1
|
Ritenis EJ, Padilha CS, Cooke MB, Stathis CG, Philp A, Camera DM. The Acute and Chronic influence of Exercise on Mitochondrial Dynamics in Skeletal Muscle. Am J Physiol Endocrinol Metab 2024. [PMID: 39441237 DOI: 10.1152/ajpendo.00311.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Exercise and nutritional modulation are potent stimuli for eliciting increases in mitochondrial mass and function. Collectively, these beneficial adaptations are increasingly recognized to coincide with improvements to skeletal muscle health. Mitochondrial dynamics of fission and fusion are increasingly implicated as having a central role in mediating aspects of key organelle adaptions that are seen with exercise. Exercise-induced mitochondrial adaptations that dynamics have been implicated in are: 1) Increases to mitochondrial turnover, resulting from elevated rates of mitochondrial synthesis (biogenesis) and degradative (mitophagy) processes. 2) Morphological changes to the 3D tubular network, known as the mitochondrial reticulum, that mitochondria form in skeletal muscle. Notably, mitochondrial fission has also been implicated in coordinating increases in mitophagy, following acute exercise. Further, increased fusion following exercise training promotes increased connectivity of the mitochondrial reticulum and is associated with improved metabolism and mitochondrial function. However, the molecular basis and fashion in which exercise infers beneficial mitochondrial adaptations through mitochondrial dynamics remains poorly understood. This review attempts to highlight recent developments investigating the effects of exercise on mitochondrial dynamics, while attempting to offer a perspective of the methodological refinements and potential variables, such as substrate/glycogen availability, which should be considered going forward.
Collapse
|
2
|
Bagheri R, Karimi Z, Camera DM, Scott D, Bashirzad MZ, Sadeghi R, Kargarfard M, Dutheil F. Association between changes in lean mass, muscle strength, endurance, and power following resistance or concurrent training with differing high protein diets in resistance-trained young males. Front Nutr 2024; 11:1439037. [PMID: 39206316 PMCID: PMC11349518 DOI: 10.3389/fnut.2024.1439037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Background We assessed the relationship of changes in upper and lower body lean mass with muscle strength, endurance and power responses following two high protein diets (1.6 or 3.2 g.kg-1.d-1) during 16 weeks of either concurrent training (CT) or resistance training (RT) in resistance-trained young males. Methods Forty-eight resistance-trained young males (age: 26 ± 6 yr., body mass index: 25.6 ± 2.9 kg.m-2) performed 16 weeks (four sessions·wk.-1) of CT or RT with either 1.6 g.kg-1.d-1 protein (CT + 1.6; n = 12; RT + 1.6; n = 12) or 3.2 g.kg-1.d-1 protein (CT + 3.2; n = 12; RT + 3.2; n = 12). Relationships between upper (left arm + right arm + trunk lean mass) and lower body (left leg + right leg lean mass) lean mass changes with changes in muscle performance were assessed using Pearson's correlation coefficients. Results For upper body, non-significant weak positive relationships were observed between change in upper body lean mass and change in pull-up (r = 0.183, p = 0.234), absolute chest press strength (r = 0.159, p = 0.302), chest press endurance (r = 0.041, p = 0.792), and relative chest press strength (r = 0.097, p = 0.529) while non-significant weak negative relationships were observed for changes in absolute upper body power (r = -0.236, p = 0.123) and relative upper body power (r = -0.203, p = 0.185). For lower body, non-significant weak positive relationships were observed between the change in lower body lean mass with change in vertical jump (r = 0.145, p = 0.346), absolute lower body power (r = 0.109, p = 0.480), absolute leg press strength (r = 0.073, p = 0.638), leg press endurance (r < 0.001, p = 0.998), relative leg press strength (r = 0.089, p = 0.564), and relative lower body power (r = 0.150, p = 0.332). Conclusion Changes in muscle strength, endurance and power adaptation responses following 16 weeks of either CT or RT with different high protein intakes were not associated with changes in lean mass in resistance-trained young males. These findings indicate that muscle hypertrophy has a small, or negligible, contributory role in promoting functional adaptations with RT or CT, at least over a 16-week period.
Collapse
|
3
|
Tee CCL, Chong MC, Cooke MB, Rahmat N, Yeo WK, Camera DM. Effects of exercise modality combined with moderate hypoxia on blood glucose regulation in adults with overweight. Front Physiol 2024; 15:1396108. [PMID: 38903909 PMCID: PMC11188384 DOI: 10.3389/fphys.2024.1396108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Purpose: This study aimed to investigate the combined effects of moderate hypoxia with three different exercise modes on glucose regulation in healthy overweight adults. Methods: Thirteen overweight males (age: 31 ± 4 years; body fat 26.3 ± 3.2%) completed three exercise trials in a randomized crossover design involving 60 min cycling exercise at 90% lactate threshold (LOW), sprint interval training (20 × 4 s all-out; SIT) and lower limb functional bodyweight exercises (8 sets of 4 × 20 s; FEX) under moderate hypoxia (FiO2 = 16.5%). Post-exercise oral glucose tolerance test (OGTT) was performed following each trial. Heart rate, oxygen saturation (SpO2), physical activity enjoyment scale (PACES), and perceptual measures were recorded during each exercise session. Venous blood was collected pre-, immediately post-, and 24 h post-exercise and analysed for plasma glucose and insulin, incremental area under curve (iAUC), and circulating microRNA expression (c-miRs-486-5p, -126-5p, and -21-5p). Interstitial glucose concentrations were measured using continuous glucose monitoring (CGM). Results: Post-exercise OGTT iAUC for plasma glucose and insulin concentration were lower in SIT and LOW vs. control (p < 0.05) while post-exercise interstitial glucose iAUC and c-miRs were not different between exercise modes. Heart rate was greater in SIT vs. LOW and FEX, and FEX vs. LOW (p < 0.05), SpO2 was lower in SIT, while PACES was not different between exercise modes. Perceptual measures were greater in SIT vs. LOW and FEX. Conclusion: Acute SIT and LOW under moderate hypoxia improved post-exercise plasma insulin compared to FEX exercises. Considering SIT was also time-efficient, well tolerated, and enjoyable for participants, this may be the preferred exercise modality for improving glucose regulation in adult males with overweight when combined with moderate hypoxia.
