1
|
Yang S, Han X, Yang Y, Qiao H, Yu Z, Liu Y, Wang J, Tang T. Bacteria-Targeting Nanoparticles with Microenvironment-Responsive Antibiotic Release To Eliminate Intracellular Staphylococcus aureus and Associated Infection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14299-14311. [PMID: 29633833 DOI: 10.1021/acsami.7b15678] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] [Imported: 05/16/2025]
Abstract
Staphylococcus aureus ( S. aureus) is a causative agent in life-threatening human diseases that afflict millions of people annually. Traditional antibiotic treatments are becoming less efficient because S. aureus can invade host cells including osteoblasts and macrophages, constituting a reservoir that is relatively protected from antibiotics that can lead to recrudescent infection. We herein report a unique intracellular antibiotic delivery nanoparticle, which is composed of (i) a mesoporous silica nanoparticle (MSN) core loaded with gentamicin, (ii) an infected microenvironment (bacterial toxin)-responsive lipid bilayer surface shell, and (iii) bacteria-targeting peptide ubiquicidin (UBI29-41) that is immobilized on the lipid bilayer surface shell. The lipid material acts as a gate that prevents drug release before the MSNs reach the target cells or tissue, at which point they are degraded by bacterial toxins to rapidly release the drug, thus eliminating efficient bacteria. We confirm rapid drug release in the presence of bacteria in an extracellular model and observe that S. aureus growth is effectively inhibited both in vitro and in vivo of planktonic and intracellular infection. The inflammation-related gene expression in infected preosteoblast or macrophage is also downregulated significantly after treatment by the antibiotic delivery nanoparticles. The antibiotic delivery nanoparticles offer advantages in fighting intracellular pathogens and eliminating the inflammation caused by intracellular bacterial infections.
Collapse
|
|
7 |
145 |
2
|
Yang Y, Lin Y, Wang M, Yuan K, Wang Q, Mu P, Du J, Yu Z, Yang S, Huang K, Wang Y, Li H, Tang T. Targeting ferroptosis suppresses osteocyte glucolipotoxicity and alleviates diabetic osteoporosis. Bone Res 2022; 10:26. [PMID: 35260560 PMCID: PMC8904790 DOI: 10.1038/s41413-022-00198-w] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/03/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] [Imported: 05/16/2025] Open
Abstract
Diabetic osteoporosis (DOP) is the leading complication continuously threatening the bone health of patients with diabetes. A key pathogenic factor in DOP is loss of osteocyte viability. However, the mechanism of osteocyte death remains unclear. Here, we identified ferroptosis, which is iron-dependent programmed cell death, as a critical mechanism of osteocyte death in murine models of DOP. The diabetic microenvironment significantly enhanced osteocyte ferroptosis in vitro, as shown by the substantial lipid peroxidation, iron overload, and aberrant activation of the ferroptosis pathway. RNA sequencing showed that heme oxygenase-1 (HO-1) expression was notably upregulated in ferroptotic osteocytes. Further findings revealed that HO-1 was essential for osteocyte ferroptosis in DOP and that its promoter activity was controlled by the interaction between the upstream NRF2 and c-JUN transcription factors. Targeting ferroptosis or HO-1 efficiently rescued osteocyte death in DOP by disrupting the vicious cycle between lipid peroxidation and HO-1 activation, eventually ameliorating trabecular deterioration. Our study provides insight into DOP pathogenesis, and our results provide a mechanism-based strategy for clinical DOP treatment.
Collapse
|
research-article |
3 |
139 |
3
|
Yang Y, Yang S, Wang Y, Yu Z, Ao H, Zhang H, Qin L, Guillaume O, Eglin D, Richards RG, Tang T. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan. Acta Biomater 2016; 46:112-128. [PMID: 27686039 DOI: 10.1016/j.actbio.2016.09.035] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/01/2016] [Accepted: 09/24/2016] [Indexed: 12/15/2022] [Imported: 05/16/2025]
Abstract
UNLABELLED Contaminated or infected bone defects remain serious challenges in clinical trauma and orthopaedics, and a bone substitute with both osteoconductivity and antibacterial properties represents an improvement for treatment strategy. In this study, quaternized chitosan (hydroxypropyltrimethyl ammonium chloride chitosan, HACC) was grafted to 3D-printed scaffolds composed of polylactide-co-glycolide (PLGA) and hydroxyapatite (HA), in order to design bone engineering scaffolds endowed with antibacterial and osteoconductive properties. We found that both the PLGA/HA/HACC and PLGA/HACC composite scaffolds decreased bacterial adhesion and biofilm formation under in vitro and in vivo conditions. Additionally, ATP leakage assay indicated that immobilizing HACC on the scaffolds could effectively disrupt microbial membranes. Using human bone marrow-derived mesenchymal stem cells (hBMSCs), we demonstrated that HA incorporated scaffolds, including PLGA/HA and PLGA/HA/HACC, favoured cell attachment, proliferation, spreading and osteogenic differentiation compared to HA-free PLGA or PLGA/HACC scaffolds. Finally, an in vivo biocompatibility assay conducted on rats, showed that HA incorporated scaffolds (including PLGA/HA and PLGA/HA/HACC scaffolds) exhibited good neovascularization and tissue integration. Taken together, our findings support the approach for developing porous PLGA/HA/HACC composite scaffold with potential clinical application in the treatment of infected bone. STATEMENT OF SIGNIFICANCE Although plenty of conductive scaffold biomaterials have been exploited to improve bone regeneration under infection, potential tissue toxicity under high concentration and antibiotic-resistance are their main deficiencies. This study indicated that HACC-grafted PLGA/HA composite scaffold prepared using an innovative 3D-printing technique and covalent grafting strategy showed significantly enhanced antibacterial activities, especially against the antibiotic-resistant strains, together with good osteogenic activity and biocompatibility. Therefore, it provides an effective porous composite scaffold to combat the infected bone defect in clinic with decreased risks of bacterial resistance and open a feasible strategy for the modification of scaffold interfaces involved in the bone regeneration and anti-infection.
