1
|
Sklenárová D, Hlaváček A, Křivánková J, Brandmeier JC, Weisová J, Řiháček M, Gorris HH, Skládal P, Farka Z. Single-molecule microfluidic assay for prostate-specific antigen based on magnetic beads and upconversion nanoparticles. LAB ON A CHIP 2024; 24:3536-3545. [PMID: 38946347 DOI: 10.1039/d4lc00346b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Early-stage diagnosis of prostatic carcinoma is essential for successful treatment and, thus, significant prognosis improvement. In laboratory practice, the standard non-invasive diagnostic approach is the immunochemical detection of the associated biomarker, prostate-specific antigen (PSA). Ultrasensitive detection of PSA is essential for both diagnostic and recurrence monitoring purposes. To achieve exceptional sensitivity, we have developed a microfluidic device with a flow-through cell for single-molecule analysis using photon-upconversion nanoparticles (UCNPs) as a detection label. For this purpose, magnetic microparticles (MBs) were first optimized for the capture and preconcentration of PSA and then used to implement a bead-based upconversion-linked immunoassay (ULISA) in the microfluidic device. The digital readout based on counting single nanoparticle-labeled PSA molecules on MBs enabled a detection limit of 1.04 pg mL-1 (36 fM) in 50% fetal bovine serum, which is an 11-fold improvement over the respective analog MB-based ULISA. The microfluidic technique conferred several other advantages, such as easy implementation and the potential for achieving high-throughput analysis. Finally, it was proven that the microfluidic setup is suitable for clinical sample analysis, showing a good correlation with a reference electrochemiluminescence assay (recovery rates between 97% and 105%).
Collapse
|
2
|
Máčala J, Makhneva E, Hlaváček A, Kopecký M, Gorris HH, Skládal P, Farka Z. Upconversion Nanoparticle-Based Dot-Blot Immunoassay for Quantitative Biomarker Detection. Anal Chem 2024; 96:10237-10245. [PMID: 38870418 PMCID: PMC11209662 DOI: 10.1021/acs.analchem.4c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Dot-blot immunoassays are widely used for the user-friendly detection of clinical biomarkers. However, the majority of dot-blot assays have only limited sensitivity and are only used for qualitative or semiquantitative analysis. To overcome this limitation, we have employed labels based on photon-upconversion nanoparticles (UCNPs) that exhibit anti-Stokes luminescence and can be detected without optical background interference. First, the dot-blot immunoassay on a nitrocellulose membrane was optimized for the quantitative analysis of human serum albumin (HSA), resulting in a limit of detection (LOD) of 0.19 ng/mL and a signal-to-background ratio (S/B) of 722. Commercial quantum dots were used as a reference label, reaching the LOD of 4.32 ng/mL and the S/B of 3, clearly indicating the advantages of UCNPs. In addition, the potential of UCNP-based dot-blot for real sample analysis was confirmed by analyzing spiked urine samples, reaching the LOD of 0.24 ng/mL and recovery rates from 79 to 123%. Furthermore, we demonstrated the versatility and robustness of the assay by adapting it to the detection of two other clinically relevant biomarkers, prostate-specific antigen (PSA) and cardiac troponin (cTn), reaching the LODs in spiked serum of 9.4 pg/mL and 0.62 ng/mL for PSA and cTn, respectively. Finally, clinical samples of patients examined for prostate cancer were analyzed, achieving a strong correlation with the reference electrochemiluminescence immunoassay (recovery rates from 89 to 117%). The achieved results demonstrate that UCNPs are highly sensitive labels that enable the development of dot-blot immunoassays for quantitative analysis of low-abundance biomarkers.
