large-scale human testing, and immunization campaigns have been initiated by local, national, and global public health authorities. Recently, traditional clinical surveillance campaigns for MPOX have been complemented with wastewater surveillance (WWS), building on the effectiveness of existing wastewater programs that were built to monitor SARS-CoV-2 and recently expanded to include influenza and respiratory syncytial virus surveillance in wastewaters. In the present study, we demonstrate and further support the finding that MPOX viral fragments agglomerate in the wastewater solids fraction. Furthermore, this study demonstrates that the current, most commonly used MPOX assays are equally effective at detecting low titers of MPOX viral signal in wastewaters. Finally, MPOX WWS is shown to be more effective at passively tracking outbreaks and/or resurgences of the disease than clinical testing alone in smaller communities with low human clinical case counts of MPOX.
Collapse
|
|
2 |
|
106
|
Plaza-Diaz J, Ruiz-Ojeda FJ, López-Plaza B, Brandimonte-Hernández M, Álvarez-Mercado AI, Arcos-Castellanos L, Feliú-Batlle J, Hummel T, Palma-Milla S, Gil A. Effect of a Novel Food Rich in Miraculin on the Oral Microbiome of Malnourished Oncologic Patients with Dysgeusia. Cancers (Basel) 2024; 16:3414. [PMID: 39410033 PMCID: PMC11475728 DOI: 10.3390/cancers16193414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] [Imported: 05/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES Dysgeusia contributes to the derangement of nutritional status in patients with cancer as well as worsening the quality of life. There has been a lack of effective treatments for taste disorders provided by the pharmaceutical industry. METHODS This was a pilot randomized, parallel, triple-blind, and placebo-controlled intervention clinical trial in which 31 malnourished patients with cancer and dysgeusia receiving antineoplastic treatment were randomized into three arms [standard dose of DMB (150 mg DMB/tablet), high dose of DMB (300 mg DMB/tablet) or placebo (300 mg freeze-dried strawberry)] for three months. Patients consumed a DMB or placebo tablet before each main meal. Using the nanopore methodology, we analyzed the oral microbiome of patients with cancer using saliva samples. RESULTS All patients with cancer and dysgeusia had dysbiosis in terms of lower bacterial diversity and richness. DMB consumption was associated with changes in oral microbiome composition. Neither selected bacteria nor taste perception, type of diet, and cytokine levels were associated with mucositis. Likewise, alcohol and tobacco consumption as well as general and digestive toxicity due to systemic therapy were not associated with specific changes of the oral microbiome, according to logistic binary regression. The standard dose of DMB resulted in a lower abundance of Veillonella compared with the high DMB dose and placebo at 3 months after intervention with DMB. In particular, some species such as Streptococcus parasanguinis, Veillonella parvula, and Streptococcus mutans were less abundant in the DMB standard-dose group. Additionally, the consumption of a standard dose of DMB revealed a negative association between the concentrations of TNF-α and the abundance of species such as Streptococcus thermophilus, Streptococcus pneumoniae, Streptococcus dysgalactiae and Streptococcus agalactiae. CONCLUSIONS Accordingly, regular DMB consumption could modify the oral microbiome in patients with cancer and dysgeusia, which may contribute to maintaining an appropriate immune response. However, as the present pilot study involved a small number of participants, further studies are necessary to draw robust conclusions from the data.
Collapse
|
research-article |
1 |
|
107
|
Vázquez-Lorente H, Herrera-Quintana L, Jiménez-Sánchez L, Fernández-Perea B, Plaza-Diaz J. Antioxidant Functions of Vitamin D and CYP11A1-Derived Vitamin D, Tachysterol, and Lumisterol Metabolites: Mechanisms, Clinical Implications, and Future Directions. Antioxidants (Basel) 2024; 13:996. [PMID: 39199241 PMCID: PMC11351441 DOI: 10.3390/antiox13080996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/11/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] [Imported: 05/15/2025] Open
Abstract
Evidence is increasing that vitamin D and CYP11A1-derived vitamin D, tachysterol, and lumisterol metabolites play a significant antioxidant role beyond its classical functions in bone health and calcium metabolism. Several recent studies have linked these elements to reduced oxidative stress as well as improved immune, cardiovascular, and neurological functions as a result of chronic kidney disease and cancer. Additionally, supplementation with this vitamin has been shown to be one of the most cost-effective micronutrient interventions worldwide, highlighting its potential as a therapeutic approach. The underlying mechanisms and implications of this antioxidant function of vitamin D or CYP11A1-derived vitamin D, tachysterol, and lumisterol metabolites are not well understood. This comprehensive and narrative review is aimed at summarizing the current evidence regarding the molecular mechanisms implicated in this antioxidant function of vitamin D, as well as to provide a general overview and to identify key research areas for the future, offering an extensive perspective that can guide both researchers and clinicians in the management of diseases associated with oxidative stress and/or insufficient vitamin D status.