Collapse
|
|
9 |
94 |
4
|
Zhou F, Mei J, Yang S, Han X, Li H, Yu Z, Qiao H, Tang T. Modified ZIF-8 Nanoparticles Attenuate Osteoarthritis by Reprogramming the Metabolic Pathway of Synovial Macrophages. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2009-2022. [PMID: 31849213 DOI: 10.1021/acsami.9b16327] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] [Imported: 05/16/2025]
Abstract
Accumulating evidence suggests that activation of proinflammatory M1-type macrophages in the synovium plays a vital role in the progression of osteoarthritis (OA). Redundant nitric oxide (NO) and hydrogen peroxide (H2O2) are key factors that drive macrophages to polarize to the M1 type. Herein, modified zeolitic imidazolate framework-8 (ZIF-8) nanoparticles (NPs) have been synthesized. By regulating intracellular gases and reprogramming the metabolism phenotype, modified NPs transformed macrophage polarization from proinflammatory M1 to anti-inflammatory M2 phenotype. Specifically, S-methylisothiourea hemisulfate salt was loaded into ZIF-8 NPs to inhibit inducible nitric oxide synthase, hence reducing NO production. Catalase was encapsulated to catalyze the production of oxygen (O2) from H2O2. Results demonstrated that modified NPs were capable of catalyzing H2O2 to produce O2 and eliminate NO, hence inhibiting hypoxia-inducible factor 1α, further rescuing mitochondrial function. Moreover, anti-CD16/32 antibody modification could prolong the retention time of NPs in knee joints of OA mice with anterior cruciate ligament transection. More significantly, modified NPs suppressed M1 macrophages and up-regulated M2 macrophage infiltration in the synovium, further inhibiting cartilage degeneration. This ZIF-8 NP-based gas regulation and metabolic reprogramming strategy may pave a new avenue for OA treatment.
Collapse
|
|
5 |
77 |
5
|
Antibacterial properties of magnesium in vitro and in an in vivo model of implant-associated methicillin-resistant Staphylococcus aureus infection. Antimicrob Agents Chemother 2014; 58:7586-91. [PMID: 25288077 DOI: 10.1128/aac.03936-14] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] [Imported: 05/16/2025] Open
Abstract
Periprosthetic infection remains a challenging clinical complication. We investigated the antibacterial properties of pure (99.9%) magnesium (Mg) in vitro and in an in vivo rat model of implant-related infection. Mg was highly effective against methicillin-resistant Staphylococcus aureus-induced osteomyelitis and improved new peri-implant bone formation. Bacterial icaA and agr RNAIII transcription levels were also assessed to characterize the mechanism underlying the antibacterial properties of the Mg implant.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
76 |
6
|
Qu X, Yang H, Jia B, Yu Z, Zheng Y, Dai K. Biodegradable Zn-Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation. Acta Biomater 2020; 117:400-417. [PMID: 33007485 DOI: 10.1016/j.actbio.2020.09.041] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/31/2022] [Imported: 05/16/2025]
Abstract
Bone and joint-related infections remain the primary and most critical complications of orthopedic surgery. We have innovatively prepared Zn-Cu alloys to achieve outstanding material and antibacterial properties. In this study, we systematically assessed the material properties and antibacterial activity of these Zn-Cu alloys. Our results showed that the Zn-2Cu alloy had the best mechanical properties, biocompatibility, and osteogenic properties. Findings of microbial cultures, CLSM, SEM, and TEM indicated that Zn-2Cu alloy can inhibit both coagulase-positive and coagulase-negative staphylococci, as well as antibiotic-resistant strains (MRSA and MRSE), by preventing the bacteria adhesion and the biofilm formation. Zn-2Cu alloy could broadly affect the expression of MRSA genes associated with adhesion, autolysis, biofilm formation, virulence, and drug resistance. A rat femur intramedullary nail infection-prevention model was established and the Zn-2Cu alloy-treated group showed significant antibacterial activity against MRSA and reduced the inflammatory toxic side-effects and infection-related bone loss. Collectively, our results indicate the potential utility of Zn-Cu alloy implants with 2 wt% Cu in treating orthopedic infections. Statement of significance: Osteomyelitis is a serious complication of orthopedic surgeries. Wide use of antibiotics contributes to the appearance of multi-drug resistant strains like methicillin-resistant staphylococcus aureus (MRSA). Alternatively, anti-osteomyelitis implants with broad-spectrum antibacterial properties can be favorable. Here, the antibacterial performance of biodegradable Zn-Cu alloys was evaluated with four different bacteria strains including antibiotic-resistant strains (MRSA and MRSE). Zn-Cu alloys exert excellent bacterial killing capability in all strains. In a rat femur infection model, the alloy showed significant antibacterial activity against MRSA and reduced inflammatory toxic side-effects as well as infection-related bone loss. The antibacterial property of Zn-2Cu alloy was associated with inhibition of gene expression related to wall synthesis, adhesion, colonization, biofilm formation, autolysis, and secretion of virulence factors in MRSA.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
69 |
7
|
Qu X, Yang H, Yu Z, Jia B, Qiao H, Zheng Y, Dai K. Serum zinc levels and multiple health outcomes: Implications for zinc-based biomaterials. Bioact Mater 2020; 5:410-422. [PMID: 32258830 PMCID: PMC7114479 DOI: 10.1016/j.bioactmat.2020.03.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022] [Imported: 05/16/2025] Open
Abstract
BACKGROUND Zinc-based biomaterials, including biodegradable metal, nanoparticles, and coatings used in medical implants release zinc ions that may increase the whole-body and serum zinc concentrations. The impact of serum zinc concentrations on major health outcomes can provide insights for device design and clinical transformation of zinc-based biomaterials. METHODS This nationally representative cross-sectional study enrolled participants from the National Health and Nutrition Examination Survey (NHANES, 2011-2014) including 3607 participants. Using unadjusted and multivariate-adjusted logistic regression analyses, two-piecewise linear regression model with a smoothing function and threshold level analysis, we evaluated the associations between elevated serum zinc levels and major health outcomes. RESULTS Elevated serum zinc levels were significantly associated with an increase in total spine and total femur bone mineral density (BMD). Every 10 μg/dL increase was associated with a 1.12-fold increase in diabetes mellitus (DM) and 1.23-fold and 1.29-fold increase in cardiovascular diseases (CVD) and coronary heart disease (CHD), in participants with serum zinc levels ≥ 100 μg/dL. It had no significant linear or nonlinear associations with risk of fractures, congestive heart failure, heart attack, thyroid disease, arthritis, osteoarthritis, rheumatoid arthritis, dyslipidemia and cancer. CONCLUSION Serum zinc levels are significantly associated with increased BMD in the total spine and total femur, and risk of DM, and CVD/CHD among participants with serum zinc levels ≥100 μg/dL.