Collapse
|
3
|
Hosseinifard M, Jurga N, Brandmeier JC, Farka Z, Hlaváček A, Gorris HH, Grzyb T, Ekner-Grzyb A. Influence of surface modification and size of lanthanide-doped upconverting nanoparticles on wheat seedlings. CHEMOSPHERE 2024; 347:140629. [PMID: 37949184 DOI: 10.1016/j.chemosphere.2023.140629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
In recent years, nanotechnology has found widespread applications in environmental monitoring, medical applications, plant fertilisers, cosmetics and others. Therefore, it is important to study nanomaterials' influence and subsequent risks to the environment and organisms (from production to disposal). Therefore, in the present study, the toxic effects of two surface modifications (poly (ethylene glycol)-neridronate, PEG-Ner and poly (acrylic acid), PAA) in comparison to unmodified, 26 nm- and 52 nm-sized core@shell lanthanide-doped upconverting nanoparticles (UCNPs, NaYF4:Yb3+,Er3+@NaYF4) were analysed. Wheat seedlings (Triticum aestivum L.) were chosen as a model organism since this species is one of the most widely cultivated crops. The influence of UCNPs (at concentrations of 0, 10, 50, and 100 μg/mL) on germination percentage, germination rate and growth was studied based on morphological parameters such as root number, root and hypocotyl length, and root and hypocotyl mass. In addition, an assay based on Evans blue staining was conducted to analyse damaged cell membranes and cell death. The type, size and concentration of UCNPs influenced the growth but not the germination of wheat. 52-nm-sized ligand-free UCNPs and the 26-nm-sized UCNPs/PAA decreased plant growth. Moreover, the ligand-free 26-nm-sized UCNPs interacted with the root cell membranes of seedlings. No significant changes were observable regarding viability (tetrazolium chloride reduction assay), oxidative stress and electrolyte leakage from root cells in plants incubated with ligand-free 26-nm-sized UCNPs. Overall, we have shown that the ligand-free UCNPs (of both sizes) had the strongest toxic effect; PAA-modified UCNPs were toxic only at smaller sizes and PEG-Ner-modified UCNPs had no toxic impact. Therefore, PEG-Ner was identified as the safest surface compound among the UCNPs investigated in the study, which may neutralise the harmful effects of nanoparticles on plants.
Collapse
|
4
|
Farka Z, Brandmeier JC, Mickert MJ, Pastucha M, Lacina K, Skládal P, Soukka T, Gorris HH. Nanoparticle-Based Bioaffinity Assays: From the Research Laboratory to the Market. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307653. [PMID: 38039956 DOI: 10.1002/adma.202307653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Advances in the development of new biorecognition elements, nanoparticle-based labels as well as instrumentation have inspired the design of new bioaffinity assays. This review critically discusses the potential of nanoparticles to replace current enzymatic or molecular labels in immunoassays and other bioaffinity assays. Successful implementations of nanoparticles in commercial assays and the need for rapid tests incorporating nanoparticles in different roles such as capture support, signal generation elements, and signal amplification systems are highlighted. The limited number of nanoparticles applied in current commercial assays can be explained by challenges associated with the analysis of real samples (e.g., blood, urine, or nasal swabs) that are difficult to resolve, particularly if the same performance can be achieved more easily by conventional labels. Lateral flow assays that are based on the visual detection of the red-colored line formed by colloidal gold are a notable exception, exemplified by SARS-CoV-2 rapid antigen tests that have moved from initial laboratory testing to widespread market adaption in less than two years.
