1
|
Samarin AS, Fedotov SS, Koo HJ, Whangbo MH, Gippius AA, Zhurenko SV, Tkachev AV, Shvanskaya LV, Vasiliev AN. Observation of Haldane magnetism in organically templated vanadium phosphate ( enH 2) 0.5VPO 4OH. Dalton Trans 2024; 53:15842-15848. [PMID: 39279730 DOI: 10.1039/d4dt01675k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
We prepared an organically templated magnet, (enH2)0.5VPO4OH (enH2 = diprotonated ethylenediamine), hydrothermally and characterized its crystal structure by powder X-ray diffraction and Fourier-transform infrared spectroscopy, and its physical properties by magnetization, specific heat and nuclear magnetic resonance measurements and density functional theory calculations. (enH2)0.5VPO4OH consists of uniform chains of V3+ (d2, S = 1) ions and exhibits Haldane magnetism with spin gap Δ = 59.3 K from the magnetic susceptibility χ(T) at μ0H = 0.1 T, which is reduced to 48.4 K at μ0H = 9 T according to the 31P shift. The NMR data evidence the formation of a spin-glass state of unpaired S = 1/2 spins at TS-G ≈ 3 K and indicate that the Haldane S = 1 spin chain segments are much longer in the organically templated magnet (enH2)0.5VPO4OH than in the ammonium counterpart NH4VPO4OH. The single-ion anisotropy D and the interchain exchange J' in (enH2)0.5VPO4OH and NH4VPO4OH were estimated in density functional calculations to find them very weak compared to the intrachain exchange J.
Collapse
|
2
|
Nalbandyan VB, Vasilchikova TM, Zakharov KV, Vasiliev AN, Evstigneeva MA, Guda AA. Preparation and Properties of a High-Entropy Wolframite-Type Antiferromagnet, (Mn 0.2Co 0.2Ni 0.2Cu 0.2Cd 0.2)WO 4. Inorg Chem 2024; 63:10099-10102. [PMID: 38768193 DOI: 10.1021/acs.inorgchem.3c04430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The homogeneous high-entropy wolframite-type solid solution (Mn1/5Co1/5Ni1/5Cu1/5Cd1/5)WO4 was prepared by solid-state reaction at 1000 °C. Elongated "crystals" were grown from the Na2WO4 flux, but their strongly broadened powder X-ray diffraction patterns indicated partial dissolution. Nevertheless, successive annealing of the homogeneous solid solution for 3-4 h at 800, 700, and 600 °C did not bring any sign of dissolution. Thus, the material is kinetically stable at low temperatures although thermodynamically unstable. The long-range antiferromagnetic order was established at TN ∼ 24.8 K. Based on magnetization and specific heat measurements, a magnetic phase diagram was built, demonstrating the presence of an additional field-induced phase. In contrast to the parent MnWO4, no dielectric anomaly has been found down to 2 K.
Collapse
|
3
|
Yakubovich OV, Shvanskaya LV, Kiriukhina GV, Simonov S, Volkov AS, Dimitrova OV, Korolev VV, Ovchenkov YA, Vasiliev AN. Crystal structure of KMnPO 4F with short- and long-range order inside the layered magnetic system. Dalton Trans 2024; 53:9216-9223. [PMID: 38747059 DOI: 10.1039/d4dt00878b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Potassium manganese fluoride phosphate, KMnPO4F, has been obtained through mild hydrothermal synthesis and characterized by scanning electron microscopy, microprobe analysis and X-ray diffraction. The compound possesses an orthorhombic symmetry and chiral space group P212121 with a = 4.7884(2), b = 9.0172(4), c = 9.5801(4) Å, and Z = 4. Its crystal structure is composed of Mn3+O4F square pyramids sharing vertices with PO4 tetrahedra. This anionic framework is neutralized by K+ cations. As the temperature decreases, a short-range correlation state (Tmax ∼ 35 K) of KMnPO4F is formed, followed by the establishment of antiferromagnetic (AFM) long-range order at TN = 25 K. The latter is marked by sharp λ-type anomalies in both Fisher's specific heat d(χ‖T)/dT and heat capacity Cp. Pulsed magnetic field measurements on the single crystals identify the a axis as the easy magnetic axis and reveal a spin-flop transition at μ0Hspin-flop = 19 T. Density functional theory indicates that in variance with the three-dimensional network of KMnPO4F, it is a two-dimensional Ising magnetic system represented by buckled layers of integer spins S = 2 of Mn3+ ions. The strongest AFM exchange interaction, J1 ∼ -13 K, couples Mn3+ ions into linear chains running along the a axis. The chains themselves are ferromagnetically connected (J3 ∼ -4 K) within the ab plane. The interplane AFM exchange interaction (J2 ∼ -1 K) is weak and frustrated.
Collapse
|
4
|
Vorobyova AA, Morozov IV, Vasilchikova TM, Zakharov KV, Ovchenkov YA, Chistyakov GD, Ivanova AG, Shvanskaya LV, Lyssenko KA, Pchelkina Z, Vasiliev AN, Volkova OS. Sequence of Structural and Magnetic Phase Transitions in (NO)Mn 6(NO 3) 13. Inorg Chem 2024; 63:5199-5207. [PMID: 38447157 DOI: 10.1021/acs.inorgchem.4c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
New nitrosonium manganese(II) nitrate, (NO)Mn6(NO3)13, has been synthesized and structurally characterized. In the temperature range of 45-298 K, the crystal is hexagonal (centrosymmetric sp. gr. P63/m). Mn2+ ions are assembled into tubes along axis c with both NO3- filling and coating. The nitrosonium cation is located in the framework cavity and is disordered by a 3-fold axis. At the temperature TS1 = 190 K, a structural phase transition related to the libration of the intertube NO3 group and a small variation of Mn polyhedron is observed. Moreover, the anomalies in physical properties of (NO)Mn6(NO3)13 allow suggesting that ordering of NO+ units occurs at low temperatures. The antiferromagnetic ordering in this compound is preceded by the formation of a short-range correlation regime at about 25 K and takes place in two steps at TN1 = 12.0 K and TN2 = 8.4 K.
Collapse
|
5
|
Nalbandyan VB, Vasilchikova TM, Evstigneeva MA, Vasiliev AN, Shukaev IL. Spin-Cluster Glassy and Long-Range Ordered Magnetic States in Honeycomb-Layered Compositionally Complex Oxides Na 3-xLi xT 2SbO 6 (T = Cu 1/3Ni 1/3Co 1/3). Inorg Chem 2024; 63:5012-5019. [PMID: 38438970 DOI: 10.1021/acs.inorgchem.3c04436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The concept of high-entropy oxides has triggered extensive research of this novel class of materials because their numerous functional properties are usually not mere linear combinations of those of the components. Here, we introduce the new series of compositionally complex honeycomb-layered magnets Na3-xLixT2SbO6 (T = Cu1/3Ni1/3Co1/3). An unusual feature of the system is its nonmonotonous dependences of the monoclinic lattice parameters b and β on x. Rietveld refinement of the crystal structures of the Na and Li end members reveals apparent Sb-T site inversion in the former and considerable Li-Cu site inversion in the latter. The materials are characterized by measurements of specific heat Cp, magnetization M, and ac and dc magnetic susceptibility χ. Na3T2SbO6 exhibits sharp long-range antiferromagnetic order (TN = 10.2 K) preceded by noticeable correlation effects at elevated temperatures. The magnetic phase diagram of Na3T2SbO6 is established. Introduction of Li, just at x = 0.8, destroys AFM order, resulting in spin-cluster glass behavior attributed to Li/Cu inversion, with TG growing with x to 10.4 K at x = 3.
Collapse
|
6
|
Samarin AS, Trussov IA, Pchelkina ZV, Fedotov SS, Ovchenkov YA, Zhurenko SV, Tkachev AV, Gippius AA, Shvanskaya LV, Vasiliev AN. Lamellar Crystal Structure and Haldane Magnetism in NH 4 VPO 4 OH. Angew Chem Int Ed Engl 2024; 63:e202316719. [PMID: 38054955 DOI: 10.1002/anie.202316719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
A novel vanadium hydroxide-phosphate, NH4 VPO4 OH, was synthesized hydrothermally in V2 O5 -NH4 H2 PO4 -citric acid system at 230 °C. It was characterized by XRD, TG-DSC, SEM-EDX, FTIR and NMR spectroscopy. NH4 VPO4 OH is isostructural with NH4 GaPO4 OH and features edge-sharing chains of VO6 octahedra. These chains running along [010] direction of the unit cell are connected by phosphate tetrahedra to form infinite layers parallel to the (100) plane. Ammonium cations are embedded between the heteropolyhedral layers. According to the thermodynamic and NMR measurements supported by the first-principles calculations, NH4 VPO4 OH presents a rare case of Haldane spin system with spin S=1 based on V3+ ions.
