1
|
Mase C, Sueur M, Lavanant H, Rüger CP, Giusti P, Afonso C. Ion Source Complementarity for Characterization of Complex Organic Mixtures Using Fourier Transform Mass Spectrometry: A Review. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39400408 DOI: 10.1002/mas.21910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Complex organic mixtures are found in many areas of research, such as energy, environment, health, planetology, and cultural heritage, to name but a few. However, due to their complex chemical composition, which holds an extensive potential of information at the molecular level, their molecular characterization is challenging. In mass spectrometry, the ionization step is the key step, as it determines which species will be detected. This review presents an overview of the main ionization sources employed to characterize these kinds of samples in Fourier transform mass spectrometry (FT-MS), namely electrospray (ESI), atmospheric pressure photoionization (APPI), atmospheric pressure chemical ionization (APCI), atmospheric pressure laser ionization (APLI), and (matrix-assisted) laser desorption ionization ((MA)LDI), and their complementarity in the characterization of complex organic mixtures. First, the ionization techniques are examined in the common direct introduction (DI) usage. Second, these approaches are discussed in the context of coupling chromatographic techniques such as gas chromatography, liquid chromatography, and supercritical fluid chromatography.
Collapse
|
2
|
Vergoz D, Schaumann A, Schmitz I, Afonso C, Dé E, Loutelier-Bourhis C, Alexandre S. Lipidome of Acinetobacter baumannii antibiotic persister cells. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159539. [PMID: 39067686 DOI: 10.1016/j.bbalip.2024.159539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Persister cells constitute a bacterial subpopulation able to survive to high concentrations of antibiotics. This phenotype is temporary and reversible, and thus could be involved in the recurrence of infections and emergence of antibiotic resistance. To better understand how persister cells survive to such high antibiotic concentration, we examined changes in their lipid composition. We thus compared the lipidome of Acinetobacter baumannii ATCC 19606T persister cells formed under ciprofloxacin treatment with the lipidome of control cells grown without antibiotic. Using matrix assisted laser desorption ionisation-Fourier transform ion cyclotron resonance mass spectrometry, we observed a higher abundance of short chains and secondary chains without hydroxylation for lipid A in persister cells. Using liquid chromatography-tandem mass spectrometry, we found that persister cells produced particular phosphatidylglycerols, as LPAGPE and PAGPE, but also lipids with particular acyl chains containing additional hydroxyl group or uncommon di-unsaturation on C18 and C16 acyl chains. In order to determine the impact of these multiple lipidome modifications on membrane fluidity, fluorescence anisotropy assays were performed. They showed an increase of rigidity for the membrane of persister cells, inducing likely a decrease membrane permeability to protect cells during dormancy. Finally, we highlighted that A. baumannii persister cells also produced particular wax esters, composed of two fatty acids and a fatty diol. These uncommon storage lipids are key metabolites allowing a rapid bacterial regrow when antibiotic pressure disappears. These overall changes in persister lipidome may constitute new therapeutic targets to combat these particular dormant cells.
Collapse
|
3
|
Vergoz D, Schaumann A, Schmitz I, van Agthoven M, Martí S, Vila J, Afonso C, Dé E, Loutelier-Bourhis C, Alexandre S. Direct analysis by ultra-high-resolution mass spectrometry of lipid A and phospholipids from Acinetobacter baumannii cells. Biochimie 2024:S0300-9084(24)00222-0. [PMID: 39326489 DOI: 10.1016/j.biochi.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/13/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Acinetobacter baumannii, classified as priority number one by the World Health Organization (WHO), is an opportunistic pathogen responsible for infection and is able to develop antibiotic resistance easily. Membranes are bacteria's first line of defense against external aggression, such as antibiotics. A chemical modification of a lipid family or a change in lipid composition can lead to resistance to antibiotics. In this work, we analyzed different A. baumannii strains from various environments with different antibiotic resistance profiles, using matrix-assisted laser desorption ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FT-ICR MS). This study shows that it is possible to describe the main lipidome (phospholipids and lipid A) from the simple preparation of lysed cells, and that despite the complexity of the mixture. This ultra-high resolution mass spectrometry technique enables the separation of isobaric ion, to report a new class of lipids. Given its performance, this technique can be used to quickly and reliably characterize the lipidome of clinical strains from different environments.