Collapse
|
5
|
Drozdowski A, Jurga N, Przybylska D, Brandmeier JC, Farka Z, Gorris HH, Grzyb T. Bright photon upconversion in LiYbF 4:Tm 3+@LiYF 4 nanoparticles and their application for singlet oxygen generation and in immunoassay for SARS-CoV-2 nucleoprotein. J Colloid Interface Sci 2023; 649:49-57. [PMID: 37336153 PMCID: PMC10257885 DOI: 10.1016/j.jcis.2023.06.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Photon upconversion is an intensively investigated phenomenon in the materials sciences due to its unique applications, mainly in biomedicine for disease prevention and treatment. This study reports the synthesis and properties of tetragonal LiYbF4:Tm3+@LiYF4 core@shell nanoparticles (NPs) and their applications. The NPs had sizes ranging from 18.5 to 23.7 nm. As a result of the energy transfer between Yb3+ and Tm3+ ions, the synthesized NPs show intense emission in the ultraviolet (UV) range up to 347 nm under 975 nm excitation. The bright emission in the UV range allows for singlet oxygen generation in the presence of hematoporphyrin on the surface of NPs. Our studies show that irradiation with a 975 nm laser of the functionalized NPs allows for the production of amounts of singlet oxygen easily detectable by Singlet Oxygen Sensor Green. The high emission intensity of NPs at 800 nm allowed the application of the synthesized NPs in an upconversion-linked immunosorbent assay (ULISA) for highly sensitive detection of the nucleoprotein from SARS-CoV-2, the causative agent of Covid-19. This article proves that LiYbF4:Tm3+@LiYF4 core@shell nanoparticles can be perfect alternatives for the most commonly studied upconverting NPs based on the NaYF4 host compound and are good candidates for biomedical applications.
Collapse
|
6
|
Gorris HH, Walt DR. Otto S. Wolfbeis (1947-2023). Angew Chem Int Ed Engl 2023; 62:e202311828. [PMID: 37695091 DOI: 10.1002/anie.202311828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Otto Wolfbeis, Professor emeritus of Analytical Chemistry at the University of Regensburg, passed away on June 1, 2023. Along with his seminal work on optical sensors and fluorescent (nano)materials, he will be remembered as an outstanding researcher who inspired many talents around the world.
Collapse
|
7
|
Brandmeier JC, Jurga N, Grzyb T, Hlaváček A, Obořilová R, Skládal P, Farka Z, Gorris HH. Digital and Analog Detection of SARS-CoV-2 Nucleocapsid Protein via an Upconversion-Linked Immunosorbent Assay. Anal Chem 2023; 95:4753-4759. [PMID: 36916131 PMCID: PMC10018451 DOI: 10.1021/acs.analchem.2c05670] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The COVID-19 crisis requires fast and highly sensitive tests for the early stage detection of the SARS-CoV-2 virus. For detecting the nucleocapsid protein (N protein), the most abundant viral antigen, we have employed upconversion nanoparticles that emit short-wavelength light under near-infrared excitation (976 nm). The anti-Stokes emission avoids autofluorescence and light scattering and thus enables measurements without optical background interference. The sandwich upconversion-linked immunosorbent assay (ULISA) can be operated both in a conventional analog mode and in a digital mode based on counting individual immune complexes. We have investigated how different antibody combinations affect the detection of the wildtype N protein and the detection of SARS-CoV-2 (alpha variant) in lysed culture fluid via the N protein. The ULISA yielded a limit of detection (LOD) of 1.3 pg/mL (27 fM) for N protein detection independent of the analog or digital readout, which is approximately 3 orders of magnitude more sensitive than conventional enzyme-linked immunosorbent assays or commercial lateral flow assays for home testing. In the case of SARS-CoV-2, the digital ULISA additionally improved the LOD by a factor of 10 compared to the analog readout.
Collapse
|
8
|
Makhneva E, Sklenárová D, Brandmeier JC, Hlaváček A, Gorris HH, Skládal P, Farka Z. Influence of Label and Solid Support on the Performance of Heterogeneous Immunoassays. Anal Chem 2022; 94:16376-16383. [DOI: 10.1021/acs.analchem.2c03543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Gorris HH, Farka Z. Up and down the spectrum: upconversion nanocrystal and semiconductor material fused into a single nanocomposite. LIGHT, SCIENCE & APPLICATIONS 2022; 11:179. [PMID: 35701392 PMCID: PMC9197932 DOI: 10.1038/s41377-022-00875-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A nanocomposite consisting of a cubic EuSe semiconductor material grown on a hexagonal upconversion nanoparticle has overcome the crystal lattice mismatch that typically prevents the epitaxial growth of such heterogeneous nanocrystals. Eu3+ at the interface layer shows its characteristic red emission band both under UV excitation light due to energy transfer from the semiconductor and under NIR excitation light due to energy transfer after photon-upconversion. Data storage and security applications are suggested for this new nanocomposite.
