1
|
Francian A, Flores-Garcia Y, Powell JR, Petrovsky N, Zavala F, Chackerian B. Virus-like particle-based vaccines targeting the Anopheles mosquito salivary protein, TRIO. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611467. [PMID: 39282324 PMCID: PMC11398493 DOI: 10.1101/2024.09.05.611467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Malaria is a highly lethal infectious disease caused by Plasmodium parasites. These parasites are transmitted to vertebrate hosts when mosquitoes of the Anopheles genus probe for a blood meal. Sporozoites, the infectious stage of Plasmodium , transit to the liver within hours of injection into the dermis. Vaccine efforts are hindered by the complexity of the parasite's lifecycle and the speed at which the infection is established in the liver. In an effort to enhance immunity against Plasmodium , we produced a virus-like particle (VLP)-based vaccine displaying an epitope of TRIO, an Anopheles salivary protein which has been shown to enhance mobility and dispersal of sporozoites in the dermis. Previous work demonstrated that passive immunization with TRIO offered protection from liver infection and acted synergistically with a Plasmodium targeted vaccine. Immunization of mice with TRIO VLPs resulted in high-titer and long-lasting antibody responses that did not significantly drop for over 18 months post-immunization. TRIO VLPs were similarly immunogenic when combined with an anti-malaria vaccine targeting the L9 epitope of the Plasmodium falciparum circumsporozoite protein.However, when used in a malaria challenge mouse model, TRIO VLPs only provided modest protection from infection and did not boost the protection provided by L9 VLPs.
Collapse
|
2
|
Cao Y, Hayashi CTH, Zavala F, Tripathi AK, Simonyan H, Young CN, Clark LC, Usuda Y, Van Parys JM, Kumar N. Correction: Cao et al. Effective Functional Immunogenicity of a DNA Vaccine Combination Delivered via In Vivo Electroporation Targeting Malaria Infection and Transmission. Vaccines 2022, 10, 1134. Vaccines (Basel) 2024; 12:994. [PMID: 39340117 PMCID: PMC11435912 DOI: 10.3390/vaccines12090994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The authors would like to make the following corrections to this published paper [...].
Collapse
|
3
|
Franco A, Flores-Garcia Y, Venezia J, Daoud A, Scott AL, Zavala F, Sullivan DJ. Hemozoin-induced IFN-γ production mediates innate immune protection against sporozoite infection. Microbes Infect 2024; 26:105343. [PMID: 38670216 DOI: 10.1016/j.micinf.2024.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Hemozoin is a crystal synthesized by Plasmodium parasites during hemoglobin digestion in the erythrocytic stage. The hemozoin released when the parasites egress from the red blood cell, which is complexed with parasite DNA, is cleared from the circulation by circulating and tissue-resident monocytes and macrophages, respectively. Recently, we reported that intravenous administration of purified hemozoin complexed with Plasmodium berghei DNA (HzPbDNA) resulted in an innate immune response that blocked liver stage development of sporozoites that was dose-dependent and time-limited. Here, we further characterize the organismal, cellular, and molecular events associated with this protective innate response in the liver and report that a large proportion of the IV administered HzPbDNA localized to F4/80+ cells in the liver and that the rapid and strong protection against liver-stage development waned quickly such that by 1 week post-HzPbDNA treatment animals were fully susceptible to infection. RNAseq of the liver after IV administration of HzPbDNA demonstrated that the rapid and robust induction of genes associated with the acute phase response, innate immune activation, cellular recruitment, and IFN-γ signaling observed at day 1 was largely absent at day 7. RNAseq analysis implicated NK cells as the major cellular source of IFN-γ. In vivo cell depletion and IFN-γ neutralization experiments supported the hypothesis that tissue-resident macrophages and NK cells are major contributors to the protective response and the NK cell-derived IFN-γ is key to induction of the mechanisms that block sporozoite development in the liver. These findings advance our understanding of the innate immune responses that prevent liver stage malaria infection.
Collapse
|
4
|
Miura K, Flores-Garcia Y, Long CA, Zavala F. Vaccines and monoclonal antibodies: new tools for malaria control. Clin Microbiol Rev 2024; 37:e0007123. [PMID: 38656211 PMCID: PMC11237600 DOI: 10.1128/cmr.00071-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
SUMMARYMalaria remains one of the biggest health problems in the world. While significant reductions in malaria morbidity and mortality had been achieved from 2000 to 2015, the favorable trend has stalled, rather significant increases in malaria cases are seen in multiple areas. In 2022, there were 249 million estimated cases, and 608,000 malaria-related deaths, mostly in infants and children aged under 5 years, globally. Therefore, in addition to the expansion of existing anti-malarial control measures, it is critical to develop new tools, such as vaccines and monoclonal antibodies (mAbs), to fight malaria. In the last 2 years, the first and second malaria vaccines, both targeting Plasmodium falciparum circumsporozoite proteins (PfCSP), have been recommended by the World Health Organization to prevent P. falciparum malaria in children living in moderate to high transmission areas. While the approval of the two malaria vaccines is a considerable milestone in vaccine development, they have much room for improvement in efficacy and durability. In addition to the two approved vaccines, recent clinical trials with mAbs against PfCSP, blood-stage vaccines against P. falciparum or P. vivax, and transmission-blocking vaccine or mAb against P. falciparum have shown promising results. This review summarizes the development of the anti-PfCSP vaccines and mAbs, and recent topics in the blood- and transmission-blocking-stage vaccine candidates and mAbs. We further discuss issues of the current vaccines and the directions for the development of next-generation vaccines.