Collapse
|
7
|
Kozlyakova ES, Korolev VV, Berdonosov PS, Latushka SI, Lyubochko NA, Vasiliev AN. Thermodynamic Properties and DFT Study on Highly Frustrated Cr 3BO 6: Coexistence of Spin-Singlets with Long-Range Magnetic Order. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7662. [PMID: 38138803 PMCID: PMC10744385 DOI: 10.3390/ma16247662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
The triangle-based magnetic subsystem of borates with the mineral norbergite structure M3BO6 (M = Fe, Cr, V) makes these compounds unique to investigate rare quantum ground states influenced by strong magnetic frustration. In this work, we investigated the thermal and magnetic properties of Cr3BO6 to find that despite very large negative Weiss temperature Θ = -160.7 K, it orders only at TN = 4.5 K and experiences a spin-flop transition at µ0H = 5 T. Density functional theory (DFT) calculations of exchange interaction parameters allow for suggesting the model of magnetic subsystem in chromium borate Cr3BO6. The results prove the decisive role of magnetic frustration on the formation of long-range order, providing therefore a basis for future study. Both experimental data and first-principles calculations point to the coexistence of chromium spin-singlets with long-range antiferromagnetic order.
Collapse
|
8
|
Vorobyova AA, Lyssenko KA, Chistyakov GD, Morozov IV, Ovchenkov YA, Vasilchikova TM, Koo HJ, Whangbo MH, Volkova OS, Vasiliev AN. A combination of organic and inorganic cations in the synthesis of transition metal nitrates: preparation and characterization of canted rectangular Ising antiferromagnet (PyH)CsCo 2(NO 3) 6. Dalton Trans 2023; 52:18010-18017. [PMID: 37986576 DOI: 10.1039/d3dt03159d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Pyridinium cesium cobalt nitrate, (PyH)CsCo2(NO3)6, obtained from a nitric acid solution crystallizes in the orthorhombic space group Pnma with unit cell parameters a = 8.6905(14) Å, b = 11.9599(18) Å, c = 18.386(3) Å, V = 1911.0(5) Å3, and Z = 4. It consists of [Co(NO3)3]- layers, in which each Co2+ ion is connected with four monodentate bridging NO3-groups and one bidentate terminal NO3-group, forming a corrugated rectangular net. Magnetization and specific heat measurements show that (PyH)CsCo2(NO3)6 undergoes a long-range canted antiferromagnetic ordering in two steps at TC1 = 5.0 K and TC2 = 2.6 K. The temperature dependence of the magnetic susceptibility and the field dependence of the magnetization measured for (PyH)CsCo2(NO3)6 show that it is an Ising antiferromagnet. In support of these observations, our DFT + U + SOC calculations show that the Co2+ ions of (PyH)CsCo2(NO3)6 have an easy-axis magnetic anisotropy with preferred spin orientation along the b-axis. To a first approximation, the spin lattice of (PyH)CsCo2(NO3)6 is a weakly alternating Ising antiferromagnetic chain (J1/J2 ∼ 0.85), and these chains interact weakly (J3/J2 ∼ 0.07) to form a rectangular Ising antiferromagnetic lattice. In agreement with the prediction for a rectangular Ising antiferromagnet by Onsager, (PyH)CsCo2(NO3)6 undergoes a long-range antiferromagnetic ordering.
Collapse
|
9
|
Abdulhamid MI, Aboona BE, Adam J, Adams JR, Agakishiev G, Aggarwal I, Aggarwal MM, Ahammed Z, Aitbaev A, Alekseev I, Anderson DM, Aparin A, Aslam S, Atchison J, Averichev GS, Bairathi V, Baker W, Cap JGB, Barish K, Bhagat P, Bhasin A, Bhatta S, Bordyuzhin IG, Brandenburg JD, Brandin AV, Cai XZ, Caines H, Sánchez MCDLB, Cebra D, Ceska J, Chakaberia I, Chan BK, Chang Z, Chatterjee A, Chen D, Chen J, Chen JH, Chen Z, Cheng J, Cheng Y, Choudhury S, Christie W, Chu X, Crawford HJ, Dale-Gau G, Das A, Daugherity M, Dedovich TG, Deppner IM, Derevschikov AA, Dhamija A, Di Carlo L, Dixit P, Dong X, Drachenberg JL, Duckworth E, Dunlop JC, Engelage J, Eppley G, Esumi S, Evdokimov O, Ewigleben A, Eyser O, Fatemi R, Fazio S, Feng CJ, Feng Y, Finch E, Fisyak Y, Flor FA, Fu C, Gao T, Geurts F, Ghimire N, Gibson A, Gopal K, Gou X, Grosnick D, Gupta A, Hamed A, Han Y, Harasty MD, Harris JW, Harrison-Smith H, He W, He XH, He Y, Hu C, Hu Q, Hu Y, Huang H, Huang HZ, Huang SL, Huang T, Huang X, Huang Y, Huang Y, Humanic TJ, Isenhower D, Isshiki M, Jacobs WW, Jalotra A, Jena C, Ji Y, Jia J, Jin C, Ju X, Judd EG, Kabana S, Kabir ML, Kalinkin D, Kang K, Kapukchyan D, Kauder K, Keane D, Kechechyan A, Kelsey M, Kimelman B, Kiselev A, Knospe AG, Ko HS, Kochenda L, Korobitsin AA, Kravtsov P, Kumar L, Kumar S, Elayavalli RK, Lacey R, Landgraf JM, Lebedev A, Lednicky R, Lee JH, Leung YH, Lewis N, Li C, Li W, Li X, Li Y, Li Y, Li Z, Liang X, Liang Y, Lin T, Liu C, Liu F, Liu G, Liu H, Liu H, Liu L, Liu T, Liu X, Liu Y, Liu Z, Ljubicic T, Llope WJ, Lomicky O, Longacre RS, Loyd EM, Lu T, Lukow NS, Luo XF, Luong VB, Ma L, Ma R, Ma YG, Magdy N, Mallick D, Margetis S, Matis HS, Mazer JA, McNamara G, Mi K, Minaev NG, Mohanty B, Mondal MM, Mooney I, Morozov DA, Mudrokh A, Nagy MI, Nain AS, Nam JD, Nasim M, Neff D, Nelson JM, Nemes DB, Nie M, Nigmatkulov G, Niida T, Nishitani R, Nogach LV, Nonaka T, Odyniec G, Ogawa A, Oh S, Okorokov VA, Okubo K, Page BS, Pak R, Pan J, Pandav A, Pandey AK, Panebratsev Y, Pani T, Parfenov P, Paul A, Perkins C, Pokhrel BR, Posik M, Protzman T, Pruthi NK, Putschke J, Qin Z, Qiu H, Quintero A, Racz C, Radhakrishnan SK, Raha N, Ray RL, Ritter HG, Robertson CW, Rogachevsky OV, Aguilar MAR, Roy D, Ruan L, Sahoo AK, Sahoo NR, Sako H, Salur S, Samigullin E, Sato S, Schmidke WB, Schmitz N, Seger J, Seto R, Seyboth P, Shah N, Shahaliev E, Shanmuganathan PV, Shao T, Sharma M, Sharma N, Sharma R, Sharma SR, Sheikh AI, Shen D, Shen DY, Shen K, Shi SS, Shi Y, Shou QY, Si F, Singh J, Singha S, Sinha P, Skoby MJ, Söhngen Y, Song Y, Srivastava B, Stanislaus TDS, Stewart DJ, Strikhanov M, Stringfellow B, Su Y, Sun C, Sun X, Sun Y, Sun Y, Surrow B, Svirida DN, Sweger ZW, Tamis A, Tang AH, Tang Z, Taranenko A, Tarnowsky T, Thomas JH, Tlusty D, Todoroki T, Tokarev MV, Tomkiel CA, Trentalange S, Tribble RE, Tribedy P, Tsai OD, Tsang CY, Tu Z, Tyler J, Ullrich T, Underwood DG, Upsal I, Van Buren G, Vasiliev AN, Verkest V, Videbæk F, Vokal S, Voloshin SA, Wang F, Wang G, Wang JS, Wang J, Wang X, Wang Y, Wang Y, Wang Y, Wang Z, Webb JC, Weidenkaff PC, Westfall GD, Wieman H, Wilks G, Wissink SW, Wu J, Wu J, Wu X, Wu X, Wu Y, Xi B, Xiao ZG, Xie G, Xie W, Xu H, Xu N, Xu QH, Xu Y, Xu Y, Xu Z, Xu Z, Yan G, Yan Z, Yang C, Yang Q, Yang S, Yang Y, Ye Z, Ye Z, Yi L, Yip K, Yu Y, Zha W, Zhang C, Zhang D, Zhang J, Zhang S, Zhang W, Zhang X, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang ZJ, Zhang Z, Zhang Z, Zhao F, Zhao J, Zhao M, Zhou C, Zhou J, Zhou S, Zhou Y, Zhu X, Zurek M, Zyzak M. Hyperon Polarization along the Beam Direction Relative to the Second and Third Harmonic Event Planes in Isobar Collisions at sqrt[s_{NN}]=200 GeV. PHYSICAL REVIEW LETTERS 2023; 131:202301. [PMID: 38039468 DOI: 10.1103/physrevlett.131.202301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/07/2023] [Accepted: 10/03/2023] [Indexed: 12/03/2023]
Abstract
The polarization of Λ and Λ[over ¯] hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at sqrt[s_{NN}]=200 GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild p_{T} dependence. The azimuthal angle dependence of the polarization follows the vorticity pattern expected due to elliptic and triangular anisotropic flow, and qualitatively disagrees with most hydrodynamic model calculations based on thermal vorticity and shear induced contributions. The model results based on one of existing implementations of the shear contribution lead to a correct azimuthal angle dependence, but predict centrality and p_{T} dependence that still disagree with experimental measurements. Thus, our results provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization. Comparison to previous measurements at RHIC and the LHC for the second-order harmonic results shows little dependence on the collision system size and collision energy.