Collapse
|
research-article |
5 |
58 |
8
|
Zhang X, Yu Z, Yu M, Qu X. Alcohol consumption and hip fracture risk. Osteoporos Int 2015; 26:531-42. [PMID: 25266483 DOI: 10.1007/s00198-014-2879-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 08/27/2014] [Indexed: 01/22/2023] [Imported: 05/16/2025]
Abstract
SUMMARY The present meta-analysis shows that a nonlinear association between alcohol consumption and the risk of hip fracture was observed. Light alcohol consumption was inversely significantly associated with hip fracture risk, whereas heavy alcohol consumption was associated with an elevated hip fracture risk. INTRODUCTION Previous studies examining the association between alcohol consumption and the risk of hip fracture have reported conflicting findings. Therefore, we conducted a meta-analysis of prospective cohort studies to assess the association between alcohol consumption and the risk of hip fracture. METHODS PubMed and EMBASE were searched for prospective cohort studies on the relationship between alcohol consumption and the risk of hip fractures. Relative risks (RR) with 95% confidence intervals (CI) were derived using random-effects models throughout the whole analysis. RESULTS Eighteen prospective cohort studies were included with 3,730,424 participants and 26,168 hip fracture cases. Compared with non-drinkers, the pooled RR of hip fractures for alcohol consumption was 1.03 (95% CI, 0.91-1.15), with high heterogeneity between studies (P<0.001, I2=72.6%). A nonlinear relationship between alcohol consumption and the risk of hip fracture was identified (P nonlinearity=0.003). Compared with non-drinkers, the pooled RRs of hip fractures were 0.88 (95% CI, 0.83-0.89) for light alcohol consumption (0.01-12.5 g/day), 1.00 (95% CI, 0.85-1.14) for moderate alcohol consumption (12.6-49.9 g/day), and 1.71 (95% CI, 1.41-2.01) for heavy alcohol consumption (≥50 g/day). CONCLUSIONS There was no evidence of publication bias. In conclusion, a nonlinear association between alcohol consumption and the risk of hip fracture was observed in this meta-analysis. Further, light alcohol consumption was inversely significantly associated with hip fracture risk, whereas heavy alcohol consumption was associated with an elevated hip fracture risk.
Collapse
|
Meta-Analysis |
10 |
58 |
9
|
He Z, Li H, Han X, Zhou F, Du J, Yang Y, Xu Q, Zhang S, Zhang S, Zhao N, Yan M, Yu Z. Irisin inhibits osteocyte apoptosis by activating the Erk signaling pathway in vitro and attenuates ALCT-induced osteoarthritis in mice. Bone 2020; 141:115573. [PMID: 32768686 DOI: 10.1016/j.bone.2020.115573] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 01/29/2023] [Imported: 05/16/2025]
Abstract
Moderate exercise can alleviate symptoms of osteoarthritis (OA) such as pain, stiffness, and joint deformities that are associated with progressive cartilaginous degeneration, osteophyte formation, subchondral bone changes, and synovial inflammation. Irisin is an exercise-related myokine that reportedly plays a crucial role in bone remodeling. However, its role in OA remains unknown. This study aimed to determine whether irisin can attenuate OA progression and the mechanism of its therapeutic effect. Three-month-old male C57BL/6J mice were randomized to groups that underwent sham operation, and anterior cruciate ligament transection (ACLT) intraperitoneally injected with vehicle or irisin in vivo. Apoptosis was induced by stretching murine osteocyte-like MLO-Y4 cells in vitro. Irisin reduced wear, maintained the proportion of hyaline cartilage, a more complete cartilage structure, and lower Osteoarthritis Research Society International (OARSI) scores at 4 weeks after ACLT. Irisin reduced the expression of matrix metalloproteinase (MMP)-13 in cartilage and caspase 3 in the subchondral bone. Irisin exerted rescue effects in microstructural parameters of subchondral trabecular bone including bone volume fraction (BV/TV), trabecular number (Tb.N), connection density (Conn. D), and the structure model index (SMI) compared with ACLT-vehicle group. Bone histomorphometry showed that irisin increased subchondral bone remodeling. The decreasing ratio (%) of the eroded surface (ES/BS) was reversed by irisin in the ACLT+vehicle group. Staining with tartrate-resistant acid phosphatase showed a decreased number of osteoclasts. Irisin significantly increased the proliferation of osteocytes, protected them from apoptosis, and maintained cellular activity by regulating the expression of Bax, Bcl-2, and osteoprotegerin/receptor activator of nuclear factor (NF)-kB-ligand (OPG/Rankl). Irisin activated serine/threonine-selective protein kinases (Erk) and p38 signaling, and its anti-apoptosis function depended on the Erk signaling pathway. Irisin attenuated OA progression by decreasing osteocyte apoptosis and improving the microarchitecture of subchondral bone. Activation of the Erk pathway by irisin plays an important role in reducing osteocyte apoptosis in vitro.
Collapse
|
|
5 |
50 |
10
|
Chu L, Liu X, He Z, Han X, Yan M, Qu X, Li X, Yu Z. Articular Cartilage Degradation and Aberrant Subchondral Bone Remodeling in Patients with Osteoarthritis and Osteoporosis. J Bone Miner Res 2020; 35:505-515. [PMID: 31692085 DOI: 10.1002/jbmr.3909] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/06/2019] [Accepted: 10/23/2019] [Indexed: 01/19/2023] [Imported: 05/16/2025]
Abstract
Osteoarthritis (OA) and osteoporosis (OP) are two skeletal disorders associated with joint structures. Occasionally, OA and OP occur in the same patient. However, the effect of OP changes on OA progression in patients with osteoporotic OA (OP-OA) has not been reported, especially the potential association between subchondral bone and articular cartilage. Thus we investigated the alterations in the microstructure, biomechanical properties, and remodeling of subchondral bone as well as their association with cartilage damage in the hip joint of patients with OP-OA. Thirty-nine femoral head specimens were obtained from patients who underwent total hip arthroplasty (OA group, n = 19; OP-OA group, n = 20), and healthy specimens from cadaver donors were used (control group, n = 10). The microstructure and biomechanical properties of subchondral bone were evaluated by micro-computed tomography and micro-finite-element analysis. Histology, histomorphometric measurements, and immunohistochemistry were used to assess subchondral bone remodeling and cartilage damage. Linear regression analysis was performed to elucidate the relationship between subchondral bone and articular cartilage. In the subchondral bone of the OP-OA group, compared with that of the OA group, aberrant bone remodeling leads to an inferior microstructure and worsening biomechanical properties, potentially affecting transmission of loading stress from the cartilage to the subchondral bone, and then resulting in accelerated OA progression in patients with OP-OA. The results indicate that changes in subchondral bone could affect OA development and the improvement in subchondral bone with bone-metabolism agents may help mitigate OA progression when OP and OA coexist in the same patients. © 2019 American Society for Bone and Mineral Research.