Collapse
|
5
|
Locke E, Flores-Garcia Y, Mayer BT, MacGill RS, Borate B, Salgado-Jimenez B, Gerber MW, Mathis-Torres S, Shapiro S, King CR, Zavala F. Establishing RTS,S/AS01 as a benchmark for comparison to next-generation malaria vaccines in a mouse model. NPJ Vaccines 2024; 9:29. [PMID: 38341502 DOI: 10.1038/s41541-024-00819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
New strategies are needed to reduce the incidence of malaria, and promising approaches include vaccines targeting the circumsporozoite protein (CSP). To improve upon the malaria vaccine, RTS,S/AS01, it is essential to standardize preclinical assays to measure the potency of next-generation vaccines against this benchmark. We focus on RTS,S/AS01-induced antibody responses and functional activity in conjunction with robust statistical analyses. Transgenic Plasmodium berghei sporozoites containing full-length P. falciparum CSP (tgPb-PfCSP) allow two assessments of efficacy: quantitative reduction in liver infection following intravenous challenge, and sterile protection from mosquito bite challenge. Two or three doses of RTS,S/AS01 were given intramuscularly at 3-week intervals, with challenge 2-weeks after the last vaccination. Minimal inter- and intra-assay variability indicates the reproducibility of the methods. Importantly, the range of this model is suitable for screening more potent vaccines. Levels of induced anti-CSP antibody 2A10 equivalency were also associated with activity: 105 μg/mL (95% CI: 68.8, 141) reduced liver infection by 50%, whereas 285 μg/mL (95% CI: 166, 404) is required for 50% sterile protection from mosquito bite challenge. Additionally, the liver burden model was able to differentiate between protected and non-protected human plasma samples from a controlled human malaria infection study, supporting these models' relevance and predictive capability. Comparison in animal models of CSP-based vaccine candidates to RTS,S/AS01 is now possible under well controlled conditions. Assessment of the quality of induced antibodies, likely a determinant of durability of protection in humans, should be possible using these methods.
Collapse
|
6
|
Williams KL, Guerrero S, Flores-Garcia Y, Kim D, Williamson KS, Siska C, Smidt P, Jepson SZ, Li K, Dennison SM, Mathis-Torres S, Chen X, Wille-Reece U, MacGill RS, Walker M, Jongert E, King CR, Ockenhouse C, Glanville J, Moon JE, Regules JA, Tan YC, Cavet G, Lippow SM, Robinson WH, Dutta S, Tomaras GD, Zavala F, Ketchem RR, Emerling DE. A candidate antibody drug for prevention of malaria. Nat Med 2024; 30:117-129. [PMID: 38167935 PMCID: PMC10803262 DOI: 10.1038/s41591-023-02659-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/20/2023] [Indexed: 01/05/2024]
Abstract
Over 75% of malaria-attributable deaths occur in children under the age of 5 years. However, the first malaria vaccine recommended by the World Health Organization (WHO) for pediatric use, RTS,S/AS01 (Mosquirix), has modest efficacy. Complementary strategies, including monoclonal antibodies, will be important in efforts to eradicate malaria. Here we characterize the circulating B cell repertoires of 45 RTS,S/AS01 vaccinees and discover monoclonal antibodies for development as potential therapeutics. We generated >28,000 antibody sequences and tested 481 antibodies for binding activity and 125 antibodies for antimalaria activity in vivo. Through these analyses we identified correlations suggesting that sequences in Plasmodium falciparum circumsporozoite protein, the target antigen in RTS,S/AS01, may induce immunodominant antibody responses that limit more protective, but subdominant, responses. Using binding studies, mouse malaria models, biomanufacturing assessments and protein stability assays, we selected AB-000224 and AB-007088 for advancement as a clinical lead and backup. We engineered the variable domains (Fv) of both antibodies to enable low-cost manufacturing at scale for distribution to pediatric populations, in alignment with WHO's preferred product guidelines. The engineered clone with the optimal manufacturing and drug property profile, MAM01, was advanced into clinical development.
Collapse
|
7
|
Thai E, Murugan R, Binter Š, Burn Aschner C, Prieto K, Kassardjian A, Obraztsova AS, Kang RW, Flores-Garcia Y, Mathis-Torres S, Li K, Horn GQ, Huntwork RHC, Bolscher JM, de Bruijni MHC, Sauerwein R, Dennison SM, Tomaras GD, Zavala F, Kellam P, Wardemann H, Julien JP. Molecular determinants of cross-reactivity and potency by VH3-33 antibodies against the Plasmodium falciparum circumsporozoite protein. Cell Rep 2023; 42:113330. [PMID: 38007690 PMCID: PMC10720262 DOI: 10.1016/j.celrep.2023.113330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 11/27/2023] Open
Abstract
IGHV3-33-encoded antibodies are prevalent in the human humoral response against the Plasmodium falciparum circumsporozoite protein (PfCSP). Among VH3-33 antibodies, cross-reactivity between PfCSP major repeat (NANP), minor (NVDP), and junctional (NPDP) motifs is associated with high affinity and potent parasite inhibition. However, the molecular basis of antibody cross-reactivity and the relationship with efficacy remain unresolved. Here, we perform an extensive structure-function characterization of 12 VH3-33 anti-PfCSP monoclonal antibodies (mAbs) with varying degrees of cross-reactivity induced by immunization of mice expressing a human immunoglobulin gene repertoire. We identify residues in the antibody paratope that mediate cross-reactive binding and delineate four distinct epitope conformations induced by antibody binding, with one consistently associated with high protective efficacy and another that confers comparably potent inhibition of parasite liver invasion. Our data show a link between molecular features of cross-reactive VH3-33 mAb binding to PfCSP and mAb potency, relevant for the development of antibody-based interventions against malaria.