Collapse
|
4
|
Devaux J, Barrère-Mangote C, Giusti P, Heinisch S, Afonso C, Mignot M. Online Supercritical Fluid Chromatography Hyphenated to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry with Quadrupole Detection for Microalgae Bio-Oil Characterization. Anal Chem 2024. [PMID: 39259673 DOI: 10.1021/acs.analchem.4c01779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Microalgae are an attractive feedstock for biofuel production thanks to their renewable nature, high growth rate, and ability to use anthropogenic CO2. The conversion of microalgae by hydrothermal liquefaction (HTL) leads to a solid residue, a gaseous phase, and a biocrude. However, the bio-oil is rich in heteroatoms and requires upgrading processes to be used as biofuels. For these treatments to be effective, detailed knowledge of the sample is crucial. The bio-oil was characterized by direct introduction into a Fourier transform ion cyclotron resonance mass spectrometer (DI-FTICR MS) with an electrospray ionization source (ESI). Thousands of molecular formulas were assigned with a high level of confidence, mainly compounds with nitrogen and oxygen atoms. Additionally, the bio-oil was analyzed by coupling supercritical fluid chromatography (SFC) and FTICR to combine the separation power of SFC to the high performances of a 12 T FTICR. Quadrupole detection (2ω) was used in FTICR to have a high resolving power with a lower transient time. The coupling allowed the separation of many isomers along the chromatogram, showing the isomeric complexity of microalgae bio-oils. Moreover, classes of compounds were separated according to their heteroatom class thanks to the SFC separation. In this work, the advantages of DI-FTICR MS and SFC-FTICR MS proved complementary, and DI was useful to study the bio-oil at the molecular scale thanks to the high performances, while SFC proved useful for the characterization at the isomeric scale. This demonstrated the significant potential of this new online hyphenated technique for the characterization of complex matrices.
Collapse
|
5
|
Deschamps E, Durand-Hulak M, Castagnos D, Hubert-Roux M, Schmitz I, Froelicher Y, Afonso C. Metabolite Variations during the First Weeks of Growth of Immature Citrus sinensis and Citrus reticulata by Untargeted Liquid Chromatography-Mass Spectrometry/Mass Spectrometry Metabolomics. Molecules 2024; 29:3718. [PMID: 39202798 PMCID: PMC11357260 DOI: 10.3390/molecules29163718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Immature citruses are an important resource for the pharmaceutical industry due to their high levels of metabolites with health benefits. In this study, we used untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics to investigate the changes associated with fruit size in immature citrus fruits in the first weeks of growth. Three orange cultivars (Citrus sinensis 'Navel', Citrus sinensis 'Valencia', and Citrus sinensis 'Valencia Late') and a mandarin (Citrus reticulata Blanco 'Fremont') were separated into eight fruit sizes, extracted, and analyzed. Statistical analyses revealed a distinct separation between the mandarin and the oranges based on 56 metabolites, with an additional separation between the 'Navel' orange and the 'Valencia' and 'Valencia Late' oranges based on 21 metabolites. Then, metabolites that evolved significantly with fruit size growth were identified, including 40 up-regulated and 31 down-regulated metabolites. This study provides new insights into the metabolite modifications of immature Citrus sinensis and Citrus reticulata in the first weeks of growth and emphasizes the significance of including early sampled fruits in citrus maturation studies.
Collapse
|
6
|
Lévêque P, Queffelec C, Sotin C, Afonso C, Bollengier O, Clouet A, Le Menn E, Marrocchi Y, Schmitz I, Bujoli B. Effect of Nitrogen on the Structure and Composition of Primordial Organic Matter Analogs. ACS EARTH & SPACE CHEMISTRY 2024; 8:1281-1295. [PMID: 39045227 PMCID: PMC11261614 DOI: 10.1021/acsearthspacechem.3c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 07/25/2024]
Abstract
Organic molecules are ubiquitous in primitive solar system bodies such as comets and asteroids. These primordial organic compounds may have formed in the interstellar medium and in protoplanetary disks (PPDs) before being accreted and further transformed in the parent bodies of meteorites, icy moons, and dwarf planets. The present study describes the composition of primordial organics analogs produced in a laboratory simulator of the PPD (the Nebulotron experiment at the CRPG laboratory) with nitrogen contents varying from N/C < 0.01 to N/C = 0.63. We present the first Fourier transform ion cyclotron resonance mass spectrometry analysis of these analogs. Several thousands of molecules with masses between m/z 100 and 500 are characterized. The mass spectra show a Gaussian shape with maxima around m/z 250. Highly condensed polyaromatic hydrocarbons (PAH) are the most common compounds identified in the samples with lower nitrogen contents. As the amount of nitrogen increases, a dramatic increase of the chemical diversity is observed. Nitrogen-bearing compounds are also dominated by polyaromatic hydrocarbons (PANH) made of 5- and 6-membered rings containing up to four nitrogen atoms, including triazine and pyrazole rings. Such N-rich aromatic species are expected to decompose easily in the presence of water at higher temperatures. Pure carbon molecules are also observed for samples with relatively small fractions of nitrogen. MS peaks compatible with the presence of amino acids and nucleobases, or their isomers, are detected. When comparing these Nebulotron samples with the insoluble fraction of the Paris meteorite organic matter, we observe that the samples with intermediate N/C ratios bracketing that of the Paris insoluble organic matter (IOM) display relative proportions of the CH, CHO, CHN, and CHNO chemical families also bracketing those of the Paris IOM. Our results support that Nebulotron samples are relevant laboratory analogs of primitive chondritic organic matter.