Collapse
|
4
|
Bagheri R, Karimi Z, Mousavi Z, Ziaee Bashirzad M, Camera DM, Sadeghi R, Dabbagh VR, Kargarfard M, Dutheil F. High-Protein Diets during either Resistance or Concurrent Training Have No Detrimental Effect on Bone Parameters in Resistance-Trained Males. Nutrients 2024; 16:325. [PMID: 38276563 PMCID: PMC10819948 DOI: 10.3390/nu16020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The effects of combining resistance training (RT) and concurrent training (CT; resistance + endurance training) with varied protein doses on bone measures remain poorly understood. Hence, we conducted a comparison of the impacts of two high-protein diets (1.6 or 3.2 g kg-1 d-1) over 16 weeks in resistance-trained males, either with CT or RT alone. METHODS A total of forty-eight males, all of whom were resistance-trained, had the following demographics: 26.6 ± 6 years, body mass index: 25.6 ± 2.9 kg m-2 administered either 3.2 g kg-1 d-1 protein (CT2; n = 12; RT2; n = 12) or 1.6 g kg-1 d-1 protein (CT1; n = 12; RT1; n = 12) during 16 weeks (four sessions·w-1). Bone parameters were assessed pre- and post-intervention. RESULTS There was no significant interaction between the intervention group and time for the legs, arms, ribs, or pelvis area BMC and BMD (p > 0.05). For the BMD of the pelvis and the BMC of the right ribs, however, there were significant time effects noted (p < 0.05). Furthermore, there was a significant interaction between the intervention group and time in the lumbar and thoracic spines, with a particular time effect noted for the thoracic spine region (p < 0.05). The regional differences in skeletal responses to the intervention are highlighted by these data. CONCLUSION Our findings show that the intake of two high-protein diets combined with RT and CT during 16 weeks had no adverse effects on bone tissue parameters. While these findings indicate that protein intake between 2 and 3 times the current RDI does not promote bone demineralization when consumed in conjunction with exercise, future studies investigating the long-term effects of chronic high protein intake on bone tissue health are warranted.
Collapse
|
5
|
Bagheri R, Kargarfard M, Sadeghi R, Scott D, Camera DM. Effects of 16 weeks of two different high-protein diets with either resistance or concurrent training on body composition, muscular strength and performance, and markers of liver and kidney function in resistance-trained males. J Int Soc Sports Nutr 2023; 20:2236053. [PMID: 37516903 PMCID: PMC10388821 DOI: 10.1080/15502783.2023.2236053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023] Open
Abstract
PURPOSE It is unclear whether resistance (RT) and concurrent training (CT; resistance plus endurance training) combined with different protein intakes have differential effects on muscle hypertrophy, strength, and performance. Therefore, we compared the effects of two high-protein diets (1.6 or 3.2 g.kg-1.d-1) during 16 weeks of either CT or RT alone in resistance-trained males. METHODS Forty-eight resistance-trained males (age: 26 ± 6 yr, body mass index: 25.6 ± 2.9 kg.m-2) performed 16 weeks (four sessions·w-1) of CT or RT with either 1.6 g.kg-1.d-1 protein (CT1; n = 12; RT1; n = 12) or 3.2 g.kg-1.d-1 protein (CT2; n = 12; RT2; n = 12). Training adaptations were assessed pre-, mid-, and post-intervention. RESULTS All measures of performance (endurance, vertical jump, and pull-up), lean mass, muscle strength, and power significantly increased post-intervention in all groups, but peak power gains were greater in RT2 compared with RT1 and CT1 (p < .05). VO2max significantly increased in both CT groups (p < .001). Select biochemical markers of kidney and liver function significantly increased within the RT2 and CT2 groups (p < .05), however, no between-group differences were apparent (p > .05). CONCLUSIONS With the exception of peak power, intake of 1.6 g.kg-1.d-1 of protein appears sufficient to maximize gains in lean mass, muscle strength, performance, and aerobic capacity during both RT and CT without influencing markers of kidney and liver function, indicating this daily protein amount is effective and safely tolerated in young, healthy adults.
Collapse
|
6
|
Gholizadeh M, Shakibaee A, Bagheri R, Camera DM, Shirvani H, Dutheil F. Isolate Whey Protein Promotes Fluid Balance and Endurance Capacity Better Than Isolate Casein and Carbohydrate-Electrolyte Solution in a Warm, Humid Environment. Nutrients 2023; 15:4374. [PMID: 37892449 PMCID: PMC10610234 DOI: 10.3390/nu15204374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Protein ingestion is known to enhance post-exercise hydration. Whether the type of protein (i.e., whey, casein) can alter this response is unknown. Accordingly, this study aimed to compare the effects of the addition of milk-derived whey isolate or casein protein to carbohydrate-electrolyte (CE) drinks on post-exercise rehydration and endurance capacity. Thirty male soldiers (age: 24 ± 2.1 y; VO2max: 49.3 ± 4.7 mL/kg/min) were recruited. Upon losing ~2.2% of body mass by running in warm and humid conditions (32.3 °C, 76% relative humidity [RH]), participants ingested either a CE solution (66 g/L carbohydrate [CHO]), or CE plus isolate whey protein (CEW, 44 g/L CHO, 22 g/L isolate whey), or CE plus isolate casein protein (CEC, 44 g/L CHO, 22 g/L isolate casein) beverage in a volume equal to 150% of body mass loss. At the end of the 3 h rehydration period, a positive fluid balance was higher with CEW (0.22 L) compared to CEC (0.19 L) and CE (0.12 L). Overall mean fluid retention was higher in CEW (80.35%) compared with the CE (76.67%) and CEC trials (78.65%). The time of the endurance capacity test [Cooper 2.4 km (1.5 miles) run test] was significantly higher in CEC (14.25 ± 1.58 min) and CE [(12.90 ± 1.01 min; (p = 0.035)] than in CEW [(11.40 ± 1.41 min); (p = 0.001)]. The findings of this study indicate that the inclusion of isolate whey protein in a CE solution yields superior outcomes in terms of rehydration and enhanced endurance capacity, as compared to consuming the CE solution alone or in conjunction with isolate casein protein.