Collapse
|
8
|
Hayashi CTH, Cao Y, Zavala F, Simonyan H, Young CN, Kumar N. Antibodies elicited by Plasmodium falciparum circumsporozoite proteins lacking sequentially deleted C-terminal amino acids reveal mouse strain and epitopes specific differences. Vaccine 2023; 41:6824-6833. [PMID: 37827967 PMCID: PMC11004087 DOI: 10.1016/j.vaccine.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Malaria affects ∼ ¼ billion people globally and requires the development of additional tools to aid in elimination efforts. The recently approved RTS,S/AS01 vaccine represents a positive step, however, the moderate efficacy necessitates the development of more efficacious vaccines. PfCSP is a key target antigen for pre-erythrocytic vaccines aimed at preventing Plasmodium falciparum malaria infections. Epitopes within the central repeat region and at the junction of the repeat and N-terminal domain are well documented as major protective B cell epitopes. On the other hand, a majority of antibodies against the epitopes in the C-terminal domain, have been shown to be non-protective against sporozoite challenge. The C-terminal domain, however, contains CD4+ and CD8+ T cell epitopes previously shown to be important for regulating immune responses. The present study was designed to further explore the immunomodulatory potential of the C-terminal domain using DNA vaccines encoding PfCSP with sequential C-terminal truncations following known T cell epitopes. Five DNA vaccines encoding different truncations of PfCSP within the C-terminal domain were administered via intramuscular route and in vivo electroporation for effective immunogenicity. Protection in mice was evaluated by challenge with transgenic P. berghei expressing PfCSP. In Balb/c mice, antibody responses and protective efficacy were both affected progressively with sequential deletion of C-terminal amino acid residues. Similar studies in C57Bl/6 mice revealed that immunizations with plasmids encoding truncated PfCSP showed partial protection from sporozoite challenge with no significant differences in antibody titers observed compared to full-length PfCSP DNA immunized mice. Further analysis revealed murine strain-specific differences in the recognition of specific epitopes.
Collapse
MESH Headings
- Animals
- Protozoan Proteins/immunology
- Protozoan Proteins/genetics
- Malaria Vaccines/immunology
- Malaria Vaccines/administration & dosage
- Malaria Vaccines/genetics
- Mice
- Plasmodium falciparum/immunology
- Plasmodium falciparum/genetics
- Antibodies, Protozoan/immunology
- Vaccines, DNA/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/immunology
- Mice, Inbred BALB C
- Female
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Epitopes/immunology
- Epitopes/genetics
- Sporozoites/immunology
Collapse
|
9
|
Hayashi CTH, Cao Y, Clark LC, Tripathi AK, Zavala F, Dwivedi G, Knox J, Alameh MG, Lin PJC, Tam YK, Weissman D, Kumar N. Author Correction: mRNA-LNP expressing PfCSP and Pfs25 vaccine candidates targeting infection and transmission of Plasmodium falciparum. NPJ Vaccines 2023; 8:115. [PMID: 37567884 PMCID: PMC10421895 DOI: 10.1038/s41541-023-00723-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
|
10
|
Martin GM, Torres JL, Pholcharee T, Oyen D, Flores-Garcia Y, Gibson G, Moskovitz R, Beutler N, Jung DD, Copps J, Lee WH, Gonzalez-Paez G, Emerling D, MacGill RS, Locke E, King CR, Zavala F, Wilson IA, Ward AB. Affinity-matured homotypic interactions induce spectrum of PfCSP structures that influence protection from malaria infection. Nat Commun 2023; 14:4546. [PMID: 37507365 PMCID: PMC10382551 DOI: 10.1038/s41467-023-40151-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The generation of high-quality antibody responses to Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP), the primary surface antigen of Pf sporozoites, is paramount to the development of an effective malaria vaccine. Here we present an in-depth structural and functional analysis of a panel of potent antibodies encoded by the immunoglobulin heavy chain variable (IGHV) gene IGHV3-33, which is among the most prevalent and potent antibody families induced in the anti-PfCSP immune response and targets the Asn-Ala-Asn-Pro (NANP) repeat region. Cryo-electron microscopy (cryo-EM) reveals a remarkable spectrum of helical antibody-PfCSP structures stabilized by homotypic interactions between tightly packed fragments antigen binding (Fabs), many of which correlate with somatic hypermutation. We demonstrate a key role of these mutated homotypic contacts for high avidity binding to PfCSP and in protection from Pf malaria infection. Together, these data emphasize the importance of anti-homotypic affinity maturation in the frequent selection of IGHV3-33 antibodies and highlight key features underlying the potent protection of this antibody family.
