1
|
Johansen K, Vestergaard M, Spleth P, Hein L, Nielsen HM, Kargo M. Growth and feed efficiency of Nordic Red Dairy Cattle, Holstein, and their F 1 crossbreeds when limiting feed energy concentration in prepubertal heifers. J Dairy Sci 2024:S0022-0302(24)00952-4. [PMID: 38908702 DOI: 10.3168/jds.2024-24904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024]
Abstract
Milk production and overall dairy farm economics depend on rearing dairy heifers. This study investigated the presence of a genotype by environment interaction in Holstein (HOL), Nordic Red Dairy Cattle (RDC), and their F1 crossbreeds (HOLxRDC) when provided different feed rations. The aim of our study was to assess how different energy concentrations in feed rations affect growth, body condition scores, feed intake, and feed efficiency in the 3 groups during the prepubertal period. The 3 breed groups were randomly allocated to receive either a standard or a low energy feed ration. HOL heifers exhibited reduced growth and a lower body condition score when they were fed the low energy feed ration. In contrast, the RDC heifers demonstrated similar growth rates with the different feed rations and maintained similar body condition scores irrespective of feed energy concentration. HOLxRDC crossbred heifers performed as an intermediate between the HOL and RDC groups. There were significant differences in dry matter intake and energy intake in the HOL and HOLxRDC groups depending on feed ration treatment. The RDC heifers had similar feed intake irrespective of treatment. There were no significant differences in the feed conversion ratio between breeds and feed treatments. These results indicate the presence of a genotype by environment interaction in prepubertal HOL and RDC heifers in response to differences in feed ration treatment. Due to the influence of prepubertal growth on future milk production, reproduction, and health status, it is important to be aware of breed-specific requirements during the prepubertal period, particularly in mixed-breed and crossbred groups, to optimize growth rates and production potential.
Collapse
|
2
|
Almeida FC, Patra K, Giannisis A, Niesnerova A, Nandakumar R, Ellis E, Oliveira TG, Nielsen HM. APOE genotype dictates lipidomic signatures in primary human hepatocytes. J Lipid Res 2024; 65:100498. [PMID: 38216055 PMCID: PMC10875595 DOI: 10.1016/j.jlr.2024.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024] Open
Abstract
Apolipoprotein E (APOE) genetic variants are most notably known for their divergent impact on the risk of developing Alzheimer's disease. While APOE genotype has been consistently shown to modulate lipid metabolism in a variety of cellular contexts, the effect of APOE alleles on the lipidome in hepatocytes is unknown. In this study, we investigated the contribution of APOE alleles to lipidomic profiles of donor-derived primary human hepatocytes from 77 subjects. Lipidomic data obtained by liquid chromatography-mass spectrometry were analyzed across ε2/ε3, ε3/ε3, and ε3/ε4 genotypes to reveal how APOE modulates lipid relative levels over age and between groups. Hepatic APOE concentration, measured by ELISA, was assessed for correlation with lipid abundance in subjects grouped as per APOE genotype and sex. APOE genotype-specific differential lipidomic signatures associated with age for multiple lipid classes but did not differ between sexes. Compared to ε2/ε3, ε3/ε4 hepatocytes had higher abundance of acylcarnitines (AC) and acylphosphatidylglycerol (AcylPG) as a class, as well as higher medium and long-chain ACs, AcylPG, phosphatidylglycerol (PG), bis(monoacylglycerol)phosphate (BMP), monoacylglycerol (MG) and diacylglycerol (DG) species. The ε3/ε4 hepatocytes also exhibited a higher abundance of medium and long-chain ACs compared to the ε3/ε3 hepatocytes. Only in the ε3/ε4 hepatocytes, APOE concentration was lower and showed a negative correlation with BMP levels, specifically in females. APOE genotype dictates a differential lipidome in primary human hepatocytes. The lipids involved suggest mitochondrial dysfunction with accompanying alterations in neutral lipid storage, reflective of a general disturbance of free fatty acid metabolism in human hepatocytes with the ε4 allele.