Collapse
|
7
|
Bagheri R, Shakibaee A, Camera DM, Sobhani V, Ghobadi H, Nazar E, Fakhari H, Dutheil F. Effects of 8 weeks of resistance training in combination with a high protein diet on body composition, muscular performance, and markers of liver and kidney function in untrained older ex-military men. Front Nutr 2023; 10:1205310. [PMID: 37457969 PMCID: PMC10342203 DOI: 10.3389/fnut.2023.1205310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Background The effects of a high protein diet in combination with chronic resistance training (RT) on skeletal muscle adaptation responses in untrained older ex-military men is unknown. Therefore, we compared the effects of 8 weeks of RT in combination with either a high (1.6 g/kg/d) or low protein diet (0.8 g/kg/d) on body composition [skeletal muscle mass (SMM) and body fat percentage (BFP)], muscular strength, power, and endurance (upper and lower body), markers of liver [alanine transaminase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase (GGT)] and kidney (creatinine and urea) function, and lipid profile low-density lipoprotein (LDL), high-density lipoprotein (HDL), and cholesterol levels in a cohort of healthy, untrained older ex-military males. Methods Forty healthy untrained older ex-military males (age: 61 ± 2 yr, body mass index: 23.2 ± 1.3 kg.m-2) performed 8 weeks (three sessions·w-1) of RT with either 1.6 g/kg/d (RHP; n = 20) or 0.8 g/kg/d of protein (RLP; n = 20). Body composition (assessed by Inbody 720), muscular strength (1-RM for chest and leg press), power (Wingate test), endurance (75% 1-RM for chest and leg press), and markers of liver and kidney function (biochemical kits) were assessed pre and post-intervention. Results SMM and muscular strength (upper and lower body) increased post-intervention in both groups and were significantly greater in RHP compared to RLP, while muscular power increased to the same extent in both groups (p < 0.05) with no between-group differences (p > 0.05). In contrast, there were no post-intervention changes in muscular endurance, HDL, and BFP remained in either group (p > 0.05). ALT and creatinine significantly increased in RHP compared to RLP while GGT, AST, and urea only increased in the RLP group (p < 0.05). LDL and cholesterol significantly decreased in both groups (p < 0.05). Conclusion A daily intake of 1.6 g/kg/d protein was superior to 0.8 g/kg/d (current recommended daily intake) for promoting greater improvements in SMM and muscle strength and thus may be a more suitable level of intake for promoting such adaptive responses. Notwithstanding observed between-group differences in ALT and creatinine and the fact that levels remained within normal ranges, it is feasible to conclude that this daily protein intake is efficacious and well tolerated by healthy, untrained older ex-military males.
Collapse
|
8
|
Khodadadi F, Bagheri R, Negaresh R, Moradi S, Nordvall M, Camera DM, Wong A, Suzuki K. The Effect of High-Intensity Interval Training Type on Body Fat Percentage, Fat and Fat-Free Mass: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J Clin Med 2023; 12:jcm12062291. [PMID: 36983289 PMCID: PMC10054577 DOI: 10.3390/jcm12062291] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
This systematic review and meta-analysis of randomized controlled trials (RCTs) compared body compositional changes, including fat mass (FM), body fat percentage (BF%), and fat-free mass (FFM), between different types of high-intensity interval training (HIIT) (cycling vs. overground running vs. treadmill running) as well as to a control (i.e., no exercise) condition. Meta-analyses were carried out using a random-effects model. The I2 index was used to assess the heterogeneity of RCTs. Thirty-six RCTs lasting between 3 to 15 weeks were included in the current systematic review and meta-analysis. RCTs that examined the effect of HIIT type on FM, BF%, and FFM were sourced from online databases including PubMed, Scopus, Web of Science, and Google Scholar up to 21 June 2022. HIIT (all modalities combined) induced a significant reduction in FM (weighted mean difference [WMD]: −1.86 kg, 95% CI: −2.55 to −1.18, p = 0.001) despite a medium between-study heterogeneity (I2 = 63.3, p = 0.001). Subgroup analyses revealed cycling and overground running reduced FM (WMD: −1.72 kg, 95% CI: −2.41 to −1.30, p = 0.001 and WMD: −4.25 kg, 95% CI: −5.90 to −2.61, p = 0.001, respectively); however, there was no change with treadmill running (WMD: −1.10 kg, 95% CI: −2.82 to 0.62, p = 0.210). There was a significant reduction in BF% with HIIT (all modalities combined) compared to control (WMD: −1.53%, 95% CI: −2.13, −0.92, p = 0.001). All forms of HIIT also decreased BF%; however, overground running induced the largest overall effect (WMD: −2.80%, 95% CI: −3.89 to −1.71, p = 0.001). All types of HIIT combined also induced an overall significant improvement in FFM (WMD: 0.51 kg, 95% CI: 0.06 to 0.95, p = 0.025); however, only cycling interventions resulted in a significant increase in FFM compared to other exercise modalities (WMD: 0.63 kg, 95% CI: 0.17 to 1.09, p = 0.007). Additional subgroup analyses suggest that training for more than 8 weeks, at least 3 sessions per week, with work intervals less than 60 s duration and separated by ≤90 s active recovery are more effective for eliciting favorable body composition changes. Results from this meta-analysis demonstrate favorable body composition outcomes following HIIT (all modalities combined) with overall reductions in BF% and FM and improved FFM observed. Overall, cycling-based HIIT may confer the greatest effects on body composition due to its ability to reduce BF% and FM while increasing FFM.