Collapse
|
10
|
Gorris HH, Soukka T. What Digital Immunoassays Can Learn from Ambient Analyte Theory: A Perspective. Anal Chem 2022; 94:6073-6083. [PMID: 35404586 DOI: 10.1021/acs.analchem.1c05591] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Immunoassays are important tools for clinical diagnosis as well as environmental and food analysis because they enable highly sensitive and quantitative measurements of analyte concentrations. In the 1980s, Roger Ekins suggested to improve the sensitivity of immunoassays by employing microspot assays, which are carried out under ambient analyte conditions and do not change the bulk analyte concentration of a sample during a measurement. More recently, the measurement of single analyte molecules has additionally attracted wide research interest. Although the ability to detect a single analyte molecule is not synonymous with the highest analytical sensitivity, single-molecule detection makes new routes accessible to avoiding background noise. This perspective follows the development of solid-phase immunoassays from the design of label techniques to single-molecule (digital) assays against the backdrop of Ekins's fundamental work on immunoassay theory. The essential aspects of both ambient analyte and digital assay approaches are presented as a guideline to finding a balance between the speed, sensitivity, and precision of immunoassays.
Collapse
|
11
|
Shapoval O, Brandmeier JC, Nahorniak M, Oleksa V, Makhneva E, Gorris HH, Farka Z, Horák D. PMVEMA-coated upconverting nanoparticles for upconversion-linked immunoassay of cardiac troponin. Talanta 2022; 244:123400. [PMID: 35395457 DOI: 10.1016/j.talanta.2022.123400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022]
Abstract
Surface engineering of upconverting nanoparticles (UCNPs) is crucial for their bioanalytical applications. Here, an antibody specific to cardiac troponin I (cTnI), an important biomarker for acute myocardial infection, was covalently immobilized on the surface of UCNPs to prepare a label for the detection of cTnI biomarker in an upconversion-linked immunoassay (ULISA). Core-shell UCNPs (NaYF4:Yb,Tm@NaYF4) were first coated with poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) and then conjugated to antibodies. The morphology (size and uniformity), hydrodynamic diameter, chemical composition, and amount of coating on the of UCNPs, as well as their upconversion luminescence, colloidal stability, and leaching of Y3+ ions into the surrounding media, were determined. The developed ULISA allowed reaching a limit of detection (LOD) of 0.13 ng/ml and 0.25 ng/ml of cTnI in plasma and serum, respectively, which represents 12- and 2-fold improvement to conventional enzyme-linked immunosorbent based on the same immunoreagents.
Collapse
|
12
|
Hlaváček A, Farka Z, Mickert MJ, Kostiv U, Brandmeier JC, Horák D, Skládal P, Foret F, Gorris HH. Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detection and imaging. Nat Protoc 2022; 17:1028-1072. [PMID: 35181766 DOI: 10.1038/s41596-021-00670-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
The detection of cancer biomarkers in histological samples and blood is of paramount importance for clinical diagnosis. Current methods are limited in terms of sensitivity, hindering early detection of disease. We have overcome the shortcomings of currently available staining and fluorescence labeling methods by taking an integrative approach to establish photon-upconversion nanoparticles (UCNP) as a powerful platform for cancer detection. These nanoparticles are readily synthesized in different sizes to yield efficient and tunable short-wavelength light emission under near-infrared excitation, which eliminates optical background interference of the specimen. Here we present a protocol for the synthesis of UCNPs by high-temperature co-precipitation or seed-mediated growth by thermal decomposition, surface modification by silica or poly(ethylene glycol) that renders the particles resistant to nonspecific binding, and the conjugation of streptavidin or antibodies for biological detection. To detect blood-based biomarkers, we present an upconversion-linked immunosorbent assay for the analog and digital detection of the cancer marker prostate-specific antigen. When applied to immunocytochemistry analysis, UCNPs enable the detection of the breast cancer marker human epidermal growth factor receptor 2 with a signal-to-background ratio 50-fold higher than conventional fluorescent labels. UCNP synthesis takes 4.5 d, the preparation of the antibody-silica-UCNP conjugate takes 3 d, the streptavidin-poly(ethylene glycol)-UCNP conjugate takes 2-3 weeks, upconversion-linked immunosorbent assay takes 2-4 d and immunocytochemistry takes 8-10 h. The procedures can be performed after standard laboratory training in nanomaterials research.