Collapse
|
10
|
Yakubovich OV, Shvanskaya LV, Kiriukhina GV, Simonov SV, Volkov AS, Dimitrova OV, Glazkov VN, Ignatenko AN, Chung SH, Koo HJ, Whangbo MH, Vasiliev AN. Addition and Correction to "K 2Mn 3O(OH)(VO 4)(V 2O 7) with Sawtooth Chains of Multivalent Manganese Triangular Trimer Units: Magnetic Susceptibility Shrouding a Long-Range Antiferromagnetic Order of Ferromagnetic Triangles". Inorg Chem 2023; 62:17575. [PMID: 37812394 DOI: 10.1021/acs.inorgchem.3c03155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
|
11
|
Aouelela M, Taha M, El-dek SI, Hassan A, Vasiliev AN, Abdel-Hafiez M. Synthesis and Characterization of Molybdenum- and Sulfur-Doped FeSe. ACS OMEGA 2023; 8:36553-36561. [PMID: 37810706 PMCID: PMC10552506 DOI: 10.1021/acsomega.3c05684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023]
Abstract
During the past decade, two-dimensional (2D) layered materials opened novel opportunities for the exploration of exciting new physics and devices owing to their physical and electronic properties. Among 2D materials, iron selenide has attracted much attention from several physicists as they provide a fruitful stage for developing new superconductors. Chemical doping offers a powerful approach to manipulate and optimize the electronic structure and physical properties of materials. Here, to reveal how doping affects the physical properties in FeSe, we report on complementary measurements of molybdenum- and sulfur-doped FeSe with theoretical calculations. Mo0.1Fe0.9Se0.9S0.1 was synthesized by a one-step solid-state reaction method. Crystal structure and morphology were studied using powder X-ray diffraction and scanning electron microscopy. Thermal stability and decomposition behavior in doped samples were studied by thermogravimetric analysis, and to understand the microscopic influence of doping, we performed Raman spectroscopy. First-principles calculations of the electronic structure illustrate distinct changes of electronic structures of the substituted FeSe systems, which can be responsible for their superconducting properties.
Collapse
|
12
|
Yakubovich OV, Shvanskaya LV, Kiriukhina GV, Simonov SV, Volkov AS, Dimitrova OV, Glazkov VN, Ignatenko AN, Chung SH, Koo HJ, Whangbo MH, Vasiliev AN. K 2Mn 3O(OH)(VO 4)(V 2O 7) with Sawtooth Chains of Multivalent Manganese Triangular Trimer Units: Magnetic Susceptibility Shrouding a Long-Range Antiferromagnetic Order of Ferromagnetic Triangles. Inorg Chem 2023; 62:14180-14190. [PMID: 37595259 DOI: 10.1021/acs.inorgchem.3c01100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
ortho-Pyrovanadate (or ortho-diorthovanadate) K2Mn23+Mn2+O(OH)(VO4)(V2O7) synthesized hydrothermally crystallizes in the orthorhombic space group Pnma with a = 17.9155(5), b = 5.8940(2), c = 10.9971(3) Å, V = 1161.23(6) Å3, and Z = 4. Its crystal structure features linear chains of edge-sharing Mn3+O6 octahedra with every second pair of Mn3+O6 octahedra condensed with a Mn2+O6 octahedron on one side of a chain in a sawtooth pattern so that each sawtooth chain consists of a triangular trimer. These sawtooth chains, running parallel to the b axis and linked by the VO4 and V2O7 groups, form a framework with channels populated by K atoms. The new compound is a structural analogue of the mineral zoisite Ca2Al3O(OH)(SiO4)(Si2O7), showing a striking example of very different chemical compositions. K2Mn3O(OH)(VO4)(V2O7) undergoes a phase transition into an ordered antiferromagnetic (AFM) state at TN = 14.4 K, which was detected by high-frequency electron spin resonance as well as by both specific heat Cp and Fisher's specific heat d(χT)/dT measurements. However, this phase transition was not detected by magnetic susceptibility measurements. The origin of this puzzling observation was resolved by evaluating the spin exchanges of K2Mn3O(OH)(VO4)(V2O7), which revealed that each triangular trimer is a ferromagnetically coupled cluster, and the observed ordering involves an AFM ordering between the ferromagnetic (FM) clusters. This ordering is shrouded in magnetic susceptibility measurements due to the susceptibility contributions from the individual FM triangular trimers even below TN. We showed that the magnetic susceptibility of K2Mn3O(OH)(VO4)(V2O7) between ∼30 K and room temperature is satisfactorily described by an AFM chain made up of ferromagnetically coupled triangular clusters, as described by a few spin-exchange parameters.