Collapse
|
7
|
Wootton CA, Maillard J, Theisen A, Brabeck GF, Schat CL, Rüger CP, Afonso C, Giusti P. A Gated TIMS FTICR MS Instrument to Decipher Isomeric Content of Complex Organic Mixtures. Anal Chem 2024; 96:11343-11352. [PMID: 38973712 DOI: 10.1021/acs.analchem.4c01370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Modern research faces increasingly complex materials with a constant need for new analytical strategies that can provide deeper levels of chemical insight. Ultrahigh resolution mass spectrometry (MS), particularly Fourier transform ion cyclotron resonance (FTICR) MS, has provided a robust analytical foundation. However, MS alone offers limited structural information. Here, we present the first implementation and results from an FTICR MS with fully integrated dual accumulation analysis with gated trapped ion mobility spectrometry (gTIMS) capability. The drastically extended charge capacity and parallel accumulation facilitate the analysis of complex mixtures. We achieved a high dynamic range of 4 orders of magnitude within a single FTICR acquisition event. Simultaneously, the valuable linear relationship between the TIMS elution voltage and reduced mobility was retained over a wide mobility range. Benchmarking the instrument performance with Suwannee River fulvic acid (SRFA) by variable ramp gTIMS analysis allowed separation and unambiguous assignment of different charge state distributions. Application to bio-oils has proven the capability to distinguish the isomeric diversity in these ultracomplex samples, while maintaining the expected FTICR MS resolving power and mass accuracy. Valuable information about the molecular distribution, isomeric diversity, and main molecular differences could directly be extracted within the analysis time of a classical "dilute and shoot" direct infusion experiment. The development of this fully integrated and flexible gTIMS with FTICR MS analysis possesses the potential to significantly change the current landscape of high-resolution mass spectrometric analysis of complex mixtures through the added insight of isomeric complexity afforded by TIMS. The exploration of the added IMS dimension promises transformative effects across diverse fields including energy transition, environmental studies, and biological research.
Collapse
|
8
|
George AC, Schmitz I, Rouvière F, Alves S, Colsch B, Heinisch S, Afonso C, Fenaille F, Loutelier-Bourhis C. Interplatform comparison between three ion mobility techniques for human plasma lipid collision cross sections. Anal Chim Acta 2024; 1304:342535. [PMID: 38637036 DOI: 10.1016/j.aca.2024.342535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
The implementation of ion mobility spectrometry (IMS) in liquid chromatography-high-resolution mass spectrometry (LC-HRMS) workflows has become a valuable tool for improving compound annotation in metabolomics analyses by increasing peak capacity and by adding a new molecular descriptor, the collision cross section (CCS). Although some studies reported high repeatability and reproducibility of CCS determination and only few studies reported good interplatform agreement for small molecules, standardized protocols are still missing due to the lack of reference CCS values and reference materials. We present a comparison of CCS values of approximatively one hundred lipid species either commercially available or extracted from human plasma. We used three different commercial ion mobility technologies from different laboratories, drift tube IMS (DTIMS), travelling wave IMS (TWIMS) and trapped IMS (TIMS), to evaluate both instrument repeatability and interlaboratory reproducibility. We showed that CCS discrepancies of 0.3% (average) could occur depending on the data processing software tools. Moreover, eleven CCS calibrants were evaluated yielding mean RSD below 2% for eight calibrants, ESI Low concentration tuning mix (Tune Mix) showing the lowest RSD (< 0.5%) in both ion modes. Tune Mix calibrated CCS from the three different IMS instruments proved to be well correlated and highly reproducible (R2 > 0.995 and mean RSD ≤ 1%). More than 90% of the lipid CCS had deviations of less than 1%, demonstrating high comparability between techniques, and the possibility to use the CCS as molecular descriptor. We highlighted the need of standardized procedures for calibration, data acquisition, and data processing. This work demonstrates that using harmonized analytical conditions are required for interplatform reproducibility for CCS determination of human plasma lipids.
Collapse
|
9
|
George AC, Schmitz I, Colsch B, Afonso C, Fenaille F, Loutelier-Bourhis C. Impact of Source Conditions on Collision Cross Section Determination by Trapped Ion Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:696-704. [PMID: 38430122 DOI: 10.1021/jasms.3c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Collision cross section (CCS) values determined in ion mobility-mass spectrometry (IM-MS) are increasingly employed as additional descriptors in metabolomics studies. CCS values must therefore be reproducible and the causes of deviations must be carefully known and controlled. Here, we analyzed lipid standards by trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) to evaluate the effects of solvent and flow rate in flow injection analysis (FIA), as well as electrospray source parameters including nebulizer gas pressure, drying gas flow rate, and temperature, on the ion mobility and CCS values. The stability of ion mobility experiments was studied over 10 h, which established the need for a delay-time of 20 min to stabilize source parameters (mostly pressure and temperature). Modifications of electrospray source parameters induced shifts of ion mobility peaks and even the occurrence of an additional peak in the ion mobility spectra. This behavior could be essentially explained by ion-solvent cluster formation. Changes in source parameters were also found to impact CCS value measurements, resulting in deviations up to 0.8%. However, internal calibration with the Tune Mix calibrant reduced the CCS deviations to 0.1%. Thus, optimization of source parameters is essential to achieve a good desolvation of lipid ions and avoid misinterpretation of peaks in ion mobility spectra due to solvent effects. This work highlights the importance of internal calibration to ensure interoperable CCS values, usable in metabolomics annotation.