Collapse
|
13
|
Brandmeier JC, Raiko K, Farka Z, Peltomaa R, Mickert MJ, Hlaváček A, Skládal P, Soukka T, Gorris HH. Effect of Particle Size and Surface Chemistry of Photon-Upconversion Nanoparticles on Analog and Digital Immunoassays for Cardiac Troponin. Adv Healthc Mater 2021; 10:e2100506. [PMID: 34263562 PMCID: PMC11469035 DOI: 10.1002/adhm.202100506] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/22/2021] [Indexed: 12/26/2022]
Abstract
Sensitive immunoassays are required for troponin, a low-abundance cardiac biomarker in blood. In contrast to conventional (analog) assays that measure the integrated signal of thousands of molecules, digital assays are based on counting individual biomarker molecules. Photon-upconversion nanoparticles (UCNP) are an excellent nanomaterial for labeling and detecting single biomarker molecules because their unique anti-Stokes emission avoids optical interference, and single nanoparticles can be reliably distinguished from the background signal. Here, the effect of the surface architecture and size of UCNP labels on the performance of upconversion-linked immunosorbent assays (ULISA) is critically assessed. The size, brightness, and surface architecture of UCNP labels are more important for measuring low troponin concentrations in human plasma than changing from an analog to a digital detection mode. Both detection modes result approximately in the same assay sensitivity, reaching a limit of detection (LOD) of 10 pg mL-1 in plasma, which is in the range of troponin concentrations found in the blood of healthy individuals.
Collapse
|
14
|
Peltomaa R, Benito-Peña E, Gorris HH, Moreno-Bondi MC. Biosensing based on upconversion nanoparticles for food quality and safety applications. Analyst 2021; 146:13-32. [PMID: 33205784 DOI: 10.1039/d0an01883j] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Food safety and quality regulations inevitably call for sensitive and accurate analytical methods to detect harmful contaminants in food and to ensure safe food for the consumer. Both novel and well-established biorecognition elements, together with different transduction schemes, enable the simple and rapid analysis of various food contaminants. Upconversion nanoparticles (UCNPs) are inorganic nanocrystals that convert near-infrared light into shorter wavelength emission. This unique photophysical feature, along with narrow emission bandwidths and large anti-Stokes shift, render UCNPs excellent optical labels for biosensing because they can be detected without optical background interferences from the sample matrix. In this review, we show how this exciting technique has evolved into biosensing platforms for food quality and safety monitoring and highlight recent applications in the field.