Collapse
|
13
|
Adam J, Adamczyk L, Adams JR, Adkins JK, Agakishiev G, Aggarwal MM, Ahammed Z, Alekseev I, Anderson DM, Aparin A, Aschenauer EC, Ashraf MU, Atetalla FG, Attri A, Averichev GS, Bairathi V, Barish K, Behera A, Bellwied R, Bhasin A, Bielcik J, Bielcikova J, Bland LC, Bordyuzhin IG, Brandenburg JD, Brandin AV, Butterworth J, Caines H, Calderón de la Barca Sánchez M, Cebra D, Chakaberia I, Chaloupka P, Chan BK, Chang FH, Chang Z, Chankova-Bunzarova N, Chatterjee A, Chen D, Chen J, Chen JH, Chen X, Chen Z, Cheng J, Cherney M, Chevalier M, Choudhury S, Christie W, Chu X, Crawford HJ, Csanád M, Daugherity M, Dedovich TG, Deppner IM, Derevschikov AA, Didenko L, Dong X, Drachenberg JL, Dunlop JC, Edmonds T, Elsey N, Engelage J, Eppley G, Esumi S, Evdokimov O, Ewigleben A, Eyser O, Fatemi R, Fazio S, Federic P, Fedorisin J, Feng CJ, Feng Y, Filip P, Finch E, Fisyak Y, Francisco A, Fulek L, Gagliardi CA, Galatyuk T, Geurts F, Ghimire N, Gibson A, Gopal K, Gou X, Grosnick D, Guryn W, Hamad AI, Hamed A, Harabasz S, Harris JW, He S, He W, He XH, He Y, Heppelmann S, Heppelmann S, Herrmann N, Hoffman E, Holub L, Hong Y, Horvat S, Hu Y, Huang HZ, Huang SL, Huang T, Huang X, Humanic TJ, Huo P, Igo G, Isenhower D, Jacobs WW, Jena C, Jentsch A, Ji Y, Jia J, Jiang K, Jowzaee S, Ju X, Judd EG, Kabana S, Kabir ML, Kagamaster S, Kalinkin D, Kang K, Kapukchyan D, Kauder K, Ke HW, Keane D, Kechechyan A, Kelsey M, Khyzhniak YV, Kikoła DP, Kim C, Kimelman B, Kincses D, Kinghorn TA, Kisel I, Kiselev A, Kocan M, Kochenda L, Kosarzewski LK, Kramarik L, Kravtsov P, Krueger K, Kulathunga Mudiyanselage N, Kumar L, Kumar S, Kunnawalkam Elayavalli R, Kwasizur JH, Lacey R, Lan S, Landgraf JM, Lauret J, Lebedev A, Lednicky R, Lee JH, Leung YH, Li C, Li C, Li W, Li W, Li X, Li Y, Liang Y, Licenik R, Lin T, Lin Y, Lisa MA, Liu F, Liu H, Liu P, Liu P, Liu T, Liu X, Liu Y, Liu Z, Ljubicic T, Llope WJ, Longacre RS, Lukow NS, Luo S, Luo X, Ma GL, Ma L, Ma R, Ma YG, Magdy N, Majka R, Mallick D, Margetis S, Markert C, Matis HS, Mazer JA, Minaev NG, Mioduszewski S, Mohanty B, Mooney I, Moravcova Z, Morozov DA, Nagy M, Nam JD, Nasim M, Nayak K, Neff D, Nelson JM, Nemes DB, Nie M, Nigmatkulov G, Niida T, Nogach LV, Nonaka T, Nunes AS, Odyniec G, Ogawa A, Oh S, Okorokov VA, Page BS, Pak R, Pandav A, Panebratsev Y, Pawlik B, Pawlowska D, Pei H, Perkins C, Pinsky L, Pintér RL, Pluta J, Pokhrel BR, Porter J, Posik M, Pruthi NK, Przybycien M, Putschke J, Qiu H, Quintero A, Radhakrishnan SK, Ramachandran S, Ray RL, Reed R, Ritter HG, Rogachevskiy OV, Romero JL, Ruan L, Rusnak J, Sahoo NR, Sako H, Salur S, Sandweiss J, Sato S, Schmidke WB, Schmitz N, Schweid BR, Seck F, Seger J, Sergeeva M, Seto R, Seyboth P, Shah N, Shahaliev E, Shanmuganathan PV, Shao M, Sheikh AI, Shen WQ, Shi SS, Shi Y, Shou QY, Sichtermann EP, Sikora R, Simko M, Singh J, Singha S, Smirnov N, Solyst W, Sorensen P, Spinka HM, Srivastava B, Stanislaus TDS, Stefaniak M, Stewart DJ, Strikhanov M, Stringfellow B, Suaide AAP, Sumbera M, Summa B, Sun XM, Sun X, Sun Y, Sun Y, Surrow B, Svirida DN, Szymanski P, Tang AH, Tang Z, Taranenko A, Tarnowsky T, Thomas JH, Timmins AR, Tlusty D, Tokarev M, Tomkiel CA, Trentalange S, Tribble RE, Tribedy P, Tripathy SK, Tsai OD, Tu Z, Ullrich T, Underwood DG, Upsal I, Van Buren G, Vanek J, Vasiliev AN, Vassiliev I, Videbæk F, Vokal S, Voloshin SA, Wang F, Wang G, Wang JS, Wang P, Wang Y, Wang Y, Wang Z, Webb JC, Weidenkaff PC, Wen L, Westfall GD, Wieman H, Wissink SW, Witt R, Wu Y, Xiao ZG, Xie G, Xie W, Xu H, Xu N, Xu QH, Xu YF, Xu Y, Xu Z, Xu Z, Yang C, Yang Q, Yang S, Yang Y, Yang Z, Ye Z, Ye Z, Yi L, Yip K, Yu Y, Zbroszczyk H, Zha W, Zhang C, Zhang D, Zhang S, Zhang S, Zhang XP, Zhang Y, Zhang Y, Zhang ZJ, Zhang Z, Zhang Z, Zhao J, Zhong C, Zhou C, Zhu X, Zhu Z, Zurek M, Zyzak M. Erratum: Global Polarization of Ξ and Ω Hyperons in Au+Au Collisions at sqrt[s_{NN}]=200 GeV [Phys. Rev. Lett. 126, 162301 (2021)]. PHYSICAL REVIEW LETTERS 2023; 131:089901. [PMID: 37683178 DOI: 10.1103/physrevlett.131.089901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 09/10/2023]
Abstract
This corrects the article DOI: 10.1103/PhysRevLett.126.162301.
Collapse
|
14
|
Murtazoev AF, Berdonosov PS, Lyssenko KA, Dolgikh VA, Geidorf MY, Volkova OS, Koo HJ, Whangbo MH, Vasiliev AN. A cascade of magnetic phase transitions and a 1/3-magnetization plateau in selenite-selenate Co 3(SeO 3)(SeO 4)(OH) 2 with kagomé-like Co 2+ ion layer arrangements: the importance of identifying a correct spin lattice. Dalton Trans 2023. [PMID: 37381750 DOI: 10.1039/d3dt01620j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
We prepared a new compound, Co3(SeO3)(SeO4)(OH)2, having layers in a kagomé-like arrangement of Co2+ (spin S = 3/2) ions. This phase crystallizes in the orthorhombic space group Pnma (62) with unit cell parameters a = 11.225(9) Å, b = 6.466(7) Å and c = 11.530(20) Å. Its layers, parallel to the ab-plane, are made up of Co1O5 square pyramids and Co2O6 and Co3O6 octahedra. As the temperature is lowered, Co3(SeO3)(SeO4)(OH)2 undergoes three successive magnetic transitions at 27.5, 19.4 and 8.1 K, and the magnetization of Co3(SeO3)(SeO4)(OH)2 measured at 2.4 K exhibits a 1/3-magnetization plateau between 7.8 and 19.9 T. The H-T magnetic phase diagram constructed for Co3(SeO3)(SeO4)(OH)2 from ac and dc magnetic susceptibility, specific heat and magnetization measurements contains three magnetic phases I, II and III. Phase I is antiferromagnetic, while phases II and III are ferrimagnetic and responsible for the 1/3-magnetization plateau. To interpret these complex magnetic properties, we identified the correct spin lattice for Co3(SeO3)(SeO4)(OH)2 by evaluating its intralayer and interlayer spin exchanges based on spin-polarized DFT+U calculations.
Collapse
|
15
|
Bazhan RV, Nalbandyan VB, Vasilchikova TM, Koo HJ, Whangbo MH, Vasiliev AN. Successive short- and long-range magnetic ordering in rosiaite-type CoGeTeO 6 prepared by ion-exchange reaction. Dalton Trans 2023. [PMID: 37377378 DOI: 10.1039/d3dt01164j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The missing member of the rosiaite family, CoGeTeO6, was synthesized by mild ion-exchange reactions and characterized by magnetization M and specific heat Cp measurements. It exhibits a successive short- and long-range magnetic ordering at Tshort-range ≈ 45 K and TN = 15 K, respectively. Based on these measurements, the magnetic H-T phase diagram was established, showing two antiferromagnetic phases separated by a spin-flop transition. The reason why the pronounced short-range correlation occurs at a temperature nearly three times higher than TN was found by evaluating the Co-O⋯O-Co exchange interactions using energy-mapping analysis. Although CoGeTeO6 has a layered structure, its magnetic structure consists of three-dimensional antiferromagnetic lattices made up of rhombic boxes of Co2+ ions. The experimental data obtained at high temperatures agree well with the computational results by treating the Co2+ ions of CoGeTeO6 as S = 3/2 ions, but the heat capacity and magnetization data were obtained at low temperatures by treating the Co2+ ion as a Jeff = 1/2 ion.
Collapse
|
16
|
Murtazoev AF, Berdonosov PS, Lyssenko KA, Dolgikh VA, Pchelkina ZV, Zakharov KV, Geidorf MY, Vasilchikova TM, Volkova OS, Vasiliev AN. Anhydrous copper tellurite disulfate Cu 3TeO 3(SO 4) 2 featuring the coexistence of spin singlets and a long-range antiferromagnetic order. Dalton Trans 2023. [PMID: 37357965 DOI: 10.1039/d3dt01290e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Anhydrous copper tellurite sulfate, Cu3TeO3(SO4)2, has been synthesized via vapor transport reactions in sealed silica glass ampoules. In measurements of magnetization M, magnetic susceptibility χ, specific heat Cp and X-band electron spin resonance, a long-range antiferromagnetic order at TN = 13 K and an H-T magnetic phase diagram have been established. One-third of Cu2+ ions were found to form magnetically silent dimers. A peak in dielectric permittivity ε, which accompanies the Néel order, allows considering Cu3TeO3(SO4)2 as a magnetoelectric multiferroic material of the second type. Density functional theory calculations provided estimations of leading exchange interaction parameters.