Collapse
|
11
|
Aguirre-Botero MC, Wang LT, Formaglio P, Aliprandini E, Thiberge JM, Schön A, Flores-Garcia Y, Mathis-Torres S, Flynn BJ, da Silva Pereira L, Le Duff Y, Hurley M, Nacer A, Bowyer PW, Zavala F, Idris AH, Francica JR, Seder RA, Amino R. Cytotoxicity of human antibodies targeting the circumsporozoite protein is amplified by 3D substrate and correlates with protection. Cell Rep 2023; 42:112681. [PMID: 37389992 PMCID: PMC10468621 DOI: 10.1016/j.celrep.2023.112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/14/2023] [Accepted: 06/06/2023] [Indexed: 07/02/2023] Open
Abstract
Human monoclonal antibodies (hmAbs) targeting the Plasmodium falciparum circumsporozoite protein (PfCSP) on the sporozoite surface are a promising tool for preventing malaria infection. However, their mechanisms of protection remain unclear. Here, using 13 distinctive PfCSP hmAbs, we provide a comprehensive view of how PfCSP hmAbs neutralize sporozoites in host tissues. Sporozoites are most vulnerable to hmAb-mediated neutralization in the skin. However, rare but potent hmAbs additionally neutralize sporozoites in the blood and liver. Efficient protection in tissues mainly associates with high-affinity and high-cytotoxicity hmAbs inducing rapid parasite loss-of-fitness in the absence of complement and host cells in vitro. A 3D-substrate assay greatly enhances hmAb cytotoxicity and mimics the skin-dependent protection, indicating that the physical stress imposed on motile sporozoites by the skin is crucial for unfolding the protective potential of hmAbs. This functional 3D cytotoxicity assay can thus be useful for downselecting potent anti-PfCSP hmAbs and vaccines.
Collapse
|
12
|
Hayashi CTH, Cao Y, Clark LC, Tripathi AK, Zavala F, Dwivedi G, Knox J, Alameh MG, Lin PJC, Tam YK, Weissman D, Kumar N. mRNA-LNP expressing PfCSP and Pfs25 vaccine candidates targeting infection and transmission of Plasmodium falciparum. NPJ Vaccines 2022; 7:155. [PMID: 36456563 PMCID: PMC9715627 DOI: 10.1038/s41541-022-00577-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
Malaria is a deadly disease responsible for between 550,000 and 627,000 deaths annually. There is a pressing need to develop vaccines focused on malaria elimination. The complex lifecycle of Plasmodium falciparum provides opportunities not only to target the infectious sporozoite stage, introduced by anopheline mosquitoes, but also the sexual stages, which are ingested by mosquitoes during blood feeding, leading to parasite transmission. It is widely recognized that a vaccine targeting multiple stages would induce efficacious transmission reducing immunity. Technological advancements offer new vaccine platforms, such as mRNA-LNPs, which can be used to develop highly effective malarial vaccines. We evaluated the immunogenicity of two leading P. falciparum vaccine candidates, Pfs25 and PfCSP, delivered as mRNA-LNP vaccines. Both vaccines induced extremely potent immune responses when administered alone or in combination, which were superior to Pfs25 and PfCSP DNA vaccine formulations. Purified IgGs from Pfs25 mRNA-LNPs immunized mice were highly potent in reducing malaria transmission to mosquitoes. Additionally, mice after three and four immunizations with PfCSP mRNA-LNP provided evidence for varying degrees of protection against sporozoite challenge. The comparison of immune responses and stage-specific functional activity induced by each mRNA-LNP vaccine, administered alone or in combination, also supports the development of an effective combination vaccine without any risk of immune interference for targeting malaria parasites at various life cycle stages. A combination of vaccines targeting both the infective stage and sexual/midgut stages is expected to interrupt malaria transmission, which is critical for achieving elimination goals.
Collapse
|
13
|
Kucharska I, Binter Š, Murugan R, Scally SW, Ludwig J, Prieto K, Thai E, Costa G, Li K, Horn GQ, Flores-Garcia Y, Bosch A, Sicard T, Rubinstein JL, Zavala F, Dennison SM, Tomaras GD, Levashina EA, Kellam P, Wardemann H, Julien JP. High-density binding to Plasmodium falciparum circumsporozoite protein repeats by inhibitory antibody elicited in mouse with human immunoglobulin repertoire. PLoS Pathog 2022; 18:e1010999. [PMID: 36441829 PMCID: PMC9762590 DOI: 10.1371/journal.ppat.1010999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/19/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Antibodies targeting the human malaria parasite Plasmodium falciparum circumsporozoite protein (PfCSP) can prevent infection and disease. PfCSP contains multiple central repeating NANP motifs; some of the most potent anti-infective antibodies against malaria bind to these repeats. Multiple antibodies can bind the repeating epitopes concurrently by engaging into homotypic Fab-Fab interactions, which results in the ordering of the otherwise largely disordered central repeat into a spiral. Here, we characterize IGHV3-33/IGKV1-5-encoded monoclonal antibody (mAb) 850 elicited by immunization of transgenic mice with human immunoglobulin loci. mAb 850 binds repeating NANP motifs with picomolar affinity, potently inhibits Plasmodium falciparum (Pf) in vitro and, when passively administered in a mouse challenge model, reduces liver burden to a similar extent as some of the most potent anti-PfCSP mAbs yet described. Like other IGHV3-33/IGKV1-5-encoded anti-NANP antibodies, mAb 850 primarily utilizes its HCDR3 and germline-encoded aromatic residues to recognize its core NANP motif. Biophysical and cryo-electron microscopy analyses reveal that up to 19 copies of Fab 850 can bind the PfCSP repeat simultaneously, and extensive homotypic interactions are observed between densely-packed PfCSP-bound Fabs to indirectly improve affinity to the antigen. Together, our study expands on the molecular understanding of repeat-induced homotypic interactions in the B cell response against PfCSP for potently protective mAbs against Pf infection.