Collapse
|
9
|
Tee CCL, Cooke MB, Chong MC, Yeo WK, Camera DM. Mechanisms for Combined Hypoxic Conditioning and Divergent Exercise Modes to Regulate Inflammation, Body Composition, Appetite, and Blood Glucose Homeostasis in Overweight and Obese Adults: A Narrative Review. Sports Med 2023; 53:327-348. [PMID: 36441492 PMCID: PMC9877079 DOI: 10.1007/s40279-022-01782-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 11/29/2022]
Abstract
Obesity is a major global health issue and a primary risk factor for metabolic-related disorders. While physical inactivity is one of the main contributors to obesity, it is a modifiable risk factor with exercise training as an established non-pharmacological treatment to prevent the onset of metabolic-related disorders, including obesity. Exposure to hypoxia via normobaric hypoxia (simulated altitude via reduced inspired oxygen fraction), termed hypoxic conditioning, in combination with exercise has been increasingly shown in the last decade to enhance blood glucose regulation and decrease the body mass index, providing a feasible strategy to treat obesity. However, there is no current consensus in the literature regarding the optimal combination of exercise variables such as the mode, duration, and intensity of exercise, as well as the level of hypoxia to maximize fat loss and overall body compositional changes with hypoxic conditioning. In this narrative review, we discuss the effects of such diverse exercise and hypoxic variables on the systematic and myocellular mechanisms, along with physiological responses, implicated in the development of obesity. These include markers of appetite regulation and inflammation, body conformational changes, and blood glucose regulation. As such, we consolidate findings from human studies to provide greater clarity for implementing hypoxic conditioning with exercise as a safe, practical, and effective treatment strategy for obesity.
Collapse
|
10
|
Jalili C, Talebi S, Bagheri R, Ghanavati M, Camera DM, Amirian P, Zarpoosh M, Dizaji MK, Kermani MAH, Moradi S. The Association between Dietary Inflammatory Index and Aging Biomarkers/Conditions: A Systematic Review and Dose-response Meta-analysis. J Nutr Health Aging 2023; 27:378-390. [PMID: 37248762 DOI: 10.1007/s12603-023-1919-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023]
Abstract
OBJECTIVES We performed a current study to examine the association between dietary inflammatory index (DII) score and older age-related muscle conditions, including sarcopenia, low muscle mass, low muscle strength, frailty, and/or disability. DESIGN Systematic review and dose-response meta-analysis. SETTING A systematic literature search was performed using Scopus, PubMed/MEDLINE, and ISI Web of Science without limitation until October 04, 2022. Relative risk (RR) and 95% confidence interval (CI) were pooled by applying a random-effects model, while validated methods examined assess quality and publication bias via Newcastle-Ottawa Scale, Egger's regression asymmetry, and Begg's rank correlation tests respectively. A dose-response meta-analysis was conducted to estimate the RRs per 1-unit increment in DII scores. PARTICIPANTS Adults (≥18 years). MEASURES The risk of older age-related muscle conditions (sarcopenia, low muscle mass, low muscle strength, frailty, and/or disability). RESULTS Data were available from 19 studies with 68079 participants. Results revealed that a higher DII score was significantly related to an increased risk of sarcopenia (RR=1.50; 95% CI: 1.26, 1.79; I2=53.3%; p<0.001; n=10; sample size =43097), low muscle strength (RR=1.47; 95% CI: 1.24, 1.74; I2=6.6%; p<0.001; n=4; sample size =9339), frailty (RR=1.61; 95% CI: 1.41, 1.84; I2=0.0%; p<0.001; study=5; participant=3882) and disability (RR=1.41; 95% CI: 1.16, 1.72; I2=58.4%; p=0.001; n=5; sample size =13760), but not low muscle mass (RR=1.24; 95% CI: 0.98, 1.56; I2=49.3%; p=0.069; n=4; sample size =11222). Additionally, results of the linear dose-response indicated that an increase of one point in the DII score was related to a 14% higher risk of sarcopenia, 6% higher risk of low muscle mass, 7% higher risk of low muscle strength, and a 7% higher risk of disability in adults. Non-linear dose-response relationships also revealed a positive linear association between the DII score and the risk of sarcopenia (Pnonlinearity = 0.097, Pdose-response<0.001), frailty (Pnonlinearity = 0.844, Pdose-response=0.010) and disability (Pnonlinearity = 0.596, Pdose-response=0.007). CONCLUSION Adherence to a pro-inflammatory diet was significantly associated with a higher risk of sarcopenia and other age-associated adverse effects such as low muscle strength, disability, and frailty. These results indicate a necessity to prioritize the reduction of pro-inflammatory diets to help promote overall older age-related muscle conditions.