Collapse
|
17
|
Abdulhamid MI, Aboona BE, Adam J, Adams JR, Agakishiev G, Aggarwal I, Aggarwal MM, Ahammed Z, Aitbaev A, Alekseev I, Anderson DM, Aparin A, Aslam S, Atchison J, Averichev GS, Bairathi V, Baker W, Ball Cap JG, Barish K, Bhagat P, Bhasin A, Bhatta S, Bordyuzhin IG, Brandenburg JD, Brandin AV, Cai XZ, Caines H, Calderón de la Barca Sánchez M, Cebra D, Ceska J, Chakaberia I, Chan BK, Chang Z, Chatterjee A, Chen D, Chen J, Chen JH, Chen Z, Cheng J, Cheng Y, Choudhury S, Christie W, Chu X, Crawford HJ, Dale-Gau G, Das A, Daugherity M, Dedovich TG, Deppner IM, Derevschikov AA, Dhamija A, Di Carlo L, Didenko L, Dixit P, Dong X, Drachenberg JL, Duckworth E, Dunlop JC, Engelage J, Eppley G, Esumi S, Evdokimov O, Ewigleben A, Eyser O, Fatemi R, Fazio S, Feng CJ, Feng Y, Finch E, Fisyak Y, Flor FA, Fu C, Geurts F, Ghimire N, Gibson A, Gopal K, Gou X, Grosnick D, Gupta A, Hamed A, Han Y, Harasty MD, Harris JW, Harrison-Smith H, He W, He XH, He Y, Hu C, Hu Q, Hu Y, Huang H, Huang HZ, Huang SL, Huang T, Huang X, Huang Y, Huang Y, Humanic TJ, Isenhower D, Isshiki M, Jacobs WW, Jalotra A, Jena C, Ji Y, Jia J, Jin C, Ju X, Judd EG, Kabana S, Kabir ML, Kalinkin D, Kang K, Kapukchyan D, Kauder K, Ke HW, Keane D, Kechechyan A, Kelsey M, Kimelman B, Kiselev A, Knospe AG, Ko HS, Kochenda L, Korobitsin AA, Kravtsov P, Kumar L, Kumar S, Kunnawalkam Elayavalli R, Lacey R, Landgraf JM, Lebedev A, Lednicky R, Lee JH, Leung YH, Lewis N, Li C, Li W, Li X, Li Y, Li Y, Li Z, Liang X, Liang Y, Lin T, Liu C, Liu F, Liu G, Liu H, Liu H, Liu L, Liu T, Liu X, Liu Y, Liu Z, Ljubicic T, Llope WJ, Lomicky O, Longacre RS, Loyd EM, Lu T, Lukow NS, Luo XF, Luong VB, Ma L, Ma R, Ma YG, Magdy N, Mallick D, Margetis S, Matis HS, Mazer JA, McNamara G, Mi K, Minaev NG, Mohanty B, Mondal MM, Mooney I, Morozov DA, Mudrokh A, Nagy MI, Nain AS, Nam JD, Nasim M, Neff D, Nelson JM, Nemes DB, Nie M, Nigmatkulov G, Niida T, Nishitani R, Nogach LV, Nonaka T, Odyniec G, Ogawa A, Oh S, Okorokov VA, Okubo K, Page BS, Pak R, Pan J, Pandav A, Pandey AK, Panebratsev Y, Pani T, Parfenov P, Paul A, Perkins C, Pokhrel BR, Posik M, Protzman T, Pruthi NK, Putschke J, Qin Z, Qiu H, Quintero A, Racz C, Radhakrishnan SK, Raha N, Ray RL, Ritter HG, Robertson CW, Rogachevsky OV, Rosales Aguilar MA, Roy D, Ruan L, Sahoo AK, Sahoo NR, Sako H, Salur S, Samigullin E, Sato S, Schmidke WB, Schmitz N, Seger J, Seto R, Seyboth P, Shah N, Shahaliev E, Shanmuganathan PV, Shao T, Sharma M, Sharma N, Sharma R, Sharma SR, Sheikh AI, Shen DY, Shen K, Shi SS, Shi Y, Shou QY, Si F, Singh J, Singha S, Sinha P, Skoby MJ, Söhngen Y, Song Y, Srivastava B, Stanislaus TDS, Stewart DJ, Strikhanov M, Stringfellow B, Su Y, Sun C, Sun X, Sun Y, Sun Y, Surrow B, Svirida DN, Sweger ZW, Tamis A, Tang AH, Tang Z, Taranenko A, Tarnowsky T, Thomas JH, Tlusty D, Todoroki T, Tokarev MV, Tomkiel CA, Trentalange S, Tribble RE, Tribedy P, Tsai OD, Tsang CY, Tu Z, Ullrich T, Underwood DG, Upsal I, Van Buren G, Vasiliev AN, Verkest V, Videbæk F, Vokal S, Voloshin SA, Wang F, Wang G, Wang JS, Wang X, Wang Y, Wang Y, Wang Y, Wang Z, Webb JC, Weidenkaff PC, Westfall GD, Wieman H, Wilks G, Wissink SW, Wu J, Wu J, Wu X, Wu Y, Xi B, Xiao ZG, Xie G, Xie W, Xu H, Xu N, Xu QH, Xu Y, Xu Y, Xu Z, Xu Z, Yan G, Yan Z, Yang C, Yang Q, Yang S, Yang Y, Ye Z, Ye Z, Yi L, Yip K, Yu Y, Zha W, Zhang C, Zhang D, Zhang J, Zhang S, Zhang W, Zhang X, Zhang Y, Zhang Y, Zhang Y, Zhang ZJ, Zhang Z, Zhang Z, Zhao F, Zhao J, Zhao M, Zhou C, Zhou J, Zhou S, Zhou Y, Zhu X, Zurek M, Zyzak M. Measurements of the Elliptic and Triangular Azimuthal Anisotropies in Central ^{3}He+Au, d+Au and p+Au Collisions at sqrt[s_{NN}]=200 GeV. PHYSICAL REVIEW LETTERS 2023; 130:242301. [PMID: 37390421 DOI: 10.1103/physrevlett.130.242301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 07/02/2023]
Abstract
The elliptic (v_{2}) and triangular (v_{3}) azimuthal anisotropy coefficients in central ^{3}He+Au, d+Au, and p+Au collisions at sqrt[s_{NN}]=200 GeV are measured as a function of transverse momentum (p_{T}) at midrapidity (|η|<0.9), via the azimuthal angular correlation between two particles both at |η|<0.9. While the v_{2}(p_{T}) values depend on the colliding systems, the v_{3}(p_{T}) values are system independent within the uncertainties, suggesting an influence on eccentricity from subnucleonic fluctuations in these small-sized systems. These results also provide stringent constraints for the hydrodynamic modeling of these systems.
Collapse
|
18
|
Chareev DA, Khan MEH, Karmakar D, Nekrasov AN, Nickolsky MS, Eriksson O, Delin A, Vasiliev AN, Abdel-Hafiez M. Correction to Stable Sulfuric Vapor Transport and Liquid-Sulfur Growth on Transition Metal Dichalcogenides. CRYSTAL GROWTH & DESIGN 2023; 23:4720. [PMID: 37304400 PMCID: PMC10251472 DOI: 10.1021/acs.cgd.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Indexed: 06/13/2023]
Abstract
[This corrects the article DOI: 10.1021/acs.cgd.2c01318.].