Collapse
|
14
|
Tursi NJ, Reeder SM, Flores-Garcia Y, Bah MA, Mathis-Torres S, Salgado-Jimenez B, Esquivel R, Xu Z, Chu JD, Humeau L, Patel A, Zavala F, Weiner DB. Engineered DNA-encoded monoclonal antibodies targeting Plasmodium falciparum circumsporozoite protein confer single dose protection in a murine malaria challenge model. Sci Rep 2022; 12:14313. [PMID: 35995959 PMCID: PMC9395511 DOI: 10.1038/s41598-022-18375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022] Open
Abstract
Novel approaches for malaria prophylaxis remain important. Synthetic DNA-encoded monoclonal antibodies (DMAbs) are a promising approach to generate rapid, direct in vivo host-generated mAbs with potential benefits in production simplicity and distribution coupled with genetic engineering. Here, we explore this approach in a malaria challenge model. We engineered germline-reverted DMAbs based on human mAb clones CIS43, 317, and L9 which target a junctional epitope, major repeat, and minor repeat of the Plasmodium falciparum circumsporozoite protein (CSP) respectively. DMAb variants were encoded into a plasmid vector backbone and their expression and binding profiles were characterized. We demonstrate long-term serological expression of DMAb constructs resulting in in vivo efficacy of CIS43 GL and 317 GL in a rigorous mosquito bite mouse challenge model. Additionally, we engineered an Fc modified variant of CIS43 and L9-based DMAbs to ablate binding to C1q to test the impact of complement-dependent Fc function on challenge outcomes. Complement knockout variant DMAbs demonstrated similar protection to that of WT Fc DMAbs supporting the notion that direct binding to the parasite is sufficient for the protection observed. Further investigation of DMAbs for malaria prophylaxis appears of importance.
Collapse
|
15
|
Cao Y, Hayashi CTH, Zavala F, Tripathi AK, Simonyan H, Young CN, Clark LC, Usuda Y, Van Parys JM, Kumar N. Effective Functional Immunogenicity of a DNA Vaccine Combination Delivered via In Vivo Electroporation Targeting Malaria Infection and Transmission. Vaccines (Basel) 2022; 10:1134. [PMID: 35891298 PMCID: PMC9323668 DOI: 10.3390/vaccines10071134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum circumsporozoite protein (PfCSP) and Pfs25 are leading candidates for the development of pre-erythrocytic and transmission-blocking vaccines (TBV), respectively. Although considerable progress has been made in developing PfCSP- and Pfs25-based vaccines, neither have elicited complete protection or transmission blocking in clinical trials. The combination of antigens targeting various life stages is an alternative strategy to develop a more efficacious malaria vaccine. In this study, female and male mice were immunized with DNA plasmids encoding PfCSP and Pfs25, administered alone or in combination via intramuscular in vivo electroporation (EP). Antigen-specific antibodies were analyzed for antibody titers, avidity and isotype by ELISA. Immune protection against sporozoite challenge, using transgenic P. berghei expressing PfCSP and a GFP-luciferase fusion protein (PbPfCSP-GFP/Luc), was assessed by in vivo bioluminescence imaging and blood-stage parasite growth. Transmission reducing activity (TRA) was evaluated in standard membrane feeding assays (SMFA). High levels of PfCSP- and Pfs25-specific antibodies were induced in mice immunized with either DNA vaccine alone or in combination. No difference in antibody titer and avidity was observed for both PfCSP and Pfs25 between the single DNA and combined DNA immunization groups. When challenged by PbPfCSP-GFP/Luc sporozoites, mice immunized with PfCSP alone or combined with Pfs25 revealed significantly reduced liver-stage parasite loads as compared to mice immunized with Pfs25, used as a control. Furthermore, parasite liver loads were negatively correlated with PfCSP-specific antibody levels. When evaluating TRA, we found that immunization with Pfs25 alone or in combination with PfCSP elicited comparable significant transmission reduction. Our studies reveal that the combination of PfCSP and Pfs25 DNAs into a vaccine delivered by in vivo EP in mice does not compromise immunogenicity, infection protection and transmission reduction when compared to each DNA vaccine individually, and provide support for further evaluation of this DNA combination vaccine approach in larger animals and clinical trials.
Collapse
|
16
|
Jelínková L, Flores-Garcia Y, Shapiro S, Roberts BT, Petrovsky N, Zavala F, Chackerian B. A vaccine targeting the L9 epitope of the malaria circumsporozoite protein confers protection from blood-stage infection in a mouse challenge model. NPJ Vaccines 2022; 7:34. [PMID: 35260593 PMCID: PMC8904524 DOI: 10.1038/s41541-022-00457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/04/2022] [Indexed: 11/24/2022] Open
Abstract
Pre-erythrocytic malaria vaccines that induce high-titer, durable antibody responses can potentially provide protection from infection. Here, we engineered a virus-like particle (VLP)-based vaccine targeting a recently described vulnerable epitope at the N-terminus of the central repeat region of the Plasmodium falciparum circumsporozoite protein that is recognized by the potently inhibitory monoclonal antibody L9 and show that immunization with L9 VLPs induces strong antibody responses that provide protection from blood-stage malaria in a mouse infection model.