Collapse
|
|
5 |
49 |
11
|
Yang Y, Ao H, Wang Y, Lin W, Yang S, Zhang S, Yu Z, Tang T. Cytocompatibility with osteogenic cells and enhanced in vivo anti-infection potential of quaternized chitosan-loaded titania nanotubes. Bone Res 2016; 4:16027. [PMID: 27672479 PMCID: PMC5028847 DOI: 10.1038/boneres.2016.27] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/29/2016] [Accepted: 07/11/2016] [Indexed: 01/27/2023] [Imported: 05/16/2025] Open
Abstract
Infection is one of the major causes of failure of orthopedic implants. Our previous study demonstrated that nanotube modification of the implant surface, together with nanotubes loaded with quaternized chitosan (hydroxypropyltrimethyl ammonium chloride chitosan, HACC), could effectively inhibit bacterial adherence and biofilm formation in vitro. Therefore, the aim of this study was to further investigate the in vitro cytocompatibility with osteogenic cells and the in vivo anti-infection activity of titanium implants with HACC-loaded nanotubes (NT-H). The titanium implant (Ti), nanotubes without polymer loading (NT), and nanotubes loaded with chitosan (NT-C) were fabricated and served as controls. Firstly, we evaluated the cytocompatibility of these specimens with human bone marrow-derived mesenchymal stem cells in vitro. The observation of cell attachment, proliferation, spreading, and viability in vitro showed that NT-H has improved osteogenic activity compared with Ti and NT-C. A prophylaxis rat model with implantation in the femoral medullary cavity and inoculation with methicillin-resistant Staphylococcus aureus was established and evaluated by radiographical, microbiological, and histopathological assessments. Our in vivo study demonstrated that NT-H coatings exhibited significant anti-infection capability compared with the Ti and NT-C groups. In conclusion, HACC-loaded nanotubes fabricated on a titanium substrate show good compatibility with osteogenic cells and enhanced anti-infection ability in vivo, providing a good foundation for clinical application to combat orthopedic implant-associated infections.
Collapse
|
research-article |
9 |
47 |
12
|
Serum copper levels are associated with bone mineral density and total fracture. J Orthop Translat 2018; 14:34-44. [PMID: 30035031 PMCID: PMC6034109 DOI: 10.1016/j.jot.2018.05.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022] [Imported: 05/16/2025] Open
Abstract
Background Both copper deficiency and overexposure have been associated with adverse health effects. Evidence linking copper to bone mineral density (BMD) and total fracture, however, is limited. Methods This nationally representative cross-sectional study enrolled participants from the National Health and Nutrition Examination Survey (2011–2014) in the United States. Using unadjusted and multivariate adjusted logistic regression analyses and a two-piecewise linear regression model with a smoothing function, we evaluated the associations between serum copper levels, bone mineral density and total fracture in 722 participants. Results The study sample (n = 722, mean age: 56.47 ± 11.55 y) represented a population of which 47.2% were men; 43.91% were non-Hispanic white, 18.84% non-Hispanic black and 13.71% Mexican American; 25.9% had total fracture. In the multivariate logistic regression analysis, individuals in the lowest category (<98.5 μg/dL) of serum copper concentration had 0.049 g/cm2 lower total femur BMD and 0.045 g/cm2 lower femoral neck BMD than those in the second concentration category (98.5–114 μg/dL). Individuals in the highest category (≥134 μg/dL) of serum copper concentration had an approximately 4-fold increase in the risk of total fracture than those in the second concentration category. There were no significant associations between per 10 μg/dL increases in serum copper levels and total fracture in multivariate logistic regression analysis after multivariate adjustment (all p > 0.05). However, a differential association between serum copper levels and total fractures between men and women was observed (odds ratio = 1.81, 95% confidence interval 1.08–3.03, p = 0.026 for men and odds ratio = 1.07, 95% confidence interval 0.86–1.32, p = 0.552 for women). Conclusion Moderate serum copper levels are critically important for bone health. Lower serum copper levels are significantly associated with decreased BMD in the total femur and femoral neck. Higher serum copper levels are significantly associated with increased total fracture, especially in men. The Translational Potential of this Article The impact of serum copper concentrations on bone mineral density and total fracture can provide insights into clinical application of copper-containing supplements and biomaterials.