Collapse
|
19
|
Aboona BE, Adam J, Adams JR, Agakishiev G, Aggarwal I, Aggarwal MM, Ahammed Z, Aitbaev A, Alekseev I, Anderson DM, Aparin A, Atchison J, Averichev GS, Bairathi V, Baker W, Ball Cap JG, Barish K, Bhagat P, Bhasin A, Bhatta S, Bordyuzhin IG, Brandenburg JD, Brandin AV, Cai XZ, Caines H, Calderón de la Barca Sánchez M, Cebra D, Ceska J, Chakaberia I, Chan BK, Chang Z, Chen D, Chen J, Chen JH, Chen Z, Cheng J, Cheng Y, Choudhury S, Christie W, Chu X, Crawford HJ, Dale-Gau G, Das A, Daugherity M, Dedovich TG, Deppner IM, Derevschikov AA, Dhamija A, Di Carlo L, Didenko L, Dixit P, Dong X, Drachenberg JL, Duckworth E, Dunlop JC, Engelage J, Eppley G, Esumi S, Evdokimov O, Ewigleben A, Eyser O, Fatemi R, Fazio S, Feng CJ, Feng Y, Finch E, Fisyak Y, Flor FA, Fu C, Geurts F, Ghimire N, Gibson A, Gopal K, Gou X, Grosnick D, Gupta A, Hamed A, Han Y, Harasty MD, Harris JW, Harrison H, He W, He XH, He Y, Hu C, Hu Q, Hu Y, Huang H, Huang HZ, Huang SL, Huang T, Huang X, Huang Y, Huang Y, Humanic TJ, Isenhower D, Isshiki M, Jacobs WW, Jalotra A, Jena C, Ji Y, Jia J, Jin C, Ju X, Judd EG, Kabana S, Kabir ML, Kalinkin D, Kang K, Kapukchyan D, Kauder K, Ke HW, Keane D, Kechechyan A, Kelsey M, Kimelman B, Kiselev A, Knospe AG, Ko HS, Kochenda L, Korobitsin AA, Kravtsov P, Kumar L, Kumar S, Kunnawalkam Elayavalli R, Lacey R, Landgraf JM, Lebedev A, Lednicky R, Lee JH, Leung YH, Lewis N, Li C, Li C, Li W, Li X, Li Y, Li Y, Li Z, Liang X, Liang Y, Lin T, Liu C, Liu F, Liu H, Liu H, Liu L, Liu T, Liu X, Liu Y, Liu Z, Ljubicic T, Llope WJ, Lomicky O, Longacre RS, Loyd E, Lu T, Lukow NS, Luo XF, Luong VB, Ma L, Ma R, Ma YG, Magdy N, Mallick D, Margetis S, Matis HS, Mazer JA, McNamara G, Mi K, Minaev NG, Mohanty B, Mooney I, Morozov DA, Mudrokh A, Nagy MI, Nain AS, Nam JD, Nasim M, Neff D, Nelson JM, Nemes DB, Nie M, Nigmatkulov G, Niida T, Nishitani R, Nogach LV, Nonaka T, Nunes AS, Odyniec G, Ogawa A, Oh S, Okorokov VA, Okubo K, Page BS, Pak R, Pan J, Pandav A, Pandey AK, Panebratsev Y, Pani T, Parfenov P, Paul A, Perkins C, Pokhrel BR, Posik M, Protzman T, Pruthi NK, Putschke J, Qin Z, Qiu H, Quintero A, Racz C, Radhakrishnan SK, Raha N, Ray RL, Ritter HG, Robertson CW, Rogachevsky OV, Rosales Aguilar MA, Roy D, Ruan L, Sahoo AK, Sahoo NR, Sako H, Salur S, Samigullin E, Sato S, Schmidke WB, Schmitz N, Seger J, Seto R, Seyboth P, Shah N, Shahaliev E, Shanmuganathan PV, Shao M, Shao T, Sharma M, Sharma N, Sharma R, Sharma SR, Sheikh AI, Shen DY, Shen K, Shi SS, Shi Y, Shou QY, Si F, Singh J, Singha S, Sinha P, Skoby MJ, Söhngen Y, Song Y, Srivastava B, Stanislaus TDS, Stewart DJ, Strikhanov M, Stringfellow B, Su Y, Sun C, Sun X, Sun Y, Sun Y, Surrow B, Svirida DN, Sweger ZW, Tamis A, Tang AH, Tang Z, Taranenko A, Tarnowsky T, Thomas JH, Tlusty D, Todoroki T, Tokarev MV, Tomkiel CA, Trentalange S, Tribble RE, Tribedy P, Tsai OD, Tsang CY, Tu Z, Ullrich T, Underwood DG, Upsal I, Van Buren G, Vasiliev AN, Verkest V, Videbæk F, Vokal S, Voloshin SA, Wang F, Wang G, Wang JS, Wang X, Wang Y, Wang Y, Wang Y, Wang Z, Webb JC, Weidenkaff PC, Westfall GD, Wieman H, Wilks G, Wissink SW, Wu J, Wu J, Wu X, Wu Y, Xi B, Xiao ZG, Xie W, Xu H, Xu N, Xu QH, Xu Y, Xu Y, Xu Z, Xu Z, Yan G, Yan Z, Yang C, Yang Q, Yang S, Yang Y, Ye Z, Ye Z, Yi L, Yip K, Yu Y, Zha W, Zhang C, Zhang D, Zhang J, Zhang S, Zhang X, Zhang Y, Zhang Y, Zhang Y, Zhang ZJ, Zhang Z, Zhang Z, Zhao F, Zhao J, Zhao M, Zhou C, Zhou J, Zhou S, Zhou Y, Zhu X, Zurek M, Zyzak M. Observation of Directed Flow of Hypernuclei _{Λ}^{3}H and _{Λ}^{4}H in sqrt[s_{NN}]=3 GeV Au+Au Collisions at RHIC. PHYSICAL REVIEW LETTERS 2023; 130:212301. [PMID: 37295104 DOI: 10.1103/physrevlett.130.212301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/24/2023] [Accepted: 03/02/2023] [Indexed: 06/12/2023]
Abstract
We report here the first observation of directed flow (v_{1}) of the hypernuclei _{Λ}^{3}H and _{Λ}^{4}H in mid-central Au+Au collisions at sqrt[s_{NN}]=3 GeV at RHIC. These data are taken as part of the beam energy scan program carried out by the STAR experiment. From 165×10^{6} events in 5%-40% centrality, about 8400 _{Λ}^{3}H and 5200 _{Λ}^{4}H candidates are reconstructed through two- and three-body decay channels. We observe that these hypernuclei exhibit significant directed flow. Comparing to that of light nuclei, it is found that the midrapidity v_{1} slopes of _{Λ}^{3}H and _{Λ}^{4}H follow baryon number scaling, implying that the coalescence is the dominant mechanism for these hypernuclei production in the 3 GeV Au+Au collisions.
Collapse
|
20
|
Abdulhamid MI, Aboona BE, Adam J, Adams JR, Agakishiev G, Aggarwal I, Aggarwal MM, Ahammed Z, Aitbaev A, Alekseev I, Anderson DM, Aparin A, Aslam S, Atchison J, Averichev GS, Bairathi V, Baker W, Ball Cap JG, Barish K, Bhagat P, Bhasin A, Bhatta S, Bordyuzhin IG, Brandenburg JD, Brandin AV, Cai XZ, Caines H, Calderón de la Barca Sánchez M, Cebra D, Ceska J, Chakaberia I, Chan BK, Chang Z, Chatterjee A, Chen D, Chen J, Chen JH, Chen Z, Cheng J, Cheng Y, Choudhury S, Christie W, Chu X, Crawford HJ, Dale-Gau G, Das A, Daugherity M, Dedovich TG, Deppner IM, Derevschikov AA, Dhamija A, Di Carlo L, Didenko L, Dixit P, Dong X, Drachenberg JL, Duckworth E, Dunlop JC, Engelage J, Eppley G, Esumi S, Evdokimov O, Ewigleben A, Eyser O, Fatemi R, Fazio S, Feng CJ, Feng Y, Finch E, Fisyak Y, Flor FA, Fu C, Geurts F, Ghimire N, Gibson A, Gopal K, Gou X, Grosnick D, Gupta A, Hamed A, Han Y, Harasty MD, Harris JW, Harrison-Smith H, He W, He XH, He Y, Hu C, Hu Q, Hu Y, Huang H, Huang HZ, Huang SL, Huang T, Huang X, Huang Y, Huang Y, Humanic TJ, Isenhower D, Isshiki M, Jacobs WW, Jalotra A, Jena C, Ji Y, Jia J, Jin C, Ju X, Judd EG, Kabana S, Kabir ML, Kalinkin D, Kang K, Kapukchyan D, Kauder K, Ke HW, Keane D, Kechechyan A, Kelsey M, Kimelman B, Kiselev A, Knospe AG, Ko HS, Kochenda L, Korobitsin AA, Kravtsov P, Kumar L, Kumar S, Kunnawalkam Elayavalli R, Lacey R, Landgraf JM, Lebedev A, Lednicky R, Lee JH, Leung YH, Lewis N, Li C, Li W, Li X, Li Y, Li Y, Li Z, Liang X, Liang Y, Lin T, Liu C, Liu F, Liu H, Liu H, Liu L, Liu T, Liu X, Liu Y, Liu Z, Ljubicic T, Llope WJ, Lomicky O, Longacre RS, Loyd EM, Lu T, Lukow NS, Luo XF, Luong VB, Ma L, Ma R, Ma YG, Magdy N, Mallick D, Margetis S, Matis HS, Mazer JA, McNamara G, Mi K, Minaev NG, Mohanty B, Mondal MM, Mooney I, Morozov DA, Mudrokh A, Nagy MI, Nain AS, Nam JD, Nasim M, Neff D, Nelson JM, Nemes DB, Nie M, Nigmatkulov G, Niida T, Nishitani R, Nogach LV, Nonaka T, Odyniec G, Ogawa A, Oh S, Okorokov VA, Okubo K, Page BS, Pak R, Pan J, Pandav A, Pandey AK, Panebratsev Y, Pani T, Parfenov P, Paul A, Perkins C, Pokhrel BR, Posik M, Protzman T, Pruthi NK, Putschke J, Qin Z, Qiu H, Quintero A, Racz C, Radhakrishnan SK, Raha N, Ray RL, Ritter HG, Robertson CW, Rogachevsky OV, Rosales Aguilar MA, Roy D, Ruan L, Sahoo AK, Sahoo NR, Sako H, Salur S, Samigullin E, Sato S, Schmidke WB, Schmitz N, Seger J, Seto R, Seyboth P, Shah N, Shahaliev E, Shanmuganathan PV, Shao T, Sharma M, Sharma N, Sharma R, Sharma SR, Sheikh AI, Shen DY, Shen K, Shi SS, Shi Y, Shou QY, Si F, Singh J, Singha S, Sinha P, Skoby MJ, Söhngen Y, Song Y, Srivastava B, Stanislaus TDS, Stewart DJ, Strikhanov M, Stringfellow B, Su Y, Sun C, Sun X, Sun Y, Sun Y, Surrow B, Svirida DN, Sweger ZW, Tamis A, Tang AH, Tang Z, Taranenko A, Tarnowsky T, Thomas JH, Tlusty D, Todoroki T, Tokarev MV, Tomkiel CA, Trentalange S, Tribble RE, Tribedy P, Tsai OD, Tsang CY, Tu Z, Ullrich T, Underwood DG, Upsal I, Van Buren G, Vasiliev AN, Verkest V, Videbæk F, Vokal S, Voloshin SA, Wang F, Wang G, Wang JS, Wang X, Wang Y, Wang Y, Wang Y, Wang Z, Webb JC, Weidenkaff PC, Westfall GD, Wieman H, Wilks G, Wissink SW, Wu J, Wu J, Wu X, Wu Y, Xi B, Xiao ZG, Xie G, Xie W, Xu H, Xu N, Xu QH, Xu Y, Xu Y, Xu Z, Xu Z, Yan G, Yan Z, Yang C, Yang Q, Yang S, Yang Y, Ye Z, Ye Z, Yi L, Yip K, Yu N, Yu Y, Zha W, Zhang C, Zhang D, Zhang J, Zhang S, Zhang X, Zhang Y, Zhang Y, Zhang Y, Zhang ZJ, Zhang Z, Zhang Z, Zhao F, Zhao J, Zhao M, Zhou C, Zhou J, Zhou S, Zhou Y, Zhu X, Zurek M, Zyzak M. Beam Energy Dependence of Triton Production and Yield Ratio (N_{t}×N_{p}/N_{d}^{2}) in Au+Au Collisions at RHIC. PHYSICAL REVIEW LETTERS 2023; 130:202301. [PMID: 37267557 DOI: 10.1103/physrevlett.130.202301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 06/04/2023]