Collapse
|
11
|
Tee CCL, Parr EB, Cooke MB, Chong MC, Rahmat N, Md Razali MR, Yeo WK, Camera DM. Combined effects of exercise and different levels of acute hypoxic severity: A randomized crossover study on glucose regulation in adults with overweight. Front Physiol 2023; 14:1174926. [PMID: 37123278 PMCID: PMC10133678 DOI: 10.3389/fphys.2023.1174926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Purpose: The aim of this study was to investigate the influence of manipulating hypoxic severity with low-intensity exercise on glucose regulation in healthy overweight adults. Methods: In a randomized crossover design, 14 males with overweight (age: 27 ± 5 years; body mass index (BMI) 27.1 ± 1.8 kg⋅m2) completed three exercise trials involving 60 min aerobic exercise cycling at 90% lactate threshold in normoxia (NM, FiO2 = 20.9%), moderate hypoxia (MH, FiO2 = 16.5%) and high hypoxia (HH, FiO2 = 14.8%). A post-exercise oral glucose tolerance test (OGTT) was performed. Venous blood samples were analyzed for incremental area under the curve (iAUC), plasma glucose and insulin, as well as exerkine concentrations (plasma apelin and fibroblast growth factor 21 [FGF-21]) pre- and post-exercise. A 24-h continuous glucose monitoring (CGM) was used to determine interstitial glucose concentrations. Heart rate, oxygen saturation (SpO2) and perceptual measures were recorded during exercise. Results: Post-exercise OGTT iAUC for plasma glucose and insulin concentrations were lower in MH vs. control (p = 0.02). Post-exercise interstitial glucose iAUC, plasma apelin and FGF-21 were not different between conditions. Heart rate was higher in HH vs. NM and MH, and MH vs. NM (p < 0.001), while SpO2 was lower in HH vs. NM and MH, and MH vs. NM (p < 0.001). Overall perceived discomfort and leg discomfort were higher in HH vs. NM and MH (p < 0.05), while perceived breathing difficulty was higher in HH vs. NM only (p = 0.003). Conclusion: Compared to higher hypoxic conditions, performing acute aerobic-based exercise under moderate hypoxia provided a more effective stimulus for improving post-exercise glucose regulation while concomitantly preventing excessive physiological and perceptual stress in healthy overweight adults.
Collapse
|
12
|
Islam FMA, Bhowmik J, Camera DM, Maddison R, Lambert GW. Concordance between Different Criteria for Self-Reported Physical Activity Levels and Risk Factors in People with High Blood Pressure in a Rural District in Bangladesh. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910487. [PMID: 34639787 PMCID: PMC8507968 DOI: 10.3390/ijerph181910487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/24/2022]
Abstract
Self-reported assessment of physical activity (PA) is commonly used in public health research. The present study investigated the concordance of self-reported PA assessed using the global physical activity questionnaire (GPAQ) and two different measurement approaches. Participants (n = 307, aged 30–75 years with hypertension) were recruited from a rural area in Bangladesh. We analyzed the difference between the World Health Organization (WHO) recommendations of more than 600 metabolic-equivalent time-minutes (MET-min) and the self-reported active hours, at least 2.5 h per week. Tests of sensitivity and specificity were conducted to determine concordance between the two measures. According to the WHO criteria, 255 (83%) participants were active more than 600 MET-min per week and 172 (56%) people were physically active 2.5 h or more per week, indicating a 27% difference in self-reported PA. The sensitivity, specificity, positive and negative predictive values and concordance between the two measures were 64%, 92%, 98%, 34% and 70%, respectively. Considering the WHO MET-min as the appropriate measure, 89 (35%) were false negative (FN). Older age, professionals and businesspersons were associated with a higher proportion of FN. There is a gap between self-reported PA, thus a better estimate of PA may result from combining two criteria to measure PA levels.
Collapse
|
13
|
Shamim B, Camera DM, Whitfield J. Corrigendum: Myofibre Hypertrophy in the Absence of Changes to Satellite Cell Content Following Concurrent Exercise Training in Young Healthy Men. Front Physiol 2021; 12:736848. [PMID: 34393834 PMCID: PMC8356794 DOI: 10.3389/fphys.2021.736848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
|
14
|
Shamim B, Camera DM, Whitfield J. Myofibre Hypertrophy in the Absence of Changes to Satellite Cell Content Following Concurrent Exercise Training in Young Healthy Men. Front Physiol 2021; 12:625044. [PMID: 34149439 PMCID: PMC8213074 DOI: 10.3389/fphys.2021.625044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Concurrent exercise training has been suggested to create an ‘interference effect,’ attenuating resistance training-based skeletal muscle adaptations, including myofibre hypertrophy. Satellite cells support myofibre hypertrophy and are influenced by exercise mode. To determine whether satellite cells contribute to the ‘interference effect’ changes in satellite cell and myonuclear content were assessed following a period of training in 32 recreationally active males (age: 25 ± 5 year; body mass index: 24 ± 3 kg⋅m–2; mean ± SD) who undertook 12-week of either isolated (3 d⋅w–1) resistance (RES; n = 10), endurance (END; n = 10), or alternate day (6 d⋅w–1) concurrent (CET, n = 12) training. Skeletal muscle biopsies were obtained pre-intervention and after 2, 8, and 12 weeks of training to determine fibre type-specific cross-sectional area (CSA), satellite cell content (Pax7+DAPI+), and myonuclei (DAPI+) using immunofluorescence microscopy. After 12 weeks, myofibre CSA increased in all training conditions in type II (P = 0.0149) and mixed fibres (P = 0.0102), with no difference between conditions. Satellite cell content remained unchanged after training in both type I and type II fibres. Significant correlations were observed between increases in fibre type-specific myonuclear content and CSA of Type I (r = 0.63, P < 0.0001), Type II (r = 0.69, P < 0.0001), and mixed fibres (r = 0.72, P < 0.0001). Resistance, endurance, and concurrent training induce similar myofibre hypertrophy in the absence of satellite cell and myonuclear pool expansion. These findings suggest that myonuclear accretion via satellite cell fusion is positively correlated with hypertrophy after 12 weeks of concurrent training, and that individuals with more myonuclear content displayed greater myofibre hypertrophy.