Collapse
|
Review |
1 |
|
108
|
Casuso RA, Al Fazazi S, Plaza-Díaz J, Ruiz-Ojeda FJ, Rueda-Robles A, Aragón-Vela J, Huertas JR. Physiological Doses of Hydroxytyrosol Modulate Gene Expression in Skeletal Muscle of Exercised Rats. Life (Basel) 2021; 11:1393. [PMID: 34947924 PMCID: PMC8708182 DOI: 10.3390/life11121393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/25/2022] [Imported: 05/15/2025] Open
Abstract
We tested whether physiological doses of hydroxytyrosol (HT) may alter the mRNA transcription of key metabolic genes in exercised skeletal muscle. Two groups of exercise-trained Wistar rats, HTlow and HTmid, were supplemented with 0.31 and 4.61 mg/kg/d of HT, respectively, for 10 weeks. Another two groups of rats were not supplemented with HT; one remained sedentary and the other one was exercised. After the experimental period, the soleus muscle was removed for qRT-PCR and western blot analysis. The consumption of 4.61 mg/kg/d of HT during exercise increased the mRNA expression of important metabolic proteins. Specifically, 4.61 mg/kg/d of HT may upregulate long-chain fatty acid oxidation, lactate, and glucose oxidation as well as mitochondrial Krebs cycle in trained skeletal muscle. However, a 4.61 mg/kg/d of HT may alter protein translation, as in spite of the increment showed by CD36 and GLUT4 at the mRNA level this was not translated to higher protein content.
Collapse
|
research-article |
4 |
|
109
|
Martinez-Tellez B, Xu H, Ortiz-Alvarez L, Rodríguez-García C, Schönke M, Jurado-Fasoli L, Osuna-Prieto FJ, Alcantara JMA, Acosta FM, Amaro-Gahete FJ, Folkerts G, Vilchez-Vargas R, Link A, Plaza-Diaz J, Gil A, Labayen I, Fernandez-Veledo S, Rensen PCN, Ruiz JR. Effect of a 24-week supervised concurrent exercise intervention on fecal microbiota diversity and composition in young sedentary adults: The ACTIBATE randomized controlled trial. Clin Nutr 2025; 49:128-137. [PMID: 40279809 DOI: 10.1016/j.clnu.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 03/12/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] [Imported: 05/15/2025]
Abstract
BACKGROUND Numerous physiological responses to exercise are observed in humans, yet the effects of long-term exercise and varying intensities on the diversity and composition of human fecal microbiota remain unclear. We investigated the effect of a 24-week supervised concurrent exercise intervention, at moderate and vigorous intensities, on fecal microbiota diversity and composition in young adults. METHODS This ancillary study was based on data from the ACTIBATE randomized controlled trial (ClinicalTrials.gov ID: NCT02365129), and included adults (aged 18-25 years, 70 % female) that were randomized to (i) a control group (CON: no exercise, n = 20), (ii) a moderate-intensity exercise group (MOD-EX, n = 21), and (iii) a vigorous-intensity exercise group (VIG-EX, n = 20). Fecal samples were collected before and after the 24-week exercise intervention, and the diversity and composition of the fecal microbiota were analyzed by 16S rRNA sequencing. Inferential functional profiling of the fecal microbiota was performed and correlations between microbial changes and cardiometabolic outcomes were assessed. RESULTS Exercise did not modify beta or alpha diversities regardless of the intensity (all P ≥ 0.062). The relative abundance of the Erysipelotrichaceae family (Bacillota phylum) (-0.3 ± 1.2 %; P = 0.031) was however reduced in the VIG-EX group. Coprococcus was the only genus showed a significant difference between MOD-EX and VIG-EX after the intervention, with its relative abundance increasing in MOD-EX (+0.4 ± 0.6 %; P = 0.005). None of these changes were related to the exercise-induced cardiometabolic benefits (all P ≥ 0.05). CONCLUSIONS In young adults, a 24-week supervised concurrent exercise program, at moderate and vigorous intensities, resulted in minor changes in fecal microbiota composition, while neither alpha nor beta diversities were affected. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov ID: NCT02365129.