Collapse
|
15
|
Pořízka P, Vytisková K, Obořilová R, Pastucha M, Gábriš I, Brandmeier JC, Modlitbová P, Gorris HH, Novotný K, Skládal P, Kaiser J, Farka Z. Laser-induced breakdown spectroscopy as a readout method for immunocytochemistry with upconversion nanoparticles. Mikrochim Acta 2021; 188:147. [PMID: 33797618 DOI: 10.1007/s00604-021-04816-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/27/2021] [Indexed: 12/16/2022]
Abstract
Immunohistochemistry (IHC) and immunocytochemistry (ICC) are widely used to identify cancerous cells within tissues and cell cultures. Even though the optical microscopy evaluation is considered the gold standard, the limited range of useful labels and narrow multiplexing capabilities create an imminent need for alternative readout techniques. Laser-induced breakdown spectroscopy (LIBS) enables large-scale multi-elemental analysis of the surface of biological samples, e.g., thin section or cell pellet. It is, therefore, a potential alternative for IHC and ICC readout of various labels or tags (Tag-LIBS approach). Here, we introduce Tag-LIBS as a method for the specific determination of HER2 biomarker. The cell pellets were labeled with streptavidin-conjugated upconversion nanoparticles (UCNP) through a primary anti-HER2 antibody and a biotinylated secondary antibody. The LIBS scanning enabled detecting the characteristic elemental signature of yttrium as a principal constituent of UCNP, thus indirectly providing a reliable way to differentiate between HER2-positive BT-474 cells and HER2-negative MDA-MB-231 cells. The comparison of results with upconversion optical microscopy and luminescence intensity scanning confirmed that LIBS is a promising alternative for the IHC and ICC readout.
Collapse
|
16
|
Raith T, Kröninger A, Mickert MJ, Gorris HH, Matysik FM. Enhanced resolution of generator-collector studies of enzymatic structures by means of hydrodynamic scanning electrochemical microscopy. Talanta 2020; 214:120844. [PMID: 32278425 DOI: 10.1016/j.talanta.2020.120844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 11/19/2022]
Abstract
In this report, the effects of forced convection on scanning electrochemical microscopy (SECM) studies of enzymes in the context of the generator-collector mode (G/C mode) were investigated. Forced convection was generated via an electrical high precision stirrer integrated into the electrochemical cell. Circular spots of glucose oxidase were immobilized on a gold support serving as model substrate. The diffusion layer of enzymatically generated H2O2 was characterized recording probe scan curves (PSCs) in z-direction. Furthermore, the enzyme-modified surfaces were investigated via constant-height SECM imaging in feedback mode and in G/C mode. For methodical comparison all sets of experiments were performed in quiescent solution (conventional approach) and with forced convection, respectively. In contrast to a growing diffusion layer without forced convection by applying forced convection, a constant diffusion layer of produced H2O2 was observed. Hence, via hydrodynamic SECM time-independent images within a reasonable time scale of SECM measurements in G/C mode were enabled and their resolution was enhanced.
Collapse
|
17
|
Farka Z, Mickert MJ, Pastucha M, Mikušová Z, Skládal P, Gorris HH. Fortschritte in der optischen Einzelmoleküldetektion: Auf dem Weg zu höchstempfindlichen Bioaffinitätsassays. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Farka Z, Mickert MJ, Pastucha M, Mikušová Z, Skládal P, Gorris HH. Advances in Optical Single-Molecule Detection: En Route to Supersensitive Bioaffinity Assays. Angew Chem Int Ed Engl 2020; 59:10746-10773. [PMID: 31869502 PMCID: PMC7318240 DOI: 10.1002/anie.201913924] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Indexed: 12/11/2022]
Abstract
The ability to detect low concentrations of analytes and in particular low-abundance biomarkers is of fundamental importance, e.g., for early-stage disease diagnosis. The prospect of reaching the ultimate limit of detection has driven the development of single-molecule bioaffinity assays. While many review articles have highlighted the potentials of single-molecule technologies for analytical and diagnostic applications, these technologies are not as widespread in real-world applications as one should expect. This Review provides a theoretical background on single-molecule-or better digital-assays to critically assess their potential compared to traditional analog assays. Selected examples from the literature include bioaffinity assays for the detection of biomolecules such as proteins, nucleic acids, and viruses. The structure of the Review highlights the versatility of optical single-molecule labeling techniques, including enzymatic amplification, molecular labels, and innovative nanomaterials.