Collapse
|
15
|
Callahan MJ, Parr EB, Hawley JA, Camera DM. Can High-Intensity Interval Training Promote Skeletal Muscle Anabolism? Sports Med 2021; 51:405-421. [PMID: 33512698 DOI: 10.1007/s40279-020-01397-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exercise training in combination with optimal nutritional support is an effective strategy to maintain or increase skeletal muscle mass. A single bout of resistance exercise undertaken with adequate protein availability increases rates of muscle protein synthesis and, when repeated over weeks and months, leads to increased muscle fiber size. While resistance-based training is considered the 'gold standard' for promoting muscle hypertrophy, other modes of exercise may be able to promote gains in muscle mass. High-intensity interval training (HIIT) comprises short bouts of exercise at or above the power output/speed that elicits individual maximal aerobic capacity, placing high tensile stress on skeletal muscle, and somewhat resembling the demands of resistance exercise. While HIIT induces rapid increases in skeletal muscle oxidative capacity, the anabolic potential of HIIT for promoting concurrent gains in muscle mass and cardiorespiratory fitness has received less scientific inquiry. In this review, we discuss studies that have determined muscle growth responses after HIIT, with a focus on molecular responses, that provide a rationale for HIIT to be implemented among populations who are susceptible to muscle loss (e.g. middle-aged or older adults) and/or in clinical settings (e.g. pre- or post-surgery).
Collapse
|
16
|
Callahan MJ, Parr EB, Snijders T, Conceição MS, Radford BE, Timmins RG, Devlin BL, Hawley JA, Camera DM. Skeletal Muscle Adaptive Responses to Different Types of Short-Term Exercise Training and Detraining in Middle-Age Men. Med Sci Sports Exerc 2021; 53:2023-2036. [PMID: 33867497 DOI: 10.1249/mss.0000000000002684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Whether short-term, single-mode exercise training can improve physical fitness prior to a period of reduced physical activity (e.g. post-surgery recovery) is not well characterized in clinical populations nor middle-age adults. We investigated skeletal muscle adaptive responses following endurance exercise training (ENT), high-intensity interval training (HIIT) or resistance exercise training (RET), and a subsequent period of detraining, in sedentary, middle-age men. METHODS Thirty-five sedentary, males (39±3 yr) were randomized to parallel groups and undertook six weeks of either ENT (n=12), HIIT (n=12) or RET (n=11) followed by 2.5 weeks of detraining. Skeletal muscle fiber characteristics, body composition, muscle thickness, muscle strength, aerobic capacity, resting energy expenditure and glucose homeostasis were assessed at baseline, and after exercise training and detraining. RESULTS Lean mass increased after RET and HIIT (+3.2±1.6% and +1.6±2.1%, P<0.05). Muscle strength (sum of leg press, leg extension and bench press 1RMs) increased after all training interventions (RET: +25±5%; HIIT: +10±5%; ENT: +7±7%, P<0.05). Aerobic capacity increased only after HIIT and ENT (+14±7% and +11±11%, P<0.05). Type I and II muscle fiber size increased for all groups post-training (main effect of time, P<0.05). Following a period of detraining, the gains in lean mass and maximal muscle strength were maintained in RET and HIIT groups, but maximal aerobic capacity declined below post-training levels in HIIT and ENT (P<0.05). CONCLUSION Six weeks of HIIT induced widespread adaptations prior to detraining in middle-age men. Exercise training-induced increases in aerobic capacity declined during 2.5 weeks of detraining but gains in lean mass and muscle strength were maintained.
Collapse
|
17
|
Timmins RG, Shamim B, Tofari PJ, Hickey JT, Camera DM. Differences in Lower Limb Strength and Structure After 12 Weeks of Resistance, Endurance, and Concurrent Training. Int J Sports Physiol Perform 2020; 15:1223-1230. [PMID: 32209722 DOI: 10.1123/ijspp.2019-0788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/11/2019] [Accepted: 12/10/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE To investigate strength and structural adaptations after 12 weeks of resistance, endurance cycling, and concurrent training. METHODS Thirty-two healthy males undertook 12 weeks of resistance-only (RT; n = 10), endurance-only (END; n = 10), or concurrent resistance and endurance training (CONC; n = 12). Biceps femoris long head (BFlh) architecture, strength (3-lift 1-repetition maximum), and body composition were assessed. RESULTS Fascicle length of the BFlh reduced 15% (6%) (P < .001) and 9% (6%) (P < .001) in the END and CONC groups postintervention, with no change in the RT group (-4% [11%], P = .476). All groups increased BFlh pennation angle (CONC: 18% [9%], RT: 14% [8%], and END: 18% [10%]). Thickness of the BFlh increased postintervention by 7% (6%) (P = .002) and 7% (7%) (P = .003) in the CONC and RT groups, respectively, but not in the END group (0% [3%], P = .994). Both the CONC and RT groups significantly increased by 27% (11%) (P < .001) and 33% (12%) (P < .001) in 3-lift totals following the intervention, with no changes in the END cohort (6% [6%], P = .166). No significant differences were found for total body (CONC: 4% [2%], RT: 4% [2%], and END: 3% [2%]) and leg (CONC: 5% [3%], RT: 6% [3%], and END: 5% [3%]) fat-free mass. CONCLUSIONS Twelve weeks of RT, END, or CONC significantly modified BFlh architecture. This study suggests that conventional resistance training may dampen BFlh fascicle shortening from cycling training while increasing strength simultaneously in concurrent training. Furthermore, the inclusion of a cycle endurance training stimulus may result in alterations to hamstring architecture that increase the risk of future injury. Therefore, the incorporation of endurance cycling training within concurrent training paradigms should be reevaluated when trying to modulate injury risk.