Collapse
Key Words
- Bone mineral density
- Bone mineral density, BMD
- Centers for Disease Control and Prevention, CDC
- Confidence interval, CI
- Diastolic blood pressure, DBP
- Dual-energy x-ray absorptiometry, DXA
- Fracture
- High-density lipoprotein-cholesterol, HDL-C
- Low-density lipoprotein-cholesterol, LDL-C
- National Center for Health Statistics, NCHS
- National Health and Nutrition Examination Survey, NHANES
- Odds ratio
- Serum copper levels
- Standard deviation, SD
- Systolic blood pressure, SBP
- Total cholesterol, TC
- Triglycerides, TG
Collapse
|
Journal Article |
7 |
40 |
13
|
Qiao H, Wang TY, Yu ZF, Han XG, Liu XQ, Wang YG, Fan QM, Qin A, Tang TT. Structural simulation of adenosine phosphate via plumbagin and zoledronic acid competitively targets JNK/Erk to synergistically attenuate osteoclastogenesis in a breast cancer model. Cell Death Dis 2016; 7:e2094. [PMID: 26866274 PMCID: PMC4849151 DOI: 10.1038/cddis.2016.11] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/18/2022] [Imported: 05/16/2025]
Abstract
The treatment of breast cancer-induced osteolysis remains a challenge in clinical settings. Here, we explored the effect and mechanism of combined treatment with zoledronic acid (ZA) and plumbagin (PL), a widely investigated component derived from Plumbago zeylanica, against breast cancer-induced osteoclastogenesis. We found that the combined treatment with PL and ZA suppressed cell viability of precursor osteoclasts and synergistically inhibited MDA-MB-231-induced osteoclast formation (combination index=0.28) with the abrogation of recombinant mouse receptor activator of nuclear factor-κB ligand (RANKL)-induced activation of NF-κB/MAPK (nuclear factor-κB/mitogen-activated protein kinase) pathways. Molecular docking suggested a putative binding area within c-Jun N-terminal kinase/extracellular signal-regulated kinase (JNK/Erk) protease active sites through the structural mimicking of adenosine phosphate (ANP) by the spatial combination of PL with ZA. A homogeneous time-resolved fluorescence assay further illustrated the direct competitiveness of the dual drugs against ANP docking to phosphorylated JNK/Erk, contributing to the inhibited downstream expression of c-Jun/c-Fos/NFATc-1 (nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1). Then, in vivo testing demonstrated that the combined administration of PL and ZA attenuated breast cancer growth in the bone microenvironment. Additionally, these molecules prevented the destruction of proximal tibia, with significant reduction of tartrate-resistant acid phosphatase (TRAcP)-positive osteoclast cells and potentiation of apoptotic cancer cells, to a greater extent when combined than when the drugs were applied independently. Altogether, the combination treatment with PL and ZA could significantly and synergistically suppress osteoclastogenesis and inhibit tumorigenesis both in vitro and in vivo by simulating the spatial structure of ANP to inhibit competitively phosphorylation of c-Jun N-terminal kinase/extracellular signal-regulated kinase (JNK/Erk).
Collapse
|
Retracted Publication |
9 |
35 |
14
|
Ma R, Yu Z, Tang S, Pan Y, Wei J, Tang T. Osseointegration of nanohydroxyapatite- or nano-calcium silicate-incorporated polyetheretherketone bioactive composites in vivo. Int J Nanomedicine 2016; 11:6023-6033. [PMID: 27881916 PMCID: PMC5115692 DOI: 10.2147/ijn.s115286] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] [Imported: 05/16/2025] Open
Abstract
Polyetheretherketone (PEEK) exhibits appropriate biomechanical strength as well as good biocompatibility and stable chemical properties but lacks bioactivity and cannot achieve highly efficient osseointegration after implantation. Incorporating bioceramics into the PEEK matrix is a feasible approach for improving its bioactivity. In this study, nanohydroxyapatite (n-HA) and nano-calcium silicate (n-CS) were separately incorporated into PEEK to prepare n-HA/PEEK and n-CS/PEEK biocomposites, respectively, using a compounding and injection-molding technique, and the in vitro degradation characteristics were evaluated. Discs with a diameter of 8 mm were inserted in 8 mm full-thickness cranial defects in rabbits for 4 and 8 weeks, and implantation of pure PEEK was used as the control. Three-dimensional microcomputed tomography, histological analysis, fluorescence microscopy of new bone formation, and scanning electron microscopy were used to evaluate the osseointegration performance at the bone/implant interface. The results of the in vitro degradation study demonstrated that degradation of n-CS on the surface of n-CS/PEEK could release Ca and Si ions and form a porous structure. In vivo tests revealed that both n-CS/PEEK and n-HA/PEEK promoted osseointegration at the bone/implant interface compared to PEEK, and n-CS/PEEK exhibited higher bone contact ratio and more new bone formation compared with those of n-HA/PEEK, implying that n-CS/PEEK possessed a stronger ability to promote osseointegration. These two PEEK biocomposites are promising materials for the preparation of orthopedic or craniofacial implants.
Collapse
|
Journal Article |
9 |
33 |
15
|
Association between knee alignment, osteoarthritis disease severity, and subchondral trabecular bone microarchitecture in patients with knee osteoarthritis: a cross-sectional study. Arthritis Res Ther 2020; 22:203. [PMID: 32887657 PMCID: PMC7487480 DOI: 10.1186/s13075-020-02274-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/20/2020] [Indexed: 01/19/2023] [Imported: 05/16/2025] Open
Abstract
Background Knee osteoarthritis (OA) is a common disabling disease involving the entire joint tissue, and its onset and progression are affected by many factors. However, the current number of studies investigating the relationship between subchondral trabecular bone (STB), knee alignment, and OA severity is limited. We aimed to investigate the variation in tibial plateau STB microarchitecture in end-stage knee OA patients and their association with knee alignment (hip-knee-ankle, HKA, angle) and OA severity. Methods Seventy-one knee OA patients scheduled for total knee arthroplasty (TKA) underwent preoperative radiography to measure the HKA angle and Kellgren-Lawrence grade. Tibial plateaus collected from TKA were scanned using micro-computed tomography to analyze the STB microarchitecture. Histological sections were used to assess cartilage degeneration (OARSI score). Correlations between the HKA angle, OA severity (OARSI score, Kellgren-Lawrence grade), and STB microarchitecture were evaluated. Differences in STB microstructural parameters between varus and valgus alignment groups based on the HKA angle were examined. Results The HKA angle was significantly correlated with all STB microarchitecture parameters (p < 0.01). The HKA angle was more correlated with the medial-to-lateral ratios of the microarchitecture parameters than with the medial or lateral tibia plateaus. The HKA angle and all STB microarchitecture parameters are significantly correlated with both the OARSI score and Kellgren-Lawrence grade (p < 0.01). Conclusions The STB microarchitecture is associated with the HKA angle and OA severity. With the increase of the knee alignment deviation and OA severity, the STB of the affected side tibial plateau increased in bone volume, trabecular number, and trabecular thickness and decreased in trabecular separation.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
32 |
16
|
Yang Y, Yang SB, Wang YG, Zhang SH, Yu ZF, Tang TT. Bacterial inhibition potential of quaternised chitosan-coated VICRYL absorbable suture: An in vitro and in vivo study. J Orthop Translat 2017; 8:49-61. [PMID: 30035094 PMCID: PMC5987056 DOI: 10.1016/j.jot.2016.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/05/2016] [Accepted: 10/12/2016] [Indexed: 02/04/2023] [Imported: 05/16/2025] Open
Abstract
BACKGROUND/OBJECTIVE As a widely used absorbable suture with antibacterial property, triclosan- coated polyglactin suture (Vicryl Plus) has been extensively utilized to reduce the occurrence rate of surgical site infections (SSIs) in orthopaedic surgery. However, the potential toxicity and side-effects of triclosan raised increasing concerns about its biological safety. This study aimed to investigate the antimicrobial activity and biocompatibility of quaternised chitosan-coated Vicryl suture (HV) both in vitro and in vivo. METHODS In this study, a modified chitosan derivate, (hydroxypropyltrimethyl ammonium chloride chitosan, HACC), was coated over the surface of the absorbable Vicryl suture. Two standard bacteria strains, Staphylococcus epidermidis (ATCC35984) and methicillin-resistant Staphylococcus aureus (ATCC43300), were selected to evaluate bacterial adhesion and biofilm formation on the sutures at 6, 24 and 48 h in vitro. Additionally, human skin-derived fibroblasts cells were used to test the cytocompatibility of the sutures. Furtherly, sutures contaminated with methicillin-resistant S. aureus were implanted subcutaneously in SD rats in order to confirm the in vivo antibacterial performance and biocompatibility. RESULTS We found that HACC-coated Vicryl suture (HV) exhibited significant anti-bacterial effects on the two tested strains. The bacterial attachment and biofilm formation on the surface of the HV sutures were found to be comparable to that of Vicryl Plus sutures (VP). Moreover, all the four tested sutures presented good cytocompatibility with human skin-derived fibroblasts cells. Histology and immunohistochemistry results indicated that the infections and inflammations were significantly inhibited around the HV and VP sutures. CONCLUSION In general, the present study demonstrated that the quaternised chitosan coating is a flexible and cost-effective alternative strategy to prevent the suture related surgical site infections in orthopaedic practices.