Abstract
We report the triton (t) production in midrapidity (|y|<0.5) Au+Au collisions at sqrt[s_{NN}]=7.7-200 GeV measured by the STAR experiment from the first phase of the beam energy scan at the Relativistic Heavy Ion Collider. The nuclear compound yield ratio (N_{t}×N_{p}/N_{d}^{2}), which is predicted to be sensitive to the fluctuation of local neutron density, is observed to decrease monotonically with increasing charged-particle multiplicity (dN_{ch}/dη) and follows a scaling behavior. The dN_{ch}/dη dependence of the yield ratio is compared to calculations from coalescence and thermal models. Enhancements in the yield ratios relative to the coalescence baseline are observed in the 0%-10% most central collisions at 19.6 and 27 GeV, with a significance of 2.3σ and 3.4σ, respectively, giving a combined significance of 4.1σ. The enhancements are not observed in peripheral collisions or model calculations without critical fluctuation, and decreases with a smaller p_{T} acceptance. The physics implications of these results on the QCD phase structure and the production mechanism of light nuclei in heavy-ion collisions are discussed.
Collapse
|
21
|
Murtazoev AF, Lyssenko KA, Markina MM, Dolgikh VA, Vasiliev AN, Berdonosov P. New Nabokoite-Like Phases ACu7TeO4(SO4)5Cl (A = Na, K, Rb, Cs) with Decorated and Distorted Square Kagome Lattices. Chemphyschem 2023:e202300111. [PMID: 37191070 DOI: 10.1002/cphc.202300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/17/2023]
Abstract
A new family of compounds ACu7TeO4(SO4)5Cl (A = Na, K, Rb, Cs) isostructural to mineral Nabokoite (K species) was synthesized by solid state and gas transport reactions in sealed ampoules and characterized in measurements of magnetization and specific heat in a wide temperature range. These complex compounds are of the utmost interest as a testing playground to study the properties of a quasi-two-dimensional magnets with a square kagome lattice geometry. A quantum ground state of such a corner-sharing network is a spin liquid. Unlike idealized grid analyzed in numerous models, the square kagome lattice in nabokoites is wavy and distorted being composed by the versatile triangles. Moreover, it contains "excessive" decorating magnetic ions, which makes magnetism of these objects even more complicated. The interaction of these decorating ions through virtual excitations of the square kagome lattice is accompanied by the formation of a long-range magnetic order coexisting with the spin liquid.
Collapse
|
22
|
Chareev DA, Khan MEH, Karmakar D, Nekrasov AN, Nickolsky MS, Eriksson O, Delin A, Vasiliev AN, Abdel-Hafiez M. Stable Sulfuric Vapor Transport and Liquid Sulfur Growth on Transition Metal Dichalcogenides. CRYSTAL GROWTH & DESIGN 2023; 23:2287-2294. [PMID: 37038405 PMCID: PMC10080655 DOI: 10.1021/acs.cgd.2c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/06/2023] [Indexed: 06/13/2023]
Abstract
Transition metal dichalcogenides (TMDs) are an emergent class of low-dimensional materials with growing applications in the field of nanoelectronics. However, efficient methods for synthesizing large monocrystals of these systems are still lacking. Here, we describe an efficient synthetic route for a large number of TMDs that were obtained in quartz glass ampoules by sulfuric vapor transport and liquid sulfur. Unlike the sublimation technique, the metal enters the gas phase in the form of molecules, hence containing a greater amount of sulfur than the growing crystal. We have investigated the physical properties for a selection of these crystals and compared them to state-of-the-art findings reported in the literature. The acquired electronic properties features demonstrate the overall high quality of single crystals grown in this work as exemplified by CoS2, ReS2, NbS2, and TaS2. This new approach to synthesize high-quality TMD single crystals can alleviate many material quality concerns and is suitable for emerging electronic devices.
Collapse
|
23
|
Blagov MA, Spitsyna NG, Ovanesyan NS, Lobach AS, Zorina LV, Simonov SV, Zakharov KV, Vasiliev AN. First crystal structure of an Fe(III) anionic complex based on a pyruvic acid thiosemicarbazone ligand with Li +: synthesis, features of magnetic behavior and theoretical analysis. Dalton Trans 2023; 52:1806-1819. [PMID: 36661046 DOI: 10.1039/d2dt03630d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The iron(III) anionic complex based on a pyruvic acid thiosemicarbazone ligand with the lithium cation Li[FeIII(thpy)2]·3H2O (1) has been synthesized and characterized by FTIR spectroscopy, powder and single crystal X-ray diffraction, direct current magnetic susceptibility measurements, and 57Fe Mössbauer spectroscopy. Moreover, the molecular structure of the [Fe(thpy)2]- anion has been determined for the first time. The [Fe(thpy)2]- units in the triclinic P1̄ lattice of 1 are assembled into layers parallel to the bc plane. The Li+ cations and water molecules are located between the layers and the structure is stabilized by hydrogen bonding. The [Fe(thpy)2]- anions form interconnected dimer pairs through hydrogen bonds and short contacts with Fe⋯Fe separation of 6.7861(4) Å. According to dc magnetic measurements, compound 1 demonstrates an incipient spin-crossover transition from the LS (S = 1/2) to the HS (S = 5/2) state above 250 K. The Bleaney-Bowers equation for a model of an isolated LS dimer with a mean-field correction was applied to fit the experimental data of magnetic susceptibility dependence on temperature in the temperature range of 2-250 K. The intra-dimer J1 = -1.79(1) K and inter-dimer J2 = -0.24(3) K antiferromagnetic coupling constants were defined. The analysis of the 57Fe Mössbauer spectra at 80 K and 296 K confirms the presence of the shortened distances between the iron nuclei. Moreover, the influence of the lithium cation on the stabilization of the LS state was shown for the [Fe(thpy)2]- anion. BS-DFT calculations for the optimized structure of two isolated [Fe(thpy)2]- anions also correctly predict a weak exchange J1(calc) = -0.92 K. DFT calculations revealed the OPBE (GGA-type) functional that correctly predicts the spin-crossover transition for the iron(III) thpy compounds. Besides, the effect of the N2O4, N2S2O2, and N2Se2O2 coordination environments on the energy stabilization of the LS state of iron(III) anionic thpy complexes was noted as well.