Collapse
|
18
|
Lionett S, Kiel IA, Camera DM, Vanky E, Parr EB, Lydersen S, Hawley JA, Moholdt T. Circulating and Adipose Tissue miRNAs in Women With Polycystic Ovary Syndrome and Responses to High-Intensity Interval Training. Front Physiol 2020; 11:904. [PMID: 32848854 PMCID: PMC7406716 DOI: 10.3389/fphys.2020.00904] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-transcriptionally. In women with polycystic ovary syndrome (PCOS), several miRNAs are differentially expressed compared to women without PCOS, suggesting a role for miRNAs in PCOS pathophysiology. Exercise training modulates miRNA abundance and is primary lifestyle intervention for women with PCOS. Accordingly, we measured the expression of eight circulating miRNAs selected a priori along with miRNA expression from gluteal and abdominal adipose tissue (AT) in 12 women with PCOS and 12 women matched for age and body mass index without PCOS. We also determined the miRNA expression “signatures” before and after high-intensity interval training (HIT) in 42 women with PCOS randomized to either: (1) low-volume HIT (LV-HIT, 10 × 1 min work bouts at maximal, sustainable intensity, n = 13); (2) high-volume HIT (HV-HIT, 4 × 4 min work bouts reaching 90–95% of maximal heart rate, n = 14); or (3) non-exercise control (Non-Ex, n = 15). Both HIT groups trained three times/week for 16 weeks. miRNAs were extracted from plasma, gluteal and abdominal AT, and quantified via a customized plate array containing eight miRNAs associated with PCOS and/or exercise training responses. Basal expression of circulating miRNA-27b (c-miR-27b), implicated in fatty acid metabolism, adipocyte differentiation and inflammation, was 1.8-fold higher in women with compared to without PCOS (P = 0.006) despite no difference in gluteal or abdominal AT miR-27b expression. Only the HV-HIT protocol increased peak oxygen uptake (VO2peak L/min; 9%, P = 0.008). There were no changes in body composition. In LV-HIT, but not HV-HIT, the expression of c-miR-27b decreased (0.5-fold, P = 0.007). None of the remaining seven circulating miRNAs changed in LV-HIT, nor was the expression of gluteal or abdominal AT miRNAs altered. Despite increased cardiorespiratory fitness, HV-HIT did not alter the expression of any circulating, gluteal or abdominal AT miRNAs. We conclude that women with PCOS have a higher basal expression of c-miR-27b compared to women without PCOS and that 16 weeks of LV-HIT reduces the expression of this miRNA in women with PCOS. Intense exercise training had little effect on the abundance of the selected miRNAs within subcutaneous AT depots in women with PCOS.
Collapse
|
19
|
Lionett S, Kiel IA, Camera DM, Vanky E, Parr EB, Hawley JA, Moholdt T. Effects Of High-intensity Interval Training On The Expression Of Circulating Micro-RNAs In Women With Polycystic Ovary Syndrome. Med Sci Sports Exerc 2020. [DOI: 10.1249/01.mss.0000687680.25550.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Lacham-Kaplan O, Camera DM, Hawley JA. Divergent Regulation of Myotube Formation and Gene Expression by E2 and EPA during In-Vitro Differentiation of C2C12 Myoblasts. Int J Mol Sci 2020; 21:E745. [PMID: 31979341 PMCID: PMC7037418 DOI: 10.3390/ijms21030745] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Estrogen (E2) and polyunsaturated fatty acids (n-3PUFA) supplements independently support general wellbeing and enhance muscle regeneration in-vivo and myotube formation in-vitro. However, the combined effect of E2 and n-3PUFA on myoblast differentiation is not known. The purpose of the study was to identify whether E2 and n-3PUFA possess a synergistic effect on in-vitro myogenesis. Mouse C2C12 myoblasts, a reliable model to reiterate myogenic events in-vitro, were treated with 10nM E2 and 50μM eicosapentaenoic acid (EPA) independently or combined, for 0-24 h or 0-120 h during differentiation. Immunofluorescence, targeted qPCR and next generation sequencing (NGS) were used to characterize morphological changes and differential expression of key genes involved in the regulation of myogenesis and muscle function pathways. E2 increased estrogen receptor α (Erα) and the expression of the mitogen-activated protein kinase 11 (Mapk11) within 1 h of treatment and improved myoblast differentiation and myotube formation. A significant reduction (p < 0.001) in myotube formation and in the expression of myogenic regulatory factors Mrfs (MyoD, Myog and Myh1) and the myoblast fusion related gene, Tmem8c, was observed in the presence of EPA and the combined E2/EPA treatment. Additionally, EPA treatment at 48 h of differentiation inhibited the majority of genes associated with the myogenic and striated muscle contraction pathways. In conclusion, EPA and E2 had no synergistic effect on myotube formation in-vitro. Independently, EPA inhibited myoblast differentiation and overrides the stimulatory effect of E2 when used in combination with E2.