Collapse
|
10
|
Czech H, Popovicheva O, Chernov DG, Kozlov A, Schneider E, Shmargunov VP, Sueur M, Rüger CP, Afonso C, Uzhegov V, Kozlov VS, Panchenko MV, Zimmermann R. Wildfire plume ageing in the Photochemical Large Aerosol Chamber (PHOTO-LAC). ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:35-55. [PMID: 37873726 DOI: 10.1039/d3em00280b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Plumes from wildfires are transported over large distances from remote to populated areas and threaten sensitive ecosystems. Dense wildfire plumes are processed by atmospheric oxidants and complex multiphase chemistry, differing from processes at typical ambient concentrations. For studying dense biomass burning plume chemistry in the laboratory, we establish a Photochemical Large Aerosol Chamber (PHOTO-LAC) being the world's largest aerosol chamber with a volume of 1800 m3 and provide its figures of merit. While the photolysis rate of NO2 (jNO2) is comparable to that of other chambers, the PHOTO-LAC and its associated low surface-to-volume ratio lead to exceptionally low losses of particles to the walls. Photochemical ageing of toluene under high-NOx conditions induces substantial formation of secondary organic aerosols (SOAs) and brown carbon (BrC). Several individual nitrophenolic compounds could be detected by high resolution mass spectrometry, demonstrating similar photochemistry to other environmental chambers. Biomass burning aerosols are generated from pine wood and debris under flaming and smouldering combustion conditions and subsequently aged under photochemical and dark ageing conditions, thus resembling day- and night-time atmospheric chemistry. In the unprecedented long ageing with alternating photochemical and dark ageing conditions, the temporal evolution of particulate matter and its chemical composition is shown by ultra-high resolution mass spectrometry. Due to the spacious cavity, the PHOTO-LAC may be used for applications requiring large amounts of particulate matter, such as comprehensive chemical aerosol characterisation or cell exposures under submersed conditions.
Collapse
|
11
|
Parente H, Pontes Ferreira M, Soares C, Guimarães F, Azevedo S, Santos-Faria D, Tavares-Costa J, Peixoto D, Afonso C, Roriz D, Teixeira F. Lumbosacral pain in a patient with psoriatic arthritis: when the rheumatic disease is innocent. Reumatismo 2023; 75. [PMID: 38115779 DOI: 10.4081/reumatismo.2023.1565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/30/2023] [Indexed: 12/21/2023] Open
Abstract
Lumbar pain is a very common symptom that derives from benign musculoskeletal conditions, rheumatic inflammatory diseases, neoplasms, and referred and/or nociplastic pain. A 70-year-old man with psoriatic arthritis presented with early-onset lumbosacral pain without evident red flags. Symptomatic treatment was unhelpful. Radiographic imaging showed subtle signs of a disease that could easily be missed. Magnetic resonance imaging revealed a massive prostatic malignancy with bone (sacral and iliopubic) metastasis. Awareness must be given not to disregard every lumbar pain as part of the preexisting rheumatic inflammatory disease (spondyloarthropathy in this case) or a common muscle/ligament/articular disarrangement. Persistence of pain, albeit not inflam-matory nor sharp in nature, despite adequate treatment might be just as important as an acute red flag and requires proper follow-up.
Collapse
|
12
|
Mase C, Maillard JF, Piparo M, Friederici L, Rüger CP, Marceau S, Paupy B, Hubert-Roux M, Afonso C, Giusti P. GC-FTICR mass spectrometry with dopant assisted atmospheric pressure photoionization: application to the characterization of plastic pyrolysis oil. Analyst 2023; 148:5221-5232. [PMID: 37724415 DOI: 10.1039/d3an01246h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Pyrolysis is a promising way to convert plastic waste into valuable resources. However, for downstream upgrading processes, many undesirable species, such as conjugated diolefins or heteroatom-containing compounds, can be generated during this pyrolysis. In-depth chemical characterization is therefore required to improve conversion and valorization. Because of the high molecular diversity found in these samples, advanced analytical instrumentation is needed to provide accurate and complete characterization. Generally, direct infusion Fourier transform mass spectrometry is used to gather information at the molecular level, but it has the disadvantage of limited structural insights. To overcome this drawback, gas chromatography has been coupled to Fourier transform ion cyclotron resonance mass spectrometry. By taking advantage of soft atmospheric pressure photoionization, which preserves molecular information, and the use of different dopants (pyrrole, toluene, and benzene), selective ionization of different chemical families was achieved. Differences in the ionization energy of the dopants will only allow the ionization of the molecules of the pyrolysis oil which have lower ionization energy, or which are accessible via specific chemical ionization pathways. With a selective focus on hydrocarbon species and especially hydrocarbon species having a double bond equivalent (DBE) value of 2, pyrrole is prone to better ionize low-mass molecules with lower retention times compared to the dopant benzene, which allowed better ionization of high-mass molecules with higher retention times. The toluene dopant presented the advantage of ionizing both low and high mass molecules.