Collapse
|
24
|
Abdallah MS, Adam J, Adamczyk L, Adams JR, Adkins JK, Agakishiev G, Aggarwal I, Aggarwal MM, Ahammed Z, Alekseev I, Anderson DM, Aparin A, Aschenauer EC, Ashraf MU, Atetalla FG, Attri A, Averichev GS, Bairathi V, Baker W, Ball Cap JG, Barish K, Behera A, Bellwied R, Bhagat P, Bhasin A, Bielcik J, Bielcikova J, Bordyuzhin IG, Brandenburg JD, Brandin AV, Bunzarov I, Butterworth J, Cai XZ, Caines H, Calderón de la Barca Sánchez M, Cebra D, Chakaberia I, Chaloupka P, Chan BK, Chang FH, Chang Z, Chankova-Bunzarova N, Chatterjee A, Chattopadhyay S, Chen D, Chen J, Chen JH, Chen X, Chen Z, Cheng J, Chevalier M, Choudhury S, Christie W, Chu X, Crawford HJ, Csanád M, Daugherity M, Dedovich TG, Deppner IM, Derevschikov AA, Dhamija A, Di Carlo L, Didenko L, Dixit P, Dong X, Drachenberg JL, Duckworth E, Dunlop JC, Elsey N, Engelage J, Eppley G, Esumi S, Evdokimov O, Ewigleben A, Eyser O, Fatemi R, Fawzi FM, Fazio S, Federic P, Fedorisin J, Feng CJ, Feng Y, Filip P, Finch E, Fisyak Y, Francisco A, Fu C, Fulek L, Gagliardi CA, Galatyuk T, Geurts F, Ghimire N, Gibson A, Gopal K, Gou X, Grosnick D, Gupta A, Guryn W, Hamad AI, Hamed A, Han Y, Harabasz S, Harasty MD, Harris JW, Harrison H, He S, He W, He XH, He Y, Heppelmann S, Heppelmann S, Herrmann N, Hoffman E, Holub L, Hu Y, Huang H, Huang HZ, Huang SL, Huang T, Huang X, Huang Y, Humanic TJ, Igo G, Isenhower D, Jacobs WW, Jena C, Jentsch A, Ji Y, Jia J, Jiang K, Ju X, Judd EG, Kabana S, Kabir ML, Kagamaster S, Kalinkin D, Kang K, Kapukchyan D, Kauder K, Ke HW, Keane D, Kechechyan A, Kelsey M, Khyzhniak YV, Kikoła DP, Kim C, Kimelman B, Kincses D, Kisel I, Kiselev A, Knospe AG, Kochenda L, Kosarzewski LK, Kramarik L, Kravtsov P, Kumar L, Kumar S, Kunnawalkam Elayavalli R, Kwasizur JH, Lacey R, Lan S, Landgraf JM, Lauret J, Lebedev A, Lednicky R, Lee JH, Leung YH, Li C, Li C, Li W, Li X, Li Y, Liang X, Liang Y, Licenik R, Lin T, Lin Y, Lisa MA, Liu F, Liu H, Liu H, Liu P, Liu T, Liu X, Liu Y, Liu Z, Ljubicic T, Llope WJ, Longacre RS, Loyd E, Lukow NS, Luo XF, Ma L, Ma R, Ma YG, Magdy N, Mallick D, Margetis S, Markert C, Matis HS, Mazer JA, Minaev NG, Mioduszewski S, Mohanty B, Mondal MM, Mooney I, Morozov DA, Mukherjee A, Nagy M, Nam JD, Nasim M, Nayak K, Neff D, Nelson JM, Nemes DB, Nie M, Nigmatkulov G, Niida T, Nishitani R, Nogach LV, Nonaka T, Nunes AS, Odyniec G, Ogawa A, Oh S, Okorokov VA, Page BS, Pak R, Pandav A, Pandey AK, Panebratsev Y, Parfenov P, Pawlik B, Pawlowska D, Pei H, Perkins C, Pinsky L, Pintér RL, Pluta J, Pokhrel BR, Ponimatkin G, Porter J, Posik M, Prozorova V, Pruthi NK, Przybycien M, Putschke J, Qiu H, Quintero A, Racz C, Radhakrishnan SK, Raha N, Ray RL, Reed R, Ritter HG, Robotkova M, Rogachevskiy OV, Romero JL, Roy D, Ruan L, Rusnak J, Sahoo NR, Sako H, Salur S, Sandweiss J, Sato S, Schmidke WB, Schmitz N, Schweid BR, Seck F, Seger J, Sergeeva M, Seto R, Seyboth P, Shah N, Shahaliev E, Shanmuganathan PV, Shao M, Shao T, Sheikh AI, Shen D, Shi SS, Shi Y, Shou QY, Sichtermann EP, Sikora R, Simko M, Singh J, Singha S, Skoby MJ, Smirnov N, Söhngen Y, Solyst W, Sorensen P, Spinka HM, Srivastava B, Stanislaus TDS, Stefaniak M, Stewart DJ, Strikhanov M, Stringfellow B, Suaide AAP, Sumbera M, Summa B, Sun XM, Sun X, Sun Y, Sun Y, Surrow B, Svirida DN, Sweger ZW, Szymanski P, Tang AH, Tang Z, Taranenko A, Tarnowsky T, Thomas JH, Timmins AR, Tlusty D, Todoroki T, Tokarev M, Tomkiel CA, Trentalange S, Tribble RE, Tribedy P, Tripathy SK, Truhlar T, Trzeciak BA, Tsai OD, Tu Z, Ullrich T, Underwood DG, Upsal I, Van Buren G, Vanek J, Vasiliev AN, Vassiliev I, Verkest V, Videbæk F, Vokal S, Voloshin SA, Wang G, Wang JS, Wang P, Wang Y, Wang Y, Wang Z, Webb JC, Weidenkaff PC, Wen L, Westfall GD, Wieman H, Wissink SW, Wu J, Wu Y, Xi B, Xiao ZG, Xie G, Xie W, Xu H, Xu N, Xu QH, Xu Y, Xu Z, Xu Z, Yang C, Yang Q, Yang S, Yang Y, Ye Z, Ye Z, Yi L, Yip K, Yu Y, Zbroszczyk H, Zha W, Zhang C, Zhang D, Zhang J, Zhang S, Zhang S, Zhang XP, Zhang Y, Zhang Y, Zhang Y, Zhang ZJ, Zhang Z, Zhang Z, Zhao J, Zhou C, Zhu X, Zhu Z, Zurek M, Zyzak M. Collision-System and Beam-Energy Dependence of Anisotropic Flow Fluctuations. PHYSICAL REVIEW LETTERS 2022; 129:252301. [PMID: 36608250 DOI: 10.1103/physrevlett.129.252301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/17/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Elliptic flow measurements from two-, four-, and six-particle correlations are used to investigate flow fluctuations in collisions of U+U at sqrt[s_{NN}]=193 GeV, Cu+Au at sqrt[s_{NN}]=200 GeV and Au+Au spanning the range sqrt[s_{NN}]=11.5-200 GeV. The measurements show a strong dependence of the flow fluctuations on collision centrality, a modest dependence on system size, and very little if any, dependence on particle species and beam energy. The results, when compared to similar LHC measurements, viscous hydrodynamic calculations, and trento model eccentricities, indicate that initial-state-driven fluctuations predominate the flow fluctuations generated in the collisions studied.
Collapse
|
25
|
Volkova OS, Hadj-Azzem A, Remenyi G, Lorenzo JE, Monceau P, Sinchenko AA, Vasiliev AN. Magnetic Phase Diagram of van der Waals Antiferromagnet TbTe 3. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8772. [PMID: 36556572 PMCID: PMC9783062 DOI: 10.3390/ma15248772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Terbium tritelluride, TbTe3, orders antiferromagnetically in three steps at TN1 = 6.7 K, TN2 = 5.7 K, and TN3 = 5.4 K, preceded by a correlation hump in magnetic susceptibility at T* ~8 K. Combining thermodynamic, i.e., specific heat Cp and magnetization M, and transport, i.e., resistance R, measurements we established the boundaries of two commensurate and one charge density wave modulated phases in a magnetic field oriented along principal crystallographic axes. Based on these measurements, the magnetic phase diagrams of TbTe3 at H‖a, H‖b and H‖c were constructed.
Collapse
|