Collapse
|
21
|
Shamim B, Devlin BL, Timmins RG, Tofari P, Lee Dow C, Coffey VG, Hawley JA, Camera DM. Adaptations to Concurrent Training in Combination with High Protein Availability: A Comparative Trial in Healthy, Recreationally Active Men. Sports Med 2019; 48:2869-2883. [PMID: 30341593 PMCID: PMC6244626 DOI: 10.1007/s40279-018-0999-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background We implemented a high-protein diet (2 g·kg−1·d−1) throughout 12 weeks of concurrent exercise training to determine whether interferences to adaptation in muscle hypertrophy, strength and power could be attenuated compared to resistance training alone. Methods Thirty-two recreationally active males (age: 25 ± 5 years, body mass index: 24 ± 3 kg·m−2; mean ± SD) performed 12 weeks of either isolated resistance (RES; n = 10) or endurance (END; n = 10) training (three sessions·w−1), or concurrent resistance and endurance (CET; n = 12) training (six sessions·w−1). Maximal strength (1RM), body composition and power were assessed pre- and post-intervention. Results Leg press 1RM increased ~ 24 ± 13% and ~ 33 ± 16% in CET and RES from PRE-to-POST (P < 0.001), with no difference between groups. Total lean mass increased ~ 4% in both CET and RES from PRE-to-POST (P < 0.001). Ultrasound estimated vastus lateralis volume increased ~ 15% in CET and ~ 11% in RES from PRE-to-POST (P < 0.001), with no difference between groups. Wingate peak power relative to body mass displayed a trend (P = 0.053) to be greater in RES (12.5 ± 1.6 W·kg BM−1) than both CET (10.8 ± 1.7 W·kg BM−1) and END (10.9 ± 1.8 W·kg BM−1) at POST. Absolute VO2peak increased 6.9% in CET and 12% in END from PRE-to-POST (P < 0.05), with no difference between groups. Conclusion Despite high protein availability, select measures of anaerobic power-based adaptations, but not muscle strength or hypertrophy, appear susceptible to ‘interference effects’ with CET and should be closely monitored throughout training macro-cycles. Trials Registry: This trial was registered with the Australian-New Zealand Clinical Trials Registry (ACTRN12617001229369). Electronic supplementary material The online version of this article (10.1007/s40279-018-0999-9) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Conceição MS, Junior EMM, Telles GD, Libardi CA, Castro A, Andrade ALL, Brum PC, Urias Ú, Kurauti MA, Júnior JMC, Boschero AC, Cavaglieri CR, Camera DM, Chacon-Mikahil MPT. Augmented Anabolic Responses after 8-wk Cycling with Blood Flow Restriction. Med Sci Sports Exerc 2019; 51:84-93. [PMID: 30113523 DOI: 10.1249/mss.0000000000001755] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Low-intensity endurance training (ET) performed with blood flow restriction (BFR) can improve muscle strength, cross-sectional area (CSA) and cardiorespiratory capacity. Whether muscle strength and CSA as well as cardiorespiratory capacity (i.e., V˙O2max) and underlying molecular processes regulating such respective muscle adaptations are comparable to resistance and ET is unknown. PURPOSE To determine the respective chronic (i.e., 8 wk) functional, morphological, and molecular responses of ET-BFR training compared with conventional, unrestricted resistance training (RT) and ET. METHODS Thirty healthy young men were randomly assigned to one of three experimental groups: ET-BFR (n = 10, 4 d·wk, 30-min cycling at 40% of V˙O2max), RT (n = 10, 4 d·wk, 4 sets of 10 repetitions leg press at 70% of one repetition maximum with 60 s rest) or ET (n = 10, 4 d·wk, 30-min cycling at 70% of V˙O2max) for 8 wk. Measures of quadriceps CSA, leg press one repetition maximum, and V˙O2max as well as muscle biopsies were obtained before and after intervention. RESULTS Both RT and ET-BFR increased muscle strength and hypertrophy responses. ET-BFR also increased V˙O2max, total cytochrome c oxidase subunit 4 isoform 1 abundance and vascular endothelial growth factor mRNA abundance despite the lower work load compared to ET. CONCLUSIONS Eight weeks of ET-BFR can increase muscle strength and induce similar muscle hypertrophy responses to RT while V˙O2max responses also increased postintervention even with a significantly lower work load compared with ET. Our findings provide new insight to some of the molecular mechanisms mediating adaptation responses with ET-BFR and the potential for this training protocol to improve muscle and cardiorespiratory capacity.
Collapse
|
23
|
Parr EB, Callahan MJ, Waters JD, Devlin BL, Radford BE, Hawley JA, Camera DM. Effects of Exercise Modality on Glycemic Control After 6 Weeks of Training in Middle Aged Men. Med Sci Sports Exerc 2019. [DOI: 10.1249/01.mss.0000561907.93056.3f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Smiles WJ, Churchward-Venne TA, van Loon LJC, Hawley JA, Camera DM. A single bout of strenuous exercise overcomes lipid-induced anabolic resistance to protein ingestion in overweight, middle-aged men. FASEB J 2019; 33:7009-7017. [PMID: 30840513 DOI: 10.1096/fj.201801917r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
High-circulating lipid availability attenuates protein feeding-induced muscle protein synthesis (MPS). Whether the combined effects of exercise and protein ingestion can rescue this inhibition is unknown. In a parallel-groups design, middle-aged sedentary males (n = 28) matched for fat-free mass and body mass index received a 5-h intravenous infusion of either saline/control (n = 9), 20% intralipid infusion (n = 9), or intralipid with concomitant exercise (n = 10). Two hours into each of these infusions, participants received a primed constant infusion of L-(ring-[13C]6)-phenylalanine. Muscle biopsies were taken immediately after control and lipid infusions, at which time, a 30-g protein beverage was ingested. Further biopsies were taken 2 and 4 h after protein ingestion. Intralipid increased plasma free fatty acid concentrations from ∼0.4-2 mM, resulting in an attenuated MPS response to protein ingestion, which was prevented by exercise. Intralipid resulted in a lower peak aminoacidemia following protein ingestion that was exacerbated by prior exercise, suggesting efficiency of the working skeletal muscle to utilize amino acid substrate to drive the postprandial anabolic response. We conclude that in the face of high-fat availability, exercise preserves the sensitivity of skeletal muscle to the anabolic properties of amino acids.-Smiles, W. J., Churchward-Venne, T. A., van Loon, L. J. C., Hawley, J. A., Camera, D. M. A single bout of strenuous exercise overcomes lipid-induced anabolic resistance to protein ingestion in overweight, middle-aged men.
Collapse
|
25
|
Hornberger TA, Carter HN, Hood DA, Figueiredo VC, Dupont-Versteegden EE, Peterson CA, McCarthy JJ, Camera DM, Hawley JA, Chaillou T, Cheng AJ, Nader GA, Wüst RCI, Houtkooper RH. Commentaries on Viewpoint: The rigorous study of exercise adaptations: Why mRNA might not be enough. J Appl Physiol (1985) 2018; 121:597-600. [PMID: 27543661 DOI: 10.1152/japplphysiol.00509.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|