Collapse
|
13
|
Mase C, Maillard JF, Marcuz S, Hubert-Roux M, Afonso C, Giusti P. Contribution of LDI and MALDI for the Characterization of a Lignocellulosic-Based Pyrolysis Bio-Oil. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37477530 DOI: 10.1021/jasms.3c00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
In recent years, various alternatives to fossil fuels have been developed. One of them involves the production of bio-oils from lignocellulosic-based biomass through pyrolysis. However, bio-oils present numerous heteroatoms and, in particular, oxygen atoms that need to be removed by an upgrading process. To optimize these processes, it is necessary to have good knowledge of the composition of the bio-oils at the molecular level. This work aims to establish the usefulness of laser desorption ionization (LDI) and matrix-assisted laser desorption/ionization (MALDI) techniques on lignocellulosic biomass-based bio-oils. Using a Fourier transform ion cyclotron mass spectrometer (FTICR MS), we showed that MALDI gives more information than LDI. The selectivity of a series of MALDI matrices was investigated, showing that some matrices are selective toward compound families and others ionize a wider range of compounds. In this study, nine proton-transfer matrices and three electron-transfer matrices were used and compared to results obtained in LDI. Dithranol, acetosyringone, and graphene oxide were the three promising matrices selected from all matrices, giving an overall characterization of oxygenated classes in a bio-oil. They allowed the ionization of many more species covering a wide range of polarity, aromaticity, and mass with a homogeneous relative intensity for all molecular classes such as lignin-derivative species, sugars, and lipid-derivative species.
Collapse
|
14
|
Maillard J, Carrasco N, Rüger CP, Chatain A, Schmitz-Afonso I, Weisbrod CR, Bailly L, Petit E, Gautier T, McKenna AM, Afonso C. Humid Evolution of Haze in the Atmosphere of Super-Earths in the Habitable Zone. ASTROBIOLOGY 2023; 23:723-732. [PMID: 37229532 DOI: 10.1089/ast.2022.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Abstract Photochemical hazes are expected to form and significantly contribute to the chemical and radiative balance of exoplanets with relatively moderate temperatures, possibly in the habitable zone of their host star. In the presence of humidity, haze particles might thus serve as cloud condensation nuclei and trigger the formation of water droplets. In the present work, we are interested in the chemical impact of such a close interaction between photochemical hazes and humidity on the organic content composing the hazes and on the capacity to generate organic molecules with high prebiotic potential. For this purpose, we explore experimentally the sweet spot by combining N-dominated super-Earth exoplanets in agreement with Titan's rich organic photochemistry and humid conditions expected for exoplanets in habitable zones. A logarithmic increase with time is observed for the relative abundance of oxygenated species, with O-containing molecules dominating after 1 month only. The rapidity of the process suggests that the humid evolution of N-rich organic haze provides an efficient source of molecules with high prebiotic potential.
Collapse
|
15
|
Carriço CM, Tiritan ME, Cidade H, Afonso C, Silva JRE, Almeida IF. Added-Value Compounds in Cork By-Products: Methods for Extraction, Identification, and Quantification of Compounds with Pharmaceutical and Cosmetic Interest. Molecules 2023; 28:molecules28083465. [PMID: 37110699 PMCID: PMC10144513 DOI: 10.3390/molecules28083465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The growing threat of climatic crisis and fossil fuel extinction has caused a boom in sustainability trends. Consumer demand for so-called eco-friendly products has been steadily increasing, built upon the foundation of environmental protection and safeguarding for future generations. A natural product that has been used for centuries is cork, resulting from the outer bark of Quercus suber L. Currently, its major application is the production of cork stoppers for the wine industry, a process that, although considered sustainable, generates by-products in the form of cork powder, cork granulates, or waste such as black condensate, among others. These residues possess constituents of interest for the cosmetic and pharmaceutical industries, as they exhibit relevant bioactivities, such as anti-inflammatory, antimicrobial, and antioxidant. This interesting potential brings forth the need to develop methods for their extraction, isolation, identification, and quantification. The aim of this work is to describe the potential of cork by-products for the cosmetic and pharmaceutical industry and to assemble the available extraction, isolation, and analytical methods applied to cork by-products, as well the biological assays. To our knowledge, this compilation has never been done, and it opens new avenues for the development of new applications for cork by-products.