Collapse
|
17
|
Beutler N, Pholcharee T, Oyen D, Flores-Garcia Y, MacGill RS, Garcia E, Calla J, Parren M, Yang L, Volkmuth W, Locke E, Regules JA, Dutta S, Emerling D, Early AM, Neafsey DE, Winzeler EA, King CR, Zavala F, Burton DR, Wilson IA, Rogers TF. A novel CSP C-terminal epitope targeted by an antibody with protective activity against Plasmodium falciparum. PLoS Pathog 2022; 18:e1010409. [PMID: 35344575 PMCID: PMC8989322 DOI: 10.1371/journal.ppat.1010409] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/07/2022] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
Potent and durable vaccine responses will be required for control of malaria caused by Plasmodium falciparum (Pf). RTS,S/AS01 is the first, and to date, the only vaccine that has demonstrated significant reduction of clinical and severe malaria in endemic cohorts in Phase 3 trials. Although the vaccine is protective, efficacy declines over time with kinetics paralleling the decline in antibody responses to the Pf circumsporozoite protein (PfCSP). Although most attention has focused on antibodies to repeat motifs on PfCSP, antibodies to other regions may play a role in protection. Here, we expressed and characterized seven monoclonal antibodies to the C-terminal domain of CSP (ctCSP) from volunteers immunized with RTS,S/AS01. Competition and crystal structure studies indicated that the antibodies target two different sites on opposite faces of ctCSP. One site contains a polymorphic region (denoted α-ctCSP) and has been previously characterized, whereas the second is a previously undescribed site on the conserved β-sheet face of the ctCSP (denoted β-ctCSP). Antibodies to the β-ctCSP site exhibited broad reactivity with a diverse panel of ctCSP peptides whose sequences were derived from field isolates of P. falciparum whereas antibodies to the α-ctCSP site showed very limited cross reactivity. Importantly, an antibody to the β-site demonstrated inhibition activity against malaria infection in a murine model. This study identifies a previously unidentified conserved epitope on CSP that could be targeted by prophylactic antibodies and exploited in structure-based vaccine design.
Collapse
|
18
|
Wang LT, Hurlburt NK, Schön A, Flynn BJ, Flores-Garcia Y, Pereira LS, Kiyuka PK, Dillon M, Bonilla B, Zavala F, Idris AH, Francica JR, Pancera M, Seder RA. The light chain of the L9 antibody is critical for binding circumsporozoite protein minor repeats and preventing malaria. Cell Rep 2022; 38:110367. [PMID: 35172158 PMCID: PMC8896312 DOI: 10.1016/j.celrep.2022.110367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/17/2021] [Accepted: 01/20/2022] [Indexed: 01/23/2023] Open
Abstract
L9 is a potent human monoclonal antibody (mAb) that preferentially binds two adjacent NVDP minor repeats and cross-reacts with NANP major repeats of the Plasmodium falciparum circumsporozoite protein (PfCSP) on malaria-infective sporozoites. Understanding this mAb's ontogeny and mechanisms of binding PfCSP will facilitate vaccine development. Here, we isolate mAbs clonally related to L9 and show that this B cell lineage has baseline NVDP affinity and evolves to acquire NANP reactivity. Pairing the L9 kappa light chain (L9κ) with clonally related heavy chains results in chimeric mAbs that cross-link two NVDPs, cross-react with NANP, and more potently neutralize sporozoites in vivo compared with their original light chain. Structural analyses reveal that the chimeric mAbs bound minor repeats in a type-1 β-turn seen in other repeat-specific antibodies. These data highlight the importance of L9κ in binding NVDP on PfCSP to neutralize sporozoites and suggest that PfCSP-based immunogens might be improved by presenting ≥2 NVDPs.
Collapse
|
19
|
|
20
|
Flores-Garcia Y, Wang LT, Park M, Asady B, Idris AH, Kisalu NK, Muñoz C, Pereira LS, Francica JR, Seder RA, Zavala F. The P. falciparum CSP repeat region contains three distinct epitopes required for protection by antibodies in vivo. PLoS Pathog 2021; 17:e1010042. [PMID: 34748617 PMCID: PMC8601602 DOI: 10.1371/journal.ppat.1010042] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/18/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
Rare and potent monoclonal antibodies (mAbs) against the Plasmodium falciparum (Pf) circumsporozoite protein (CSP) on infective sporozoites (SPZ) preferentially bind the PfCSP junctional tetrapeptide NPDP or NVDP minor repeats while cross-reacting with NANP central repeats in vitro. The extent to which each of these epitopes is required for protection in vivo is unknown. Here, we assessed whether junction-, minor repeat- and central repeat-preferring human mAbs (CIS43, L9 and 317 respectively) bound and protected against in vivo challenge with transgenic P. berghei (Pb) SPZ expressing either PfCSP with the junction and minor repeats knocked out (KO), or PbCSP with the junction and minor repeats knocked in (KI). In vivo protection studies showed that the junction and minor repeats are necessary and sufficient for CIS43 and L9 to neutralize KO and KI SPZ, respectively. In contrast, 317 required major repeats for in vivo protection. These data establish that human mAbs can prevent malaria infection by targeting three different protective epitopes (NPDP, NVDP, NANP) in the PfCSP repeat region. This report will inform vaccine development and the use of mAbs to passively prevent malaria. Human monoclonal antibodies are a promising approach for preventing malaria. Highly potent human antibodies show preferential binding to the junction or minor repeat regions of the circumsporozoite protein (CSP) of P. falciparum and cross-react to repetitive (NANP) repeats. The requirement for these binding sites for mediating protection in vivo remains unknown. Here, using transgenic P. berghei parasites expressing PfCSP containing deletions of these junctional or minor epitopes, or PbCSP containing additions of these PfCSP epitopes, we demonstrate these epitopes are necessary and sufficient to mediate protection and don’t require cross-reactivity to the NANP repeats. Our findings establish a mechanism of antibody mediated protection in vivo to prevent malaria and provide the rationale for multi-epitope vaccines to increase the breadth of the antibody responses.