Collapse
|
research-article |
8 |
21 |
17
|
Qu X, Mei J, Yu Z, Zhai Z, Qiao H, Dai K. Lenalidomide regulates osteocytes fate and related osteoclastogenesis via IL-1β/NF-κB/RANKL signaling. Biochem Biophys Res Commun 2018; 501:547-555. [PMID: 29746861 DOI: 10.1016/j.bbrc.2018.05.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/05/2018] [Indexed: 01/12/2023] [Imported: 05/16/2025]
Abstract
Osteolytic diseases are closely associated with osteocyte fate, indicating a more efficient and crucial role of osteocyte-targeting strategy in inhibiting osteoclastogenesis. Here, we investigated the effects of lenalidomide (Lena) on osteocyte fate in order to regulate osteoclastogenesis via effective cascade-controlling response. Our data revealed that lenalidomide treatment notably rescued IL-1β induced loss of osteocyte viability by inhibiting osteocyte apoptosis with decreased osteoclast-related factors, RANKL and Sclerostin, as demonstrated by the restricted osteoclast formation and reduced bone resorption. Additionally, iTRAQ assay revealed that IL-1β induced activation of NF-κB inhibitor α/β were remarkably downregulated by lenalidomide, showing that lenalidomide impaired NF-κB signaling in osteocytes for inhibiting the expression of osteoclast specific genes in osteoclasts, which was further confirmed by KEGG pathway analysis and Western blot. More interestingly, the in vivo analysis of osteocyte apoptosis and osteoclastogenesis in osteoarthritis mice model indicated a role of lenalidomide in the regulation of osteocyte fate and the consequent inhibition of RANKL-induced osteoclastogenesis. Together, these results suggest that lenalidomide regulates osteocyte fate by attenuating IL-1β/NF-κB signaling, thereby inhibiting RANKL expression for the attenuated osteoclastogenesis both in vitro and vivo, indicating a more efficient remedy among future anti-osteoclastogenesis approaches.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
21 |
18
|
Xie K, Han X, Jiang X, Ai S, Dai K, Yu Z, Wu H, Qu X, Yan M. The effect of varus knee deformities on the ankle alignment in patients with knee osteoarthritis. J Orthop Surg Res 2019; 14:134. [PMID: 31092268 PMCID: PMC6521394 DOI: 10.1186/s13018-019-1191-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 05/03/2019] [Indexed: 11/30/2022] [Imported: 05/16/2025] Open
Abstract
Background We evaluated the compensatory change in ankle alignment due to knee malalignment and its relationship with varus knee deformities, as well as sex differences in compensation. Methods From October 2016 to September 2017, 103 patients with end-stage knee osteoarthritis underwent primary total knee arthroplasty (TKA). Ninety-five knees (78 patients) were included. The hip-knee-ankle angle (HKA) and ankle alignment and tilt were evaluated with full-leg standing anteroposterior radiographs. The ankle alignment was estimated according to the tibiotalar angle, tibial anterior surface angle (TAS), and lateral distal tibial angle. The talar tilt angle (TT), anatomical talocrural angle, angle between the tibial plateau and distal tibial plafond, angles between the ground and distal tibial plafond, and angles between the ground and upper talus were measured to evaluate ankle tilt. The patients were separated into two sex-based groups; correlations between the HKA and ankle parameters were estimated. Results The mean HKA in men and women was 8.16 ± 4.36° and 7.69 ± 5.93°, respectively. The relative tilt of the talus and distal tibia plafond to the ground was increased when varus knee deformities progressed. In women, there was a positive correlation between the knee alignment and TAS (r = − 0.295, p = 0.016). As the knee mechanical axis became more varus, the distal tibia plafond became more valgus. In women, a negative correlation was observed between the HKA and TT (r = − 0.359, p = 0.003). Compensatory changes in the ankle alignment and TT to knee alignment were not observed in men. Conclusion Compensatory ankle changes should be considered before TKA.