Collapse
|
16
|
Sueur M, Maillard JF, Lacroix-Andrivet O, Rüger CP, Giusti P, Lavanant H, Afonso C. PyC2MC: An Open-Source Software Solution for Visualization and Treatment of High-Resolution Mass Spectrometry Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:617-626. [PMID: 37016836 DOI: 10.1021/jasms.2c00323] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Complex molecular mixtures are encountered in almost all research disciplines, such as biomedical 'omics, petroleomics, and environmental sciences. State-of-the-art characterization of sample materials related to these fields, deploying high-end instrumentation, allows for gathering large quantities of molecular composition data. One established technological platform is ultrahigh-resolution mass spectrometry, e.g., Fourier-transform mass spectrometry (FT-MS). However, the huge amounts of data acquired in FT-MS often result in tedious data treatment and visualization. FT-MS analysis of complex matrices can easily lead to single mass spectra with more than 10,000 attributed unique molecular formulas. Sophisticated software solutions to conduct these treatment and visualization attempts from commercial and noncommercial origins exist. However, existing applications have distinct drawbacks, such as focusing on only one type of graphic representation, being unable to handle large data sets, or not being publicly available. In this respect, we developed a software, within the international complex matrices molecular characterization joint lab (IC2MC), named "python tools for complex matrices molecular characterization" (PyC2MC). This piece of software will be open-source and free to use. PyC2MC is written under python 3.9.7 and relies on well-known libraries such as pandas, NumPy, or SciPy. It is provided with a graphical user interface developed under PyQt5. The two options for execution, (1) a user-friendly route with a prepacked executable file or (2) running the main python script through a Python interpreter, ensure a high applicability but also an open characteristic for further development by the community. Both are available on the GitHub platform (https://github.com/iC2MC/PyC2MC_viewer).
Collapse
|
17
|
Devaux J, Mignot M, Rouvière F, François I, Afonso C, Heinisch S. On-line reversed-phase liquid chromatography x supercritical fluid chromatography coupled to high-resolution mass spectrometry: a powerful tool for the characterization of advanced biofuels. J Chromatogr A 2023; 1697:463964. [PMID: 37068402 DOI: 10.1016/j.chroma.2023.463964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/26/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023]
Abstract
Bio-oils obtained by thermochemical or biochemical conversion of biomass represent a promising source of energy to complement fossil fuels, in particular for maritime or air transport for which the use of hydrogen or electricity appears complicated. As these bio-oils are very rich in water and heteroatoms, additional treatments are necessary before they can be used as biofuel. In order to improve the efficiency of these treatments, it is important to have a thorough knowledge of the composition of the bio-oil. The characterization of bio-oils is difficult because they are very complex mixtures with thousands of compounds covering a very wide range of molecular weight and polarity. Due to the high degree of orthogonality between the two chromatographic dimensions, the on-line combination of reversed-phase liquid chromatography and supercritical fluid chromatography (on-line RPLC x SFC) can significantly improve the characterization of such complex matrices. The hyphenation was optimized by selecting, in SFC, the stationary phase, the co-solvent, the make-up solvent prior to high resolution mass spectrometry (HRMS) and the injection solvent. Additionally, a new interface configuration is described. Quality descriptors such as the occupation of the separation space, the peak shapes and the signal intensity were considered to determine the optimal conditions. The best results were obtained with bare silica, a co-solvent composed of acetonitrile and methanol (50/50, v/v), a make-up solvent composed of methanol (90%) and water (10%) with formic acid (0.1%), an addition of co-solvent through an additional pump for SFC separation in a 2.1 mm column, and an hydro-organic solvent as injection solvent. The optimized setup was used to analyze two microalgae bio-oils: the full bio-oil coming from hydrothermal liquefaction and Soxhlet extraction of microalgae, and the gasoline cut obtained after distillation of the full bio-oil. Results in on-line RPLC x SFC-qTOF were particularly interesting, with very good peak shapes and high reproducibility. Moreover, the high degree of orthogonality for microalgae bio-oils of RPLC and SFC was highlighted by the very large occupation of the separation space. Isomeric profiles of compound families could be obtained in RPLC x SFC-qTOF and many isomers not separated in SFC alone were separated in RPLC and vice versa, thus showing the complementarity of the two chromatographic techniques.
Collapse
|
18
|
Deschamps E, Calabrese V, Schmitz I, Hubert-Roux M, Castagnos D, Afonso C. Advances in Ultra-High-Resolution Mass Spectrometry for Pharmaceutical Analysis. Molecules 2023; 28:2061. [PMID: 36903305 PMCID: PMC10003995 DOI: 10.3390/molecules28052061] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Pharmaceutical analysis refers to an area of analytical chemistry that deals with active compounds either by themselves (drug substance) or when formulated with excipients (drug product). In a less simplistic way, it can be defined as a complex science involving various disciplines, e.g., drug development, pharmacokinetics, drug metabolism, tissue distribution studies, and environmental contamination analyses. As such, the pharmaceutical analysis covers drug development to its impact on health and the environment. Moreover, due to the need for safe and effective medications, the pharmaceutical industry is one of the most heavily regulated sectors of the global economy. For this reason, powerful analytical instrumentation and efficient methods are required. In the last decades, mass spectrometry has been increasingly used in pharmaceutical analysis both for research aims and routine quality controls. Among different instrumental setups, ultra-high-resolution mass spectrometry with Fourier transform instruments, i.e., Fourier transform ion cyclotron resonance (FTICR) and Orbitrap, gives access to valuable molecular information for pharmaceutical analysis. In fact, thanks to their high resolving power, mass accuracy, and dynamic range, reliable molecular formula assignments or trace analysis in complex mixtures can be obtained. This review summarizes the principles of the two main types of Fourier transform mass spectrometers, and it highlights applications, developments, and future perspectives in pharmaceutical analysis.