Collapse
|
21
|
Reeder SM, Bah MA, Tursi NJ, Brooks RC, Patel A, Esquivel R, Eaton A, Jhun H, Chu J, Kim K, Xu Z, Zavala F, Weiner DB. Strategic Variants of CSP Delivered as SynDNA Vaccines Demonstrate Heterogeneity of Immunogenicity and Protection from Plasmodium Infection in a Murine Model. Infect Immun 2021; 89:e0072820. [PMID: 34152830 PMCID: PMC8445182 DOI: 10.1128/iai.00728-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/27/2021] [Indexed: 11/20/2022] Open
Abstract
Malaria infects millions of people every year, and despite recent advances in controlling disease spread, such as vaccination, it remains a global health concern. The circumsporozoite protein (CSP) has long been acknowledged as a key target in antimalarial immunity. Leveraging the DNA vaccine platform against this formidable pathogen, the following five synthetic DNA vaccines encoding variations of CSP were designed and studied: 3D7, GPI1, ΔGPI, TM, and DD2. Among the single CSP antigen constructs, a range of immunogenicity was observed with ΔGPI generating the most robust immunity. In an intravenous (i.v.) sporozoite challenge, the best protection among vaccinated mice was achieved by ΔGPI, which performed almost as well as the monoclonal antibody 311 (MAb 311) antibody control. Further analyses revealed that ΔGPI develops high-molecular-weight multimers in addition to monomeric CSP. We then compared the immunity generated by ΔGPI versus synDNA mimics for the antimalaria vaccines RTS,S and R21. The anti-CSP antibody responses induced were similar among these three immunogens. T cell responses demonstrated that ΔGPI induced a more focused anti-CSP response. In an infectious mosquito challenge, all three of these constructs generated inhibition of liver-stage infection as well as immunity from blood-stage parasitemia. This study demonstrates that synDNA mimics of complex malaria immunogens can provide substantial protection as can a novel synDNA vaccine ΔGPI.
Collapse
|
22
|
Di Pilato M, Kfuri-Rubens R, Pruessmann JN, Ozga AJ, Messemaker M, Cadilha BL, Sivakumar R, Cianciaruso C, Warner RD, Marangoni F, Carrizosa E, Lesch S, Billingsley J, Perez-Ramos D, Zavala F, Rheinbay E, Luster AD, Gerner MY, Kobold S, Pittet MJ, Mempel TR. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment. Cell 2021; 184:4512-4530.e22. [PMID: 34343496 PMCID: PMC8719451 DOI: 10.1016/j.cell.2021.07.015] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 05/07/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022]
Abstract
Cytotoxic T lymphocyte (CTL) responses against tumors are maintained by stem-like memory cells that self-renew but also give rise to effector-like cells. The latter gradually lose their anti-tumor activity and acquire an epigenetically fixed, hypofunctional state, leading to tumor tolerance. Here, we show that the conversion of stem-like into effector-like CTLs involves a major chemotactic reprogramming that includes the upregulation of chemokine receptor CXCR6. This receptor positions effector-like CTLs in a discrete perivascular niche of the tumor stroma that is densely occupied by CCR7+ dendritic cells (DCs) expressing the CXCR6 ligand CXCL16. CCR7+ DCs also express and trans-present the survival cytokine interleukin-15 (IL-15). CXCR6 expression and IL-15 trans-presentation are critical for the survival and local expansion of effector-like CTLs in the tumor microenvironment to maximize their anti-tumor activity before progressing to irreversible dysfunction. These observations reveal a cellular and molecular checkpoint that determines the magnitude and outcome of anti-tumor immune responses.