Collapse
|
3
|
Giannisis A, Al-Grety A, Carlsson H, Howell JC, Hu WT, Kultima K, Nielsen HM. Correction: Plasma apolipoprotein E levels, isoform composition, and dimer profile in relation to plasma lipids in racially diverse patients with Alzheimer's disease and mild cognitive impairment. Alzheimers Res Ther 2023; 15:160. [PMID: 37759231 PMCID: PMC10523732 DOI: 10.1186/s13195-023-01306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
|
4
|
Giannisis A, Al-Grety A, Carlsson H, Howell JC, Hu WT, Kultima K, Nielsen HM. Plasma apolipoprotein E levels, isoform composition, and dimer profile in relation to plasma lipids in racially diverse patients with Alzheimer's disease and mild cognitive impairment. Alzheimers Res Ther 2023; 15:119. [PMID: 37400888 PMCID: PMC10316569 DOI: 10.1186/s13195-023-01262-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND The APOEε4-promoted risk of Alzheimer's disease (AD) is lower in Black/African-Americans (B/AAs), compared to non-Hispanic whites (NHWs). Previous studies reported lower plasma apolipoprotein E (apoE) levels in NHW APOEε4-carriers compared to non-carriers, and low plasma apoE levels were directly associated with an increased risk of AD and all dementia. We further showed that APOEε3/ε3 AD patients exhibited reduced plasma apoE dimers compared to corresponding control subjects. Whether plasma apoE levels and apoE dimer formation differ between races/ethnicities and therefore may help explain AD risk racial disparity remains to be elucidated. METHODS Using mass spectrometry, we determined total plasma apoE and apoE isoform levels in a cohort of B/AAs (n = 58) and NHWs (n = 67) including subjects with normal cognition (B/AA: n = 25, NHW: n = 28), mild cognitive impairment (MCI) (B/AA: n = 24, NHW: n = 24), or AD dementia (B/AA: n = 9, NHW: n = 15). Additionally, we used non-reducing western blot analysis to assess the distribution of plasma apoE into monomers/disulfide-linked dimers. Plasma total apoE, apoE isoform levels, and % apoE monomers/dimers were assessed for correlations with cognition, cerebrospinal fluid (CSF) AD biomarkers, sTREM2, neurofilament light protein (NfL), and plasma lipids. RESULTS Plasma apoE was predominantly monomeric in both racial groups and the monomer/dimer distribution was not affected by disease status, or correlated with CSF AD biomarkers, but associated with plasma lipids. Plasma total apoE levels were not related to disease status and only in the NHW subjects we observed lower plasma apoE levels in the APOEε4/ε4-carriers. Total plasma apoE levels were 13% higher in B/AA compared to NHW APOEε4/ε4 subjects and associated with plasma high-density lipoprotein (HDL) in NHW subjects but with low-density lipoprotein levels (LDL) in the B/AA subjects. Higher plasma apoE4 levels, exclusively in APOEε3/ε4 B/AA subjects, were linked to higher plasma total cholesterol and LDL levels. In the controls, NHWs and B/AAs exhibited opposite associations between plasma apoE and CSF t-tau. CONCLUSIONS The previously reported lower APOEε4-promoted risk of AD in B/AA subjects may be associated with differences in plasma apoE levels and lipoprotein association. Whether differences in plasma apoE levels between races/ethnicities result from altered APOEε4 expression or turnover, needs further elucidation.
Collapse
|
5
|
Kloske CM, Barnum CJ, Batista AF, Bradshaw EM, Brickman AM, Bu G, Dennison J, Gearon MD, Goate AM, Haass C, Heneka MT, Hu WT, Huggins LKL, Jones NS, Koldamova R, Lemere CA, Liddelow SA, Marcora E, Marsh SE, Nielsen HM, Petersen KK, Petersen M, Piña-Escudero SD, Qiu WQ, Quiroz YT, Reiman E, Sexton C, Tansey MG, Tcw J, Teunissen CE, Tijms BM, van der Kant R, Wallings R, Weninger SC, Wharton W, Wilcock DM, Wishard TJ, Worley SL, Zetterberg H, Carrillo MC. APOE and immunity: Research highlights. Alzheimers Dement 2023; 19:2677-2696. [PMID: 36975090 DOI: 10.1002/alz.13020] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 03/29/2023]
Abstract
INTRODUCTION At the Alzheimer's Association's APOE and Immunity virtual conference, held in October 2021, leading neuroscience experts shared recent research advances on and inspiring insights into the various roles that both the apolipoprotein E gene (APOE) and facets of immunity play in neurodegenerative diseases, including Alzheimer's disease