Collapse
|
19
|
Kostiv U, Farka Z, Mickert MJ, Gorris HH, Velychkivska N, Pop-Georgievski O, Pastucha M, Odstrčilíková E, Skládal P, Horák D. Versatile Bioconjugation Strategies of PEG-Modified Upconversion Nanoparticles for Bioanalytical Applications. Biomacromolecules 2020; 21:4502-4513. [PMID: 32392042 DOI: 10.1021/acs.biomac.0c00459] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) display highly beneficial photophysical features for background-free bioimaging and bioanalysis; however, they are instable in high ionic strength buffers, have no functional groups, and are nonspecifically interacting. Here, we have prepared NIR-excitable UCNPs that are long-term colloidally stable in buffered media and possess functional groups. Heterobifunctional poly(ethylene glycol) (PEG) linkers bearing neridronate and alkyne or maleimide were attached to UCNPs via a ligand exchange. Streptavidin (SA)-conjugates were prepared by click reaction of UCNP@PEG-alkyne and SA-azide. Antihuman serum albumin pAbF antibody was modified with azide groups and conjugated to UCNP@PEG-alkyne via click reaction; alternatively, the antibody, after mild reduction of its disulfide bonds, was conjugated to UCNP@PEG-maleimide. We employed these nanoconjugates as labels for an upconversion-linked immunosorbent assay. SA-based labels achieved the lowest LOD of 0.17 ng/mL for the target albumin, which was superior compared to a fluorescence immunoassay (LOD 0.59 ng/mL) or an enzyme-linked immunoassay (LOD 0.56 ng/mL).
Collapse
|
20
|
Farka Z, Mickert MJ, Mikušová Z, Hlaváček A, Bouchalová P, Xu W, Bouchal P, Skládal P, Gorris HH. Surface design of photon-upconversion nanoparticles for high-contrast immunocytochemistry. NANOSCALE 2020; 12:8303-8313. [PMID: 32236194 DOI: 10.1039/c9nr10568a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Immunohistochemistry (IHC) and immunocytochemistry (ICC) are routinely employed for the microscopic identification and diagnosis of cancerous cells in histological tissues and cell cultures. The maximally attainable contrast of conventional histological staining techniques, however, is low. While the anti-Stokes emission of photon-upconversion nanoparticles (UCNP) can efficiently eliminate optical background interference, excluding non-specific interactions of the label with the histological sample is equally important for specific immunolabeling. To address both requirements, we have designed and characterized several UCNP-based nanoconjugates as labels for the highly specific detection of the cancer biomarker HER2 on various breast cancer cell lines. An optimized streptavidin-PEG-neridronate-UCNP conjugate provided an unsurpassed signal-to-background ratio of 319, which was 50-fold better than conventional fluorescent labeling under the same experimental conditions. In combination, the absence of optical interference and non-specific binding lays the foundation for computer-based data evaluation in digital pathology.
Collapse
|
21
|
Mickert MJ, Farka Z, Kostiv U, Hlaváček A, Horák D, Skládal P, Gorris HH. Measurement of Sub-femtomolar Concentrations of Prostate-Specific Antigen through Single-Molecule Counting with an Upconversion-Linked Immunosorbent Assay. Anal Chem 2019; 91:9435-9441. [DOI: 10.1021/acs.analchem.9b02872] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Gorris HH, Soukka T, Bednarkiewicz A, Pérez-Prieto J, Hildebrandt N. A new forum for upconversion research: the UPCON conference. Methods Appl Fluoresc 2019; 7:030201. [PMID: 31181562 DOI: 10.1088/2050-6120/ab283b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Conference and Spring School on Properties, Design and Applications of Upconversion Nanomaterials (UPCON) provides a new forum for all experts and newcomers in the field of upconversion research. On the occasion of the second UPCON 2018 in Valencia (Spain), we are pleased to present a collection of 12 reviews and research articles that reflect recent advances in upconversion materials, their unique luminescent properties and many applications spanning from nanoscale thermometry to biomedicine.