Collapse
|
19
|
Calabrese V, Schmitz-Afonso I, Riah-Anglet W, Trinsoutrot-Gattin I, Pawlak B, Afonso C. Direct introduction MALDI FTICR MS based on dried droplet deposition applied to non-targeted metabolomics on Pisum Sativum root exudates. Talanta 2023; 253:123901. [PMID: 36088848 DOI: 10.1016/j.talanta.2022.123901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/13/2022]
Abstract
Non-targeted metabolomic approaches based on direct introduction (DI) through a soft ionization source are nowadays used for large-scale analysis and wide cover-up of metabolites in complex matrices. When coupled with ultra-high-resolution Fourier-Transform ion cyclotron resonance (FTICR MS), DI is generally performed through electrospray (ESI), which, despite the great analytical throughput, can suffer of matrix effects due to residual salts or charge competitors. In alternative, matrix assisted laser desorption ionization (MALDI) coupled with FTICR MS offers relatively high salt tolerance but it is mainly used for imaging of small molecule within biological tissues. In this study, we report a systematic evaluation on the performance of direct introduction ESI and MALDI coupled with FTICR MS applied to the analysis of root exudates (RE), a complex mixture of metabolites released from plant root tips and containing a relatively high salt concentration. Classic dried droplet deposition followed by screening of best matrices and ratio allowed the selection of high ranked conditions for non-targeted metabolomics on RE. Optimization of MALDI parameters led to improved reproducibility and precision. A RE desalted sample was used for comparison on ionization efficiency of the two sources and ion enhancement at high salinity was highlighted in MALDI by spiking desalted solution with inorganic salts. Application of a true lyophilized RE sample exhibited the complementarity of the two sources and the ability of MALDI in the detection of undisclosed metabolites suffering of matrix effects in ESI mode.
Collapse
|
20
|
Juárez-Facio AT, Rogez-Florent T, Méausoone C, Castilla C, Mignot M, Devouge-Boyer C, Lavanant H, Afonso C, Morin C, Merlet-Machour N, Chevalier L, Ouf FX, Corbière C, Yon J, Vaugeois JM, Monteil C. Ultrafine Particles Issued from Gasoline-Fuels and Biofuel Surrogates Combustion: A Comparative Study of the Physicochemical and In Vitro Toxicological Effects. TOXICS 2022; 11:21. [PMID: 36668747 PMCID: PMC9861194 DOI: 10.3390/toxics11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Gasoline emissions contain high levels of pollutants, including particulate matter (PM), which are associated with several health outcomes. Moreover, due to the depletion of fossil fuels, biofuels represent an attractive alternative, particularly second-generation biofuels (B2G) derived from lignocellulosic biomass. Unfortunately, compared to the abundant literature on diesel and gasoline emissions, relatively few studies are devoted to alternative fuels and their health effects. This study aimed to compare the adverse effects of gasoline and B2G emissions on human bronchial epithelial cells. We characterized the emissions generated by propane combustion (CAST1), gasoline Surrogate, and B2G consisting of Surrogate blended with anisole (10%) (S+10A) or ethanol (10%) (S+10E). To study the cellular effects, BEAS-2B cells were cultured at air-liquid interface for seven days and exposed to different emissions. Cell viability, oxidative stress, inflammation, and xenobiotic metabolism were measured. mRNA expression analysis was significantly modified by the Surrogate S+10A and S+10E emissions, especially CYP1A1 and CYP1B1. Inflammation markers, IL-6 and IL-8, were mainly downregulated doubtless due to the PAHs content on PM. Overall, these results demonstrated that ultrafine particles generated from biofuels Surrogates had a toxic effect at least similar to that observed with a gasoline substitute (Surrogate), involving probably different toxicity pathways.
Collapse
|
21
|
Forcisi S, Moritz F, Thompson CJ, Kanawati B, Uhl J, Afonso C, Bader CD, Barsch A, Boughton BA, Chu RK, Ferey J, Fernandez-Lima F, Guéguen C, Heintz D, Gomez-Hernandez M, Jang KS, Kessler N, Mangal V, Müller R, Nakabayashi R, Nicol E, Nicolardi S, Palmblad M, Paša-Tolić L, Porter J, Schmitz-Afonso I, Seo JB, Sommella E, van der Burgt YEM, Villette C, Witt M, Wittrig A, Wolff JJ, Easterling ML, Laukien FH, Schmitt-Kopplin P. Large-Scale Interlaboratory DI-FT-ICR MS Comparability Study Employing Various Systems. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2203-2214. [PMID: 36371691 PMCID: PMC9732881 DOI: 10.1021/jasms.2c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultrahigh resolution mass spectrometry (UHR-MS) coupled with direct infusion (DI) electrospray ionization offers a fast solution for accurate untargeted profiling. Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers have been shown to produce a wealth of insights into complex chemical systems because they enable unambiguous molecular formula assignment even if the vast majority of signals is of unknown identity. Interlaboratory comparisons are required to apply this type of instrumentation in quality control (for food industry or pharmaceuticals), large-scale environmental studies, or clinical diagnostics. Extended comparisons employing different FT-ICR MS instruments with qualitative direct infusion analysis are scarce since the majority of detected compounds cannot be quantified. The extent to which observations can be reproduced by different laboratories remains unknown. We set up a preliminary study which encompassed a set of 17 laboratories around the globe, diverse in instrumental characteristics and applications, to analyze the same sets of extracts from commercially available standard human blood plasma and Standard Reference Material (SRM) for blood plasma (SRM1950), which were delivered at different dilutions or spiked with different concentrations of pesticides. The aim of this study was to assess the extent to which the outputs of differently tuned FT-ICR mass spectrometers, with different technical specifications, are comparable for setting the frames of a future DI-FT-ICR MS ring trial. We concluded that a cluster of five laboratories, with diverse instrumental characteristics, showed comparable and representative performance across all experiments, setting a reference to be used in a future ring trial on blood plasma.