Collapse
|
|
6 |
21 |
19
|
Force-induced increased osteogenesis enables accelerated orthodontic tooth movement in ovariectomized rats. Sci Rep 2017. [PMID: 28634415 PMCID: PMC5478594 DOI: 10.1038/s41598-017-04422-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] [Imported: 05/16/2025] Open
Abstract
As the number of elderly orthodontic patients increases, the impact of postmenopausal osteoporosis on orthodontic tooth movement (OTM) has attracted a great deal of attention because OTM relies on alveolar bone remodeling. The question of whether OTM causes subsequent alveolar bone loss and is harmful to alveolar bone health under osteoporotic conditions remains to be answered. The present study aimed to clarify the influences of OTM on alveolar bone in osteoporotic rats. OTM was accelerated in ovariectomized (OVX) rats as a result of increased bone resorption in the pressure area. At the same time, anabolic bone formation was promoted in the tension area during OTM in OVX rats. Micro-CT analysis of alveolar bone revealed a decrease in BMD, BV/TV and Tb.Th. in the OTM group compared with that in non-OTM rats on day 21 of OTM, suggesting that OTM caused alveolar bone loss in OVX rats during OTM. However, the OTM-induced bone loss could be recovered 3 months after OTM in OVX rats. Thus, our findings suggest that increased osteogenesis may compensate for the increased bone resorption during and after OTM and enable effective accelerated OTM in OVX rats.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
20 |
20
|
Chu L, Yang Y, Yang S, Fan Q, Yu Z, Hu XL, James TD, He XP, Tang T. Preferential Colonization of Osteoblasts Over Co-cultured Bacteria on a Bifunctional Biomaterial Surface. Front Microbiol 2018; 9:2219. [PMID: 30333796 PMCID: PMC6176048 DOI: 10.3389/fmicb.2018.02219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022] [Imported: 05/16/2025] Open
Abstract
Implant-related infection is a devastating complication in clinical trauma and orthopedics. The aim of this study is to use a bifunctional biomaterial surface in order to investigate the competitive colonization between osteoblasts and bacteria, which is the cause of implant-related infection. A bone-engineering material capable of simultaneously facilitating osteoblast adhesion and inhibiting the growth of Staphylococcus aureus (S. aureus) was prepared. Then, three different co-cultured systems were developed in order to investigate the competitive colonization between the two cohorts on the surface. The results suggested that while the pre-culturing of either cohort compromised the subsequent adhesion of the other according to the ‘race for the surface’ theory, the synergistic effect of preferential cell adhesion and antibacterial activity of the bifunctional surface led to the predominant colonization and survival of osteoblasts, effectively inhibiting the bacterial adhesion and biofilm formation of S. aureus in the co-culture systems with both cohorts. This research offers new insight into the investigation of competitive surface-colonization between osteoblasts and bacteria for implant-related infection.
Collapse
|
Journal Article |
7 |
20 |
21
|
Yang Y, Ao HY, Yang SB, Wang YG, Lin WT, Yu ZF, Tang TT. In vivo evaluation of the anti-infection potential of gentamicin-loaded nanotubes on titania implants. Int J Nanomedicine 2016; 11:2223-2234. [PMID: 27274245 PMCID: PMC4876942 DOI: 10.2147/ijn.s102752] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] [Imported: 05/16/2025] Open
Abstract
Titanium-based implants have been widely used in orthopedic surgery; however, failures still occur. Our in vitro study has demonstrated that gentamicin-loaded, 80 nm-diameter nanotubes possessed both antibacterial and osteogenic activities. Thus, the aim of this study was to further investigate the in vivo anti-infection effect of the titanium implants with gentamicin-loaded nanotubes. Thirty-six male Sprague Dawley rats were used to establish an implant-associated infection model. A volume of 50 μL Staphylococcus aureus suspension (1×10(5) CFU/mL) was injected into the medullary cavity of the left femur, and then the titanium rods without modification (Ti), titanium nanotubes without drug loading (NT), and gentamicin-loaded titanium nanotubes (NT-G) were inserted with phosphate-buffered saline-inoculated Ti rods as a blank control. X-ray images were obtained 1 day, 21 days, and 42 days after surgery; micro-computed tomography, microbiological, and histopathological analyses were used to evaluate the infections at the time of sacrifice. Radiographic signs of bone infection, including osteolysis, periosteal reaction, osteosclerosis, and damaged articular surfaces, were demonstrated in the infected Ti group and were slightly alleviated in the NT group but not observed in the NT-G group. Meanwhile, the radiographic and gross bone pathological scores of the NT-G group were significantly lower than those of the infected Ti group (P<0.01). Explant cultures revealed significantly less bacterial growth in the NT-G group than in the Ti and NT groups (P<0.01), and the NT group showed decreased live bacterial growth compared with the Ti group (P<0.01). Confocal laser scanning microscopy, scanning electron microscopy, and histopathological observations further confirmed decreased bacterial burden in the NT-G group compared with the Ti and NT groups. We concluded that the NT-G coatings can significantly prevent the development of implant-associated infections in a rat model; therefore, they may provide an effective drug-loading strategy to combat implant-associated infections in clinic.
Collapse
|
research-article |
9 |
19 |
22
|
Han X, Cui J, Chu L, Zhang W, Xie K, Jiang X, He Z, Du J, Ai S, Sun Q, Wang L, Wu H, Yan M, Yu Z. Abnormal subchondral trabecular bone remodeling in knee osteoarthritis under the influence of knee alignment. Osteoarthritis Cartilage 2022; 30:100-109. [PMID: 34699993 DOI: 10.1016/j.joca.2021.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 08/06/2021] [Accepted: 10/13/2021] [Indexed: 02/02/2023] [Imported: 05/16/2025]
Abstract
OBJECTIVE This study aimed to investigate the abnormal subchondral trabecular bone (STB) remodeling in knee osteoarthritis (OA) under the influence of knee alignment [hip-knee-ankle (HKA) angle]. DESIGN Forty-one patients with knee OA underwent radiographic examination before total knee arthroplasty (TKA) for the measurement of HKA angle. Tibial plateau specimens obtained during TKA were used for histomorphometric analyses to assess STB remodeling and cartilage degradation. Tartrate-resistant acidic phosphatase (TRAP) staining was used to test osteoclast activity. Osterix, osteocalcin, and sclerostin expression in the STB were determined using immunohistochemistry. RESULTS The interaction between HKA angle and side (medial vs lateral of tibial plateau) was the main significant influence factor for STB remodeling and microstructure. The STB with the deviation of the knee alignment was accompanied by obvious abnormal bone remodeling and microstructural sclerosis. Bone volume fraction (BV/TV) was the only significant influence factor for OARSI score, the larger the BV/TV of STB, the higher the OARSI score of cartilage. Moreover, the tibial plateau affected by alignment had more TRAP + osteoclasts, Osterix + osteoprogenitors, and osteocalcin + osteoblasts and fewer sclerostin + osteocytes. CONCLUSIONS The variation of tibial plateau STB remodeling activity and microstructure was associated with HKA angle and cartilage degradation. Knee malalignment may cause abnormal STB remodeling and microstructural sclerosis, which may potentially affect load stress transmission from the cartilage to the STB, thus resulting in accelerated knee OA progression.