Collapse
|
23
|
Poláchová V, Pastucha M, Mikušová Z, Mickert MJ, Hlaváček A, Gorris HH, Skládal P, Farka Z. Click-conjugated photon-upconversion nanoparticles in an immunoassay for honeybee pathogen Melissococcus plutonius. NANOSCALE 2019; 11:8343-8351. [PMID: 30984949 DOI: 10.1039/c9nr01246j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
European foulbrood (EFB) is an infectious disease affecting honeybee larvae caused by the bacterium Melissococcus plutonius. The enzyme-linked immunosorbent assay (ELISA) is the gold standard for antibody-based bacteria detection, however, its sensitivity is not high enough to reveal early-stage EFB infection. Photon-upconversion nanoparticles (UCNPs) are lanthanide-doped nanomaterials that emit light of shorter wavelength under near-infrared (NIR) excitation and thus avoid optical background interference. After conjugation with specific biorecognition molecules, UCNPs can be used as ultrasensitive labels in immunoassays. Here, we introduce a method for conjugation of UCNPs with streptavidin based on copper-free click chemistry, which involves surface modification of UCNPs with alkyne-modified bovine serum albumin (BSA) that prevents the non-specific binding and provides reactive groups for conjugation with streptavidin-azide. To develop a sandwich upconversion-linked immunosorbent assay (ULISA) for M. plutonius detection, we have prepared a rabbit polyclonal anti-Melissococcus antibody. The specific capture of the bacteria was followed by binding of biotinylated antibody and UCNP-BSA-streptavidin conjugate for a highly sensitive upconversion readout. The assay yielded an LOD of 340 CFU mL-1 with a wide working range up to 109 CFU mL-1, which is 400 times better than the LOD of the conventional ELISA. The practical applicability of the ULISA was successfully demonstrated by detecting M. plutonius in spiked real samples of bees, larvae and bottom hive debris. These results show a great potential of the assay for early diagnosis of EFB, which can prevent uncontrolled spreading of the infection and losses of honeybee colonies.
Collapse
|
24
|
Oliveira H, Bednarkiewicz A, Falk A, Fröhlich E, Lisjak D, Prina‐Mello A, Resch S, Schimpel C, Vrček IV, Wysokińska E, Gorris HH. Critical Considerations on the Clinical Translation of Upconversion Nanoparticles (UCNPs): Recommendations from the European Upconversion Network (COST Action CM1403). Adv Healthc Mater 2019; 8:e1801233. [PMID: 30536962 DOI: 10.1002/adhm.201801233] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/20/2018] [Indexed: 11/07/2022]
Abstract
The unique photoluminescent properties of upconversion nanoparticles (UCNPs) have attracted worldwide research interest and inspired many bioanalytical applications. The anti-Stokes emission with long luminescence lifetimes, narrow and multiple absorption and emission bands, and excellent photostability enable background-free and multiplexed detection in deep tissues. So far, however, in vitro and in vivo applications of UCNPs are restricted to the laboratory use due to safety concerns. Possible harmful effects may originate from the chemical composition but also from the small size of UCNPs. Potential end users must rely on well-founded safety data. Thus, a risk to benefit assessment of the envisioned combined therapeutic and diagnostic ("theranostic") applications is fundamentally important to bridge the translational gap between laboratory and clinics. The COST Action CM1403 "The European Upconversion Network-From the Design of Photon-Upconverting Nanomaterials to Biomedical Applications" integrates research on UCNPs ranging from fundamental materials synthesis and research, detection instrumentation, biofunctionalization, and bioassay development to toxicity testing. Such an interdisciplinary approach is necessary for a better and safer theranostic use of UCNPs. Here, the status of nanotoxicity research on UCNPs is compared to other nanomaterials, and routes for the translation of UCNPs into clinical applications are delineated.
Collapse
|
25
|
Hlaváček A, Mickert MJ, Soukka T, Lahtinen S, Tallgren T, Pizúrová N, Król A, Gorris HH. Large-Scale Purification of Photon-Upconversion Nanoparticles by Gel Electrophoresis for Analogue and Digital Bioassays. Anal Chem 2018; 91:1241-1246. [DOI: 10.1021/acs.analchem.8b04488] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|