Collapse
|
23
|
Suscovich TJ, Fallon JK, Das J, Demas AR, Crain J, Linde CH, Michell A, Natarajan H, Arevalo C, Broge T, Linnekin T, Kulkarni V, Lu R, Slein MD, Luedemann C, Marquette M, March S, Weiner J, Gregory S, Coccia M, Flores-Garcia Y, Zavala F, Ackerman ME, Bergmann-Leitner E, Hendriks J, Sadoff J, Dutta S, Bhatia SN, Lauffenburger DA, Jongert E, Wille-Reece U, Alter G. Mapping functional humoral correlates of protection against malaria challenge following RTS,S/AS01 vaccination. Sci Transl Med 2021; 12:12/553/eabb4757. [PMID: 32718991 DOI: 10.1126/scitranslmed.abb4757] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022]
Abstract
Vaccine development has the potential to be accelerated by coupling tools such as systems immunology analyses and controlled human infection models to define the protective efficacy of prospective immunogens without expensive and slow phase 2b/3 vaccine studies. Among human challenge models, controlled human malaria infection trials have long been used to evaluate candidate vaccines, and RTS,S/AS01 is the most advanced malaria vaccine candidate, reproducibly demonstrating 40 to 80% protection in human challenge studies in malaria-naïve individuals. Although antibodies are critical for protection after RTS,S/AS01 vaccination, antibody concentrations are inconsistently associated with protection across studies, and the precise mechanism(s) by which vaccine-induced antibodies provide protection remains enigmatic. Using a comprehensive systems serological profiling platform, the humoral correlates of protection against malaria were identified and validated across multiple challenge studies. Rather than antibody concentration, qualitative functional humoral features robustly predicted protection from infection across vaccine regimens. Despite the functional diversity of vaccine-induced immune responses across additional RTS,S/AS01 vaccine studies, the same antibody features, antibody-mediated phagocytosis and engagement of Fc gamma receptor 3A (FCGR3A), were able to predict protection across two additional human challenge studies. Functional validation using monoclonal antibodies confirmed the protective role of Fc-mediated antibody functions in restricting parasite infection both in vitro and in vivo, suggesting that these correlates may mechanistically contribute to parasite restriction and can be used to guide the rational design of an improved vaccine against malaria.
Collapse
|
24
|
Pholcharee T, Oyen D, Flores-Garcia Y, Gonzalez-Paez G, Han Z, Williams KL, Volkmuth W, Emerling D, Locke E, Richter King C, Zavala F, Wilson IA. Structural and biophysical correlation of anti-NANP antibodies with in vivo protection against P. falciparum. Nat Commun 2021; 12:1063. [PMID: 33594061 PMCID: PMC7887213 DOI: 10.1038/s41467-021-21221-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/13/2021] [Indexed: 01/07/2023] Open
Abstract
The most advanced P. falciparum circumsporozoite protein-based malaria vaccine, RTS,S/AS01 (RTS,S), confers partial protection but with antibody titers that wane relatively rapidly, highlighting the need to elicit more potent and durable antibody responses. Here, we elucidate crystal structures, binding affinities and kinetics, and in vivo protection of eight anti-NANP antibodies derived from an RTS,S phase 2a trial and encoded by three different heavy-chain germline genes. The structures reinforce the importance of homotypic Fab-Fab interactions in protective antibodies and the overwhelmingly dominant preference for a germline-encoded aromatic residue for recognition of the NANP motif. In this study, antibody apparent affinity correlates best with protection in an in vivo mouse model, with the more potent antibodies also recognizing epitopes with repeating secondary structural motifs of type I β- and Asn pseudo 310 turns; such insights can be incorporated into design of more effective immunogens and antibodies for passive immunization.
Collapse
|
25
|
Kisalu NK, Pereira LD, Ernste K, Flores-Garcia Y, Idris AH, Asokan M, Dillon M, MacDonald S, Shi W, Chen X, Pegu A, Schön A, Zavala F, Balazs AB, Francica JR, Seder RA. Enhancing durability of CIS43 monoclonal antibody by Fc mutation or AAV delivery for malaria prevention. JCI Insight 2021; 6:143958. [PMID: 33332286 PMCID: PMC7934869 DOI: 10.1172/jci.insight.143958] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/10/2020] [Indexed: 01/02/2023] Open
Abstract
CIS43 is a potent neutralizing human mAb that targets a highly conserved "junctional" epitope in the Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP). Enhancing the durability of CIS43 in vivo will be important for clinical translation. Here, 2 approaches were used to improve the durability of CIS43 in vivo while maintaining potent neutralization. First, the Fc domain was modified with the LS mutations (CIS43LS) to increase CIS43 binding affinity for the neonatal Fc receptor (FcRn). CIS43LS and CIS43 showed comparable in vivo protective efficacy. CIS43LS had 9- to 13-fold increased binding affinity for human (6.2 nM versus 54.2 nM) and rhesus (25.1 nM versus 325.8 nM) FcRn at endosomal pH 6.0 compared with CIS43. Importantly, the half-life of CIS43LS in rhesus macaques increased from 22 days to 39 days compared with CIS43. The second approach for sustaining antibody levels of CIS43 in vivo is through adeno-associated virus (AAV) expression. Mice administered once with AAV-expressing CIS43 had sustained antibody levels of approximately 300 μg/mL and mediated protection against sequential malaria challenges up to 36 weeks. Based on these data, CIS43LS has advanced to phase I clinical trials, and AAV delivery provides a potential next-generation approach for malaria prevention.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antibodies, Anti-Idiotypic/biosynthesis
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/genetics
- Antibodies, Protozoan/administration & dosage
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/genetics
- Dependovirus/genetics
- Female
- Humans
- Immunoglobulin Fc Fragments/administration & dosage
- Immunoglobulin Fc Fragments/genetics
- Macaca mulatta
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mutagenesis, Site-Directed
- Plasmodium falciparum/immunology
- Protozoan Proteins/immunology
Collapse
|