Collapse
|
|
3 |
18 |
23
|
Yu Z, Zhu Z, Tang T, Dai K, Qiu S. Effect of body fat stores on total and regional bone mineral density in perimenopausal Chinese women. J Bone Miner Metab 2009; 27:341-6. [PMID: 19229474 DOI: 10.1007/s00774-009-0036-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 07/21/2008] [Indexed: 12/31/2022] [Imported: 05/16/2025]
Abstract
Accumulation of body fat is known to be beneficial to bone mass through increased body weight. However, not all the skeleton is loaded by body weight. Therefore, we assume that fat stores would exert different effects on bone mass at different skeletal sites. In this study, 84 perimenopausal Chinese women were recruited. Using dual-energy X-ray absorptiometry, total body fat mass (TBFM), total body lean mass (TBLM), percent body fat (PBF), and total body and regional bone mineral density (BMD) were measured. Correlation analysis indicated that PBF correlated negatively with BMD at ribs and both arms (all P < 0.05). After adjusting for TBLM, PBF had a significantly negative correlation with BMD at head, ribs, both arms, and whole body (all P < 0.05). With adjustment for body weight and height, a significantly negative correlation between PBF and BMD was present, not only at ribs and arms but also at legs and whole body (all P < 0.05, except right leg, at P = 0.094). There was a significantly positive correlation between body weight and leg BMD (all P < 0.001). Body weight was positively correlated with TBFM (r (2) = 0.783, P < 0.001) and TBLM (r (2) = 0.770, P < 0.001). Based on the results, we conclude that increased body fat stores would exert a detrimental effect on BMD, but this effect is more prominent on non-weight-bearing bone. On weight-bearing bone, the detrimental effect of increased body fat could be offset or outweighed by the beneficial effect of increased body weight.
Collapse
|
|
16 |
17 |
24
|
Du J, Yang J, He Z, Cui J, Yang Y, Xu M, Qu X, Zhao N, Yan M, Li H, Yu Z. Osteoblast and Osteoclast Activity Affect Bone Remodeling Upon Regulation by Mechanical Loading-Induced Leukemia Inhibitory Factor Expression in Osteocytes. Front Mol Biosci 2020; 7:585056. [PMID: 33324677 PMCID: PMC7726425 DOI: 10.3389/fmolb.2020.585056] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022] [Imported: 05/16/2025] Open
Abstract
Purpose Bone remodeling is affected by mechanical stimulation. Osteocytes are the primary mechanical load-sensing cells in the bone, and can regulate osteoblast and osteoclast activity, thus playing a key role in bone remodeling. Further, bone mass during exercise is also regulated by Leukemia inhibitory factor (LIF). This study aimed to investigate the role of LIF in the mechanical response of the bone, in vivo and in vitro, and to elucidate the mechanism by which osteocytes secrete LIF to regulate osteoblasts and osteoclasts. Methods A tail-suspension (TS) mouse model was used in this study to mimic muscular disuse. ELISA and immunohistochemistry were performed to detect bone and serum LIF levels. Micro-computed tomography (CT) of the mouse femurs was performed to measure three-dimensional bone structure parameters. Fluid shear stress (FSS) and microgravity simulation experiments were performed to study mechanical stress-induced LIF secretion and its resultant effects. Bone marrow macrophages (BMMs) and bone mesenchymal stem cells (BMSCs) were cultured to induce in vitro osteoclastogenesis and osteogenesis, respectively. Results Micro-CT results showed that TS mice exhibited deteriorated bone microstructure and lower serum LIF expression. LIF secretion by osteocytes was promoted by FSS and was repressed in a microgravity environment. Further experiments showed that LIF could elevate the tartrate-resistant acid phosphatase activity in BMM-derived osteoclasts through the STAT3 signaling pathway. LIF also enhanced alkaline phosphatase staining and osteogenesis-related gene expression during the osteogenic differentiation of BMSCs. Conclusion Mechanical loading affected LIF expression levels in osteocytes, thereby altering the balance between osteoclastogenesis and osteogenesis.
Collapse
|
Journal Article |
5 |
17 |
25
|
Yu XW, Xie XH, Yu ZF, Tang TT. Augmentation of screw fixation with injectable calcium sulfate bone cement in ovariectomized rats. J Biomed Mater Res B Appl Biomater 2009; 89:36-44. [PMID: 18720415 DOI: 10.1002/jbm.b.31184] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] [Imported: 05/16/2025]
Abstract
The objective of this study was to determine the effect of augmenting screw fixation with an injectable calcium sulfate cement (CSC) in the osteoporotic bone of ovariectomized rats. The influence of the calcium sulfate (CS) on bone remodeling and screw anchorage in osteoporotic cancellous bone was systematically investigated using histomorphometric and biomechanical analyses. The femoral condyles of 55 Sprague-Dawley ovariectomized rats were implanted with screw augmented with CS, while the contralateral limb received a nonaugmented screw. At time intervals of 2, 4, 8, 12, and 16 weeks, 11 rats were euthanized. Six pair-matched samples were used for histological analysis, while five pair-matched samples were preserved for biomechanical testing. Histomorphometric data showed that CS augmented screws activated cancellous bone formation, evidenced by a statistically higher (p < 0.05) percentage of osteoid surface at 2, 4, and 8 weeks and a higher rate of bone mineral apposition at 12 weeks compared with nonaugmented screws. The amount of the bone-screw contact at 2, 8, and 12 weeks and of bone ingrowth on the threads at 4 and 8 weeks was greater in the CS group than in the nonaugmented group (p < 0.05), although these parameters increased concomitantly with time for both groups. The CS was resorbed completely at 8 weeks without stimulating fibrous encapsulation on the screw surface. Also, the cement significantly increased the screw pull-out force and the energy to failure at 2, 4, 8, and 12 weeks after implantation, when compared with the control group (p < 0.05). These results imply that augmentation of screw fixation with CS may have the potential to decrease the risk of implant failure in osteoporotic bone.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
15 |