Collapse
|
22
|
Le Maître J, Maillard JF, Hubert-Roux M, Afonso C, Giusti P. Prediction of Structures of Compounds Encountered in Complex Organic Matter with Highly Flexible Alkyl Chains Using Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2024-2031. [PMID: 36178343 DOI: 10.1021/jasms.2c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The chemical structure of an organic molecule has a direct influence on its three-dimensional conformation. One way to obtain information on this conformation is to use ion mobility spectrometry. This technique allows the separation of different isomers according to their collision cross section (CCS) with an inert gas. Smaller or more compact molecules will have lower collision cross section values than larger molecules. The CCS is an intrinsic ion parameter for a specific gas and is thus predictable. Today, calculations of rigid molecules are commonly performed to obtain additional structural information on an ion. However, calculations are more complex with very flexible molecules. In particular, molecules presenting long alkyl chains can yield a high number of conformers. Each conformer is then associated with a CCS value that is specific to it. We report, here, a methodology to predict CCS of flexible molecules. The used approach is based on automatic conformers research followed by geometry optimization and CCS calculations. Determination of theoretical and experimental CCS values for a rigid polycyclic aromatic hydrocarbons (PAHs) standard was used to calibrate the Mobcal software. Then, 13 standard molecules ranging from 4 to 19 carbon alkyl chains, including three long alkyl chain isomers of C22H38, were analyzed on a TWIMS-ToF and calculated using our methodology. CCS deviations between experimental and theoretical values were found to be less than 1.5% over the whole studied CCS range. This method was finally applied for structural analysis of petroleum compounds refractory to the hydro-denitrogenation process.
Collapse
|
23
|
Sapatinha M, Afonso C, Cardoso C, Pires C, Mendes R, Montero M, Gómez‐Guillén M, Bandarra N. Lipid Nutritional Value and Bioaccessibility of Novel
Ready‐To‐Eat
Seafood Products with Encapsulated Bioactives. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Afonso C, Cardoso C, Gomes-Bispo A, Ferreira I, Rego A, Coelho I, Motta C, Prates J, Castanheira I, Bandarra N. Fatty Acids, Selenium, and Vitamin B12 in Chub Mackerel (Scomber colias) as Nourishment Considering Seasonality and Bioaccessibility as Factors. Food Chem 2022; 403:134455. [DOI: 10.1016/j.foodchem.2022.134455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
|
25
|
Lacroix-Andrivet O, Moualdi S, Hubert-Roux M, Loutelier Bourhis C, Mendes Siqueira AL, Afonso C. Molecular Characterization of Formulated Lubricants and Additive Packages Using Kendrick Mass Defect Determined by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1194-1203. [PMID: 35709480 DOI: 10.1021/jasms.2c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Formulated lubricants correspond to high value products used for several applications in automotive, industrial, medicinal, and agro-food sectors. They correspond to complex matrices composed of approximately 80% of base oils (mineral or synthetic) and of about 20% of additives. Additives are generally low molecular weight polymeric molecules with a great diversity of elements. To characterize such complex compositions at the molecular level, ultrahigh resolution mass spectrometers are required. Two formulated lubricants and two additive packages were analyzed by Fourier transform ion cyclotron resonance mass spectrometry in direct infusion. Atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) sources were used to have an exhaustive characterization of the samples. The Kendrick mass defects (KMD) plot is a widespread representation to characterize polymeric molecules. Here, the terms apparent mass defect and apparent Kendrick mass defects (aKMD) values were introduced to consider the uncertainty on nominal mass determination. Several additive families including alkyldiphenylamines, trisalkylphenylthiophosphoric acid, zinc dithiophosphates, bisuccinimide dispersants, and their derivatives were observed by APCI(+). ESI(-) also presented a use for the selective ionization of acidic compounds including sulfonates, phenates, and sulfur phenate molecules. The specific aKMD values and polydispersity of many additive families have been reported to create a database of additives. Overall, this study demonstrated the great utility of the aKMD approach and the use of the ESI/APCI combination for a simple and fast characterization of formulated lubricant and additive package samples.
Collapse
|