Collapse
|
Randomized Controlled Trial |
1 |
|
110
|
Kabir MP, Mercier É, Eid W, Plaza-Diaz J, D'Aoust PM, Landgraff C, Goodridge L, Lawal OU, Wan S, Hegazy N, Nguyen T, Wong C, Thakali O, Pisharody L, Stephenson S, Graber TE, Delatolla R. Diagnostic performance of allele-specific RT-qPCR and genomic sequencing in wastewater-based surveillance of SARS-CoV-2. ECO-ENVIRONMENT & HEALTH 2025; 4:100135. [PMID: 40226805 PMCID: PMC11992540 DOI: 10.1016/j.eehl.2025.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 04/07/2025] [Imported: 05/15/2025]
Abstract
Clinical genomic surveillance is regarded as the gold standard for monitoring SARS-CoV-2 variants globally. However, as the pandemic wanes, reduced testing poses a risk to effectively tracking the trajectory of these variants within populations. Wastewater-based genomic surveillance that estimates variant frequency based on its defining set of alleles derived from clinical genomic surveillance has been successfully implemented. This method has its challenges, and allele-specific (AS) RT-qPCR or RT-dPCR may instead be used as a complementary method for estimating variant prevalence. Demonstrating equivalent performance of these methods is a prerequisite for their continued application in current and future pandemics. Here, we compared single-allele frequency using AS-RT-qPCR, to single-allele or haplotype frequency estimations derived from amplicon-based sequencing to estimate variant prevalence in wastewater during emergent and prevalent periods of Delta, Omicron, and two sub-lineages of Omicron. We found that all three methods of frequency estimation were concordant and contained sufficient information to describe the trajectory of variant prevalence. We further confirmed the accuracy of these methods by quantifying the diagnostic performance through Youden's index. The Youden's index of AS-RT-qPCR was reduced during the low prevalence period of a particular variant while the same allele in sequencing was negatively influenced due to insufficient read depth. Youden's index of haplotype-based calls was negatively influenced when alleles were common between variants. Coupling AS-RT-qPCR with sequencing can overcome the shortcomings of either platform and provide a comprehensive picture to the stakeholders for public health responses.
Collapse
|
research-article |
1 |
|
111
|
Lee S, Tejesvi MV, Hurskainen E, Aasmets O, Plaza-Díaz J, Franks S, Morin-Papunen L, Tapanainen JS, Ruuska TS, Altmäe S, Org E, Salumets A, Arffman RK, Piltonen TT. Gut bacteriome and mood disorders in women with PCOS. Hum Reprod 2024; 39:1291-1302. [PMID: 38614956 PMCID: PMC11145006 DOI: 10.1093/humrep/deae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/19/2024] [Indexed: 04/15/2024] [Imported: 05/15/2025] Open
Abstract
STUDY QUESTION How does the gut bacteriome differ based on mood disorders (MDs) in women with polycystic ovary syndrome (PCOS), and how can the gut bacteriome contribute to the associations between these two conditions? SUMMARY ANSWER Women with PCOS who also have MDs exhibited a distinct gut bacteriome with reduced alpha diversity and a significantly lower abundance of Butyricicoccus compared to women with PCOS but without MDs. WHAT IS KNOWN ALREADY Women with PCOS have a 4- to 5-fold higher risk of having MDs compared to women without PCOS. The gut bacteriome has been suggested to influence the pathophysiology of both PCOS and MDs. STUDY DESIGN, SIZE, DURATION This population-based cohort study was derived from the Northern Finland Birth Cohort 1966 (NFBC1966), which includes all women born in Northern Finland in 1966. Women with PCOS who donated a stool sample at age 46 years (n = 102) and two BMI-matched controls for each case (n = 205), who also responded properly to the MD criteria scales, were included. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 102 women with PCOS and 205 age- and BMI-matched women without PCOS were included. Based on the validated MD criteria, the subjects were categorized into MD or no-MD groups, resulting in the following subgroups: PCOS no-MD (n = 84), PCOS MD (n = 18), control no-MD (n = 180), and control MD (n = 25). Clinical characteristics were assessed at age 31 years and age 46 years, and stool samples were collected from the women at age 46 years, followed by the gut bacteriome analysis using 16 s rRNA sequencing. Alpha diversity was assessed using observed features and Shannon's index, with a focus on genera, and beta diversity was characterized using principal components analysis (PCA) with Bray-Curtis Dissimilarity at the genus level. Associations between the gut bacteriome and PCOS-related clinical features were explored by Spearman's correlation coefficient. A P-value for multiple testing was adjusted with the Benjamini-Hochberg false discovery rate (FDR) method. MAIN RESULTS AND THE ROLE OF CHANCE We observed changes in the gut bacteriome associated with MDs, irrespective of whether the women also had PCOS. Similarly, PCOS MD cases showed a lower alpha diversity (Observed feature, PCOS no-MD, median 272; PCOS MD, median 208, FDR = 0.01; Shannon, PCOS no-MD, median 5.95; PCOS MD, median 5.57, FDR = 0.01) but also a lower abundance of Butyricicoccus (log-fold changeAnalysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC)=-0.90, FDRANCOM-BC=0.04) compared to PCOS no-MD cases. In contrast, in the controls, the gut bacteriome did not differ based on MDs. Furthermore, in the PCOS group, Sutterella showed positive correlations with PCOS-related clinical parameters linked to obesity (BMI, r2=0.31, FDR = 0.01; waist circumference, r2=0.29, FDR = 0.02), glucose metabolism (fasting glucose, r2=0.46, FDR < 0.001; fasting insulin, r2=0.24, FDR = 0.05), and gut barrier integrity (zonulin, r2=0.25, FDR = 0.03). LIMITATIONS, REASONS FOR CAUTION Although this was the first study to assess the link between the gut bacteriome and MDs in PCOS and included the largest PCOS dataset for the gut microbiome analysis, the number of subjects stratified by the presence of MDs was limited when contrasted with previous studies that focused on MDs in a non-selected population. WIDER IMPLICATIONS OF THE FINDINGS The main finding is that gut bacteriome is associated with MDs irrespective of the PCOS status, but PCOS may also modulate further the connection between the gut bacteriome and MDs. STUDY FUNDING/COMPETING INTEREST(S) This research was funded by the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement (MATER, No. 813707), the Academy of Finland (project grants 315921, 321763, 336449), the Sigrid Jusélius Foundation, Novo Nordisk Foundation (NNF21OC0070372), grant numbers PID2021-12728OB-100 (Endo-Map) and CNS2022-135999 (ROSY) funded by MCIN/AEI/10.13039/501100011033 and ERFD A Way of Making Europe. The study was also supported by EU QLG1-CT-2000-01643 (EUROBLCS) (E51560), NorFA (731, 20056, 30167), USA/NIH 2000 G DF682 (50945), the Estonian Research Council (PRG1076, PRG1414), EMBO Installation (3573), and Horizon 2020 Innovation Grant (ERIN, No. EU952516). The funders did not participate in any process of the study. We have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
|
Research Support, N.I.H., Extramural |
1 |
|
112
|
Aragón-Vela J, Casuso RA, Aparisi AS, Plaza-Díaz J, Rueda-Robles A, Hidalgo-Gutiérrez A, López LC, Rodríguez-Carrillo A, Enriquez JA, Cogliati S, Huertas JR. Early heart and skeletal muscle mitochondrial response to a moderate hypobaric hypoxia environment. J Physiol 2024; 602:5631-5641. [PMID: 38630964 DOI: 10.1113/jp285516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] [Imported: 05/15/2025] Open
Abstract
In eukaryotic cells, aerobic energy is produced by mitochondria through oxygen uptake. However, little is known about the early mitochondrial responses to moderate hypobaric hypoxia (MHH) in highly metabolic active tissues. Here, we describe the mitochondrial responses to acute MHH in the heart and skeletal muscle. Rats were randomly allocated into a normoxia control group (n = 10) and a hypoxia group (n = 30), divided into three groups (0, 6, and 24 h post-MHH). The normoxia situation was recapitulated at the University of Granada, at 662 m above sea level. The MHH situation was performed at the High-Performance Altitude Training Centre of Sierra Nevada located in Granada at 2320 m above sea level. We found a significant increase in mitochondrial supercomplex assembly in the heart as soon as the animals reached 2320 m above sea level and their levels are maintained 24 h post-exposure, but not in skeletal muscle. Furthermore, in skeletal muscle, at 0 and 6 h, there was increased dynamin-related protein 1 (Drp1) expression and a significant reduction in Mitofusin 2. In conclusion, mitochondria from the muscle and heart respond differently to MHH: mitochondrial supercomplexes increase in the heart, whereas, in skeletal muscle, the mitochondrial pro-fission response is trigged. Considering that skeletal muscle was not actively involved in the ascent when the heart was beating faster to compensate for the hypobaric, hypoxic conditions, we speculate that the different responses to MHH are a result of the different energetic requirements of the tissues upon MHH. KEY POINTS: The heart and the skeletal muscle showed different mitochondrial responses to moderate hypobaric hypoxia. Moderate hypobaric hypoxia increases the assembly of the electron transport chain complexes into supercomplexes in the heart. Skeletal muscle shows an early mitochondrial pro-fission response following exposure to moderate hypobaric hypoxia.
Collapse
|
|
1 |
|
113
|
Medina-Vadora MM, Plaza-Diaz J, Llorente-Cantarero FJ, Severi C, Lecot C, Ruiz-López MD, Gil Á. A Clustering Study of Dietary Patterns and Physical Activity among Workers of the Uruguayan State Electrical Company. Nutrients 2024; 16:304. [PMID: 38276542 PMCID: PMC10820101 DOI: 10.3390/nu16020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024] [Imported: 05/15/2025] Open
Abstract
Recent studies have shown that certain nutrients, specific food groups, or general dietary patterns (DPs) can promote health and prevent noncommunicable chronic diseases (NCCDs). Both developed and developing countries experience a high prevalence of NCCDs due to poor lifestyle habits, DPs, and low physical activity levels. This study aims to examine the dietary, physical activity, sociodemographic, and lifestyle patterns of Uruguayan State Electrical Company workers (the IN-UTE study). A total of 2194 workers participated in the study, providing information about their sociodemographics, lifestyles, and dietary habits through different questionnaires. To identify DPs from 16 food groups, principal component analysis (PCA) was performed. A hierarchical cluster algorithm was used to combine food groups and sociodemographic/lifestyle variables. Four DPs were extracted from the data; the first DP was related to the intake of energy-dense foods, the second DP to the characteristics of the job, the third DP to a Mediterranean-style diet, and the fourth DP to age and body mass index. In addition, cluster analysis involving a larger number of lifestyle variables produced similar results to the PCA. Lifestyle and sociodemographic factors, including night work, working outside, and moderate and intense PA, were significantly correlated with the dietary clusters, suggesting that working conditions, socioeconomic status, and PA may play an important role in determining DPs to some extent. Accordingly, these findings should be used to design lifestyle interventions to reverse the appearance of unhealthy DPs in the UTE population.
Collapse
|
research-article |
1 |
|
114
|
Sanchez-Martinez J, Solis-Urra P, Olivares-Arancibia J, Plaza-Diaz J. Physical Exercise and Mechanism Related to Alzheimer's Disease: Is Gut-Brain Axis Involved? Brain Sci 2024; 14:974. [PMID: 39451988 PMCID: PMC11506766 DOI: 10.3390/brainsci14100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] [Imported: 05/15/2025] Open
Abstract
BACKGROUND Alzheimer's disease is a progressive neurodegenerative disease characterized by structural changes in the brain, including hippocampal atrophy, cortical thinning, amyloid plaques, and tau tangles. Due to the aging of the global population, the burden of Alzheimer's disease is expected to increase, making the exploration of non-pharmacological interventions, such as physical exercise, an urgent priority. RESULTS There is emerging evidence that regular physical exercise may mitigate the structural and functional declines associated with Alzheimer's disease. The underlying mechanisms, however, remain poorly understood. Gut-brain axis research is a promising area for further investigation. This system involves bidirectional communication between the gut microbiome and the brain. According to recent studies, the gut microbiome may influence brain health through modulating neuroinflammation, producing neuroactive compounds, and altering metabolic processes. Exercise has been shown to alter the composition of the gut microbiome, potentially impacting brain structure and function. In this review, we aim to synthesize current research on the relationship between physical exercise, structural brain changes in Alzheimer's disease, and the gut-brain axis. CONCLUSIONS In this study, we will investigate whether changes in the gut microbiome induced by physical exercise can mediate its neuroprotective effects, offering new insights into the prevention and treatment of Alzheimer's disease. By integrating findings from neuroimaging studies, clinical trials, and microbiome research, this review will highlight potential mechanisms. It will also identify key gaps in the literature. This will pave the way for future research directions.
Collapse
|
Review |
1 |
|
115
|
Herrera-Quintana L, Navajas-Porras B, Vázquez-Lorente H, Hinojosa-Nogueira D, Corrales-Borrego FJ, Lopez-Garzon M, Plaza-Diaz J. Celiac Disease: Beyond Diet and Food Awareness. Foods 2025; 14:377. [PMID: 39941971 PMCID: PMC11817883 DOI: 10.3390/foods14030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] [Imported: 05/15/2025] Open
Abstract
Celiac disease is attributable to a combination of genetic predisposition and exposure to dietary gluten, with immune system involvement. The incidence is increasing globally, and the societal economic burden of celiac disease stretches beyond the cost of gluten-free food. This enteropathy that affects the small intestine has been related to different disorders and comorbidities. Thus, the implications of suffering from this disease are multidimensional and need further consideration. Celiac disease is a serious condition that remains under-recognized, resulting in an increased need for programs for better management. This review aims to summarize the current evidence regarding celiac diseases, with special emphasis on clinical implications, diagnosis, dietary management, socioeconomical aspects, and future perspectives.
Collapse
|
Review |
1 |
|
116
|
Plaza-Díaz J, Álvarez-Mercado AI, Robles-Sánchez C, Navarro-Oliveros M, Morón-Calvente V, Toribio-Castelló S, Sáez-Lara MJ, MacKenzie A, Fontana L, Abadía-Molina F. NAIP expression increases in a rat model of liver mass restoration. J Mol Histol 2021; 52:113-123. [PMID: 33237375 DOI: 10.1007/s10735-020-09928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/13/2020] [Indexed: 11/26/2022] [Imported: 05/15/2025]
Abstract
The neuronal apoptosis inhibitory protein (NAIP) is a constituent of the NLRC4 inflammasome, which plays a key role in innate immunity, and an antiapoptotic protein. Recently, we reported the previously undescribed role of NAIP in cell division. The liver is one of the body's most actively regenerative organs. Given the novel mitotic role of NAIP, we examined its expression in hepatic mass restoration. The major liver lobe of Wistar rats was removed, and samples from both newly formed liver tissue, assessed by positive Ki67 immunostaining, and the remnant, intact liver lobes from hepatectomized rats were taken 3 and 7 days after surgery. Naip5 and Naip6 mRNA levels were significantly higher in regenerating hepatic tissue than in intact liver lobe tissue, and this increase was also observed at the protein level. Naip5 and Naip6 mRNA in situ hybridization showed that this increase occurred in the hepatic parenchyma. The histology of the regenerated liver tissue was normal, with the exception of a noticeable deficiency of hepatic lobule central veins. The results of this study suggest the involvement of NAIP in liver mass restoration following partial hepatectomy.
Collapse
|
|
4 |
|
117
|
Cadenas-Garrido P, Schonvandt-Alarcos A, Herrera-Quintana L, Vázquez-Lorente H, Santamaría-Quiles A, Ruiz de Francisco J, Moya-Escudero M, Martín-Oliva D, Martín-Guerrero SM, Rodríguez-Santana C, Aragón-Vela J, Plaza-Diaz J. Using Redox Proteomics to Gain New Insights into Neurodegenerative Disease and Protein Modification. Antioxidants (Basel) 2024; 13:127. [PMID: 38275652 PMCID: PMC10812581 DOI: 10.3390/antiox13010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] [Imported: 05/15/2025] Open
Abstract
Antioxidant defenses in biological systems ensure redox homeostasis, regulating baseline levels of reactive oxygen and nitrogen species (ROS and RNS). Oxidative stress (OS), characterized by a lack of antioxidant defenses or an elevation in ROS and RNS, may cause a modification of biomolecules, ROS being primarily absorbed by proteins. As a result of both genome and environment interactions, proteomics provides complete information about a cell's proteome, which changes continuously. Besides measuring protein expression levels, proteomics can also be used to identify protein modifications, localizations, the effects of added agents, and the interactions between proteins. Several oxidative processes are frequently used to modify proteins post-translationally, including carbonylation, oxidation of amino acid side chains, glycation, or lipid peroxidation, which produces highly reactive alkenals. Reactive alkenals, such as 4-hydroxy-2-nonenal, are added to cysteine (Cys), lysine (Lys), or histidine (His) residues by a Michael addition, and tyrosine (Tyr) residues are nitrated and Cys residues are nitrosylated by a Michael addition. Oxidative and nitrosative stress have been implicated in many neurodegenerative diseases as a result of oxidative damage to the brain, which may be especially vulnerable due to the large consumption of dioxygen. Therefore, the current methods applied for the detection, identification, and quantification in redox proteomics are of great interest. This review describes the main protein modifications classified as chemical reactions. Finally, we discuss the importance of redox proteomics to health and describe the analytical methods used in redox proteomics.
Collapse
|
Review |
1 |
|
118
|
Herrera-Quintana L, Vázquez-Lorente H, Hinojosa-Nogueira D, Plaza-Diaz J. Relationship between Infant Feeding and the Microbiome: Implications for Allergies and Food Intolerances. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1030. [PMID: 39201963 PMCID: PMC11353207 DOI: 10.3390/children11081030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] [Imported: 05/15/2025]
Abstract
Childhood is a critical period for immune system development, which is greatly influenced by the gut microbiome. Likewise, a number of factors affect the gut microbiome composition and diversity, including breastfeeding, formula feeding, and solid foods introduction. In this regard, several studies have previously demonstrated that breastfeeding promotes a favorable microbiome. In contrast, formula feeding and the early incorporation of certain solid foods may adversely affect microbiome development. Additionally, there is increasing evidence that disruptions in the early microbiome can lead to allergic conditions and food intolerances. Thus, developing strategies to promote optimal infant nutrition requires an understanding of the relationship between infant nutrition and long-term health. The present review aims to examine the relationship between infant feeding practices and the microbiome, as well as its implications on allergies and food intolerances in infants. Moreover, this study synthesizes existing evidence on how different eating habits influence the microbiome. It highlights their implications for the prevention of allergies and food intolerances. In conclusion, introducing allergenic solid foods before six months, alongside breastfeeding, may significantly reduce allergies and food intolerances risks, being also associated with variations in gut microbiome and related complications.
Collapse
|
Review |
1 |
|
119
|
Ortiz-Alvarez L, Xu H, Ruiz-Campos S, Acosta FM, Migueles JH, Vilchez-Vargas R, Link A, Plaza-Díaz J, Gil A, Labayen I, Ruiz JR, Martinez-Tellez B. Higher physical activity levels are related to faecal microbiota diversity and composition in young adults. Biol Sport 2025; 42:123-135. [PMID: 39758173 PMCID: PMC11694212 DOI: 10.5114/biolsport.2025.139850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/17/2024] [Accepted: 05/08/2024] [Indexed: 01/07/2025] [Imported: 05/15/2025] Open
Abstract
Increasing physical activity (PA) is recognised as an efficacious approach for preventing and treating cardiometabolic diseases. Recently, the composition of microorganisms living within the gut has been proposed as an important appropriate target for treating these diseases. Whether PA is related to faecal microbiota diversity and composition in humans remains to be ascertained. Thus, we examined the association of the time spent in objectively measured PA with faecal microbiota diversity and composition in young adults. A cross-sectional study enrolled 88 young adults aged 22.0 ± 2.3 years (72.7% women), whose time spent in PA at different intensities was objectively measured with a wrist-worn accelerometer for 7 consecutive days. Faecal microbiota diversity and composition were analysed with hypervariable tag sequencing of the V3-V4 region of the 16S rRNA gene. The mean Euclidean Norm of the raw accelerations Minus One (mg) during waking time, considered as overall PA, and the time spent in vigorous PA were positively correlated with alpha diversity indexes (all rho ≥ 0.23, P ≤ 0.034). Regarding faecal microbiota composition, participants with low time spent in vigorous PA had higher relative abundance of the Gammaproteobacteria class (q = 0.021, FDR = q-value) compared to the participants with high time spent in vigorous PA, and lower relative abundance of the Porphyromonadaceae family (q = 0.031) and the Alistipes genus (q = 0.015) compared to the individuals with high and intermediate time spent in vigorous PA, respectively. Our results suggest that PA, especially of vigorous intensity, is related to faecal microbiota diversity and the Gammaproteobacteria class and Porphyromonadaceae family in young adults.
Collapse
|
research-article |
1 |
|
120
|
Cortés-Martín A, Plaza-Diaz J. Exploring the therapeutic potential of glucagon-like peptide 1 agonists in metabolic disorders. World J Gastroenterol 2025; 31:101436. [PMID: 39877709 PMCID: PMC11718636 DOI: 10.3748/wjg.v31.i4.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/28/2024] [Accepted: 11/20/2024] [Indexed: 12/30/2024] [Imported: 05/15/2025] Open
Abstract
This article comments on the work by Soresi and Giannitrapani. The authors have stated that one of the most novel and promising treatments for metabolic dysfunction-associated steatotic liver disease (MASLD) is the use of glucagon-like peptide 1 receptor agonists, especially when used in combination therapy. However, despite their notable efficacy, these drugs were not initially designed to target MASLD directly. In a groundbreaking development, the Food and Drug Administration has recently approved resmetirom, the first treatment specifically aimed at reducing liver fibrosis in metabolic-associated steatohepatitis. Resmetirom, an orally administered, liver-directed thyroid hormone beta-selective agonist, acts directly on intrahepatic pathways, enhancing its therapeutic potential and marking the beginning of a new era in the treatment of MASLD. Furthermore, the integration of lifestyle modifications into liver disease management is an essential component that should be considered and reinforced. By incorporating dietary changes and regular physical exercise into treatment, patients may achieve improved outcomes, reducing the need for pharmacological interventions and/or improving treatment efficacy. As a complement to medical therapies, lifestyle factors should not be overlooked in the broader strategy for managing MASLD.
Collapse
|
Letter to the Editor |
1 |
|
121
|
Álvarez-Mercado AI, Sáez-Lara MJ, Plaza-Diaz J. Editorial: Molecular and cellular aspects of regulatory and subjacent mechanisms in host/microbiota association and its involvement in cancer. Front Cell Dev Biol 2022; 10:989208. [PMID: 36105364 PMCID: PMC9465412 DOI: 10.3389/fcell.2022.989208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] [Imported: 05/15/2025] Open
|
Editorial |
3 |
|
122
|
Plaza-Diaz J, Radar AM, Baig AT, Leyba MF, Costabel MM, Zavala-Crichton JP, Sanchez-Martinez J, MacKenzie AE, Solis-Urra P. Physical Activity, Gut Microbiota, and Genetic Background for Children and Adolescents with Autism Spectrum Disorder. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1834. [PMID: 36553278 PMCID: PMC9777368 DOI: 10.3390/children9121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] [Imported: 05/15/2025]
Abstract
It is estimated that one in 100 children worldwide has been diagnosed with autism spectrum disorder (ASD). Children with ASD frequently suffer from gut dysbiosis and gastrointestinal issues, findings which possibly play a role in the pathogenesis and/or severity of their condition. Physical activity may have a positive effect on the composition of the intestinal microbiota of healthy adults. However, the effect of exercise both on the gastrointestinal problems and intestinal microbiota (and thus possibly on ASD) itself in affected children is unknown. In terms of understanding the physiopathology and manifestations of ASD, analysis of the gut-brain axis holds some promise. Here, we discuss the physiopathology of ASD in terms of genetics and microbiota composition, and how physical activity may be a promising non-pharmaceutical approach to improve ASD-related symptoms.
Collapse
|
Review |
3 |
|
123
|
Herrera-Quintana L, Vázquez-Lorente H, Lopez-Garzon M, Cortés-Martín A, Plaza-Diaz J. Cancer and the Microbiome of the Human Body. Nutrients 2024; 16:2790. [PMID: 39203926 PMCID: PMC11357655 DOI: 10.3390/nu16162790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] [Imported: 05/15/2025] Open
Abstract
Cancer remains a public health concern worldwide, with its incidence increasing worldwide and expected to continue growing during the next decades. The microbiome has emerged as a central factor in human health and disease, demonstrating an intricate relationship between the microbiome and cancer. Although some microbiomes present within local tissues have been shown to restrict cancer development, mainly by interacting with cancer cells or the host immune system, some microorganisms are harmful to human health and risk factors for cancer development. This review summarizes the recent evidence concerning the microbiome and some of the most common cancer types (i.e., lung, head and neck, breast, gastric, colorectal, prostate, and cervix cancers), providing a general overview of future clinical approaches and perspectives.
Collapse
|
Review |
1 |
|
124
|
Herrera-Quintana L, Vázquez-Lorente H, Plaza-Diaz J. Breast Cancer: Extracellular Matrix and Microbiome Interactions. Int J Mol Sci 2024; 25:7226. [PMID: 39000333 PMCID: PMC11242809 DOI: 10.3390/ijms25137226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] [Imported: 05/15/2025] Open
Abstract
Breast cancer represents the most prevalent form of cancer and the leading cause of cancer-related mortality among females worldwide. It has been reported that several risk factors contribute to the appearance and progression of this disease. Despite the advancements in breast cancer treatment, a significant portion of patients with distant metastases still experiences no cure. The extracellular matrix represents a potential target for enhanced serum biomarkers in breast cancer. Furthermore, extracellular matrix degradation and epithelial-mesenchymal transition constitute the primary stages of local invasion during tumorigenesis. Additionally, the microbiome has a potential influence on diverse physiological processes. It is emerging that microbial dysbiosis is a significant element in the development and progression of various cancers, including breast cancer. Thus, a better understanding of extracellular matrix and microbiome interactions could provide novel alternatives to breast cancer treatment and management. In this review, we summarize the current evidence regarding the intricate relationship between breast cancer with the extracellular matrix and the microbiome. We discuss the arising associations and future perspectives in this field.
Collapse
|
Review |
1 |
|
125
|
Aragón-Vela J, Alcalá-Bejarano Carrillo J, Moreno-Racero A, Plaza-Diaz J. The Role of Molecular and Hormonal Factors in Obesity and the Effects of Physical Activity in Children. Int J Mol Sci 2022; 23:15413. [PMID: 36499740 PMCID: PMC9737554 DOI: 10.3390/ijms232315413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] [Imported: 05/15/2025] Open
Abstract
Obesity and overweight are defined as abnormal fat accumulations. Adipose tissue consists of more than merely adipocytes; each adipocyte is closely coupled with the extracellular matrix. Adipose tissue stores excess energy through expansion. Obesity is caused by the abnormal expansion of adipose tissue as a result of adipocyte hypertrophy and hyperplasia. The process of obesity is controlled by several molecules, such as integrins, kindlins, or matrix metalloproteinases. In children with obesity, metabolomics studies have provided insight into the existence of unique metabolic profiles. As a result of low-grade inflammation in the system, abnormalities were observed in several metabolites associated with lipid, carbohydrate, and amino acid pathways. In addition, obesity and related hormones, such as leptin, play an instrumental role in regulating food intake and contributing to childhood obesity. The World Health Organization states that physical activity benefits the heart, the body, and the mind. Several noncommunicable diseases, such as cardiovascular disease, cancer, and diabetes, can be prevented and managed through physical activity. In this work, we reviewed pediatric studies that examined the molecular and hormonal control of obesity and the influence of physical activity on children with obesity or overweight. The purpose of this review was to examine some orchestrators involved in this disease and how they are related to pediatric populations. A larger number of randomized clinical trials with larger sample sizes and long-term studies could lead to the discovery of new key molecules as well as the detection of significant factors in the coming years. In order to improve the health of the pediatric population, omics analyses and machine learning techniques can be combined in order to improve treatment decisions.
Collapse
|
Review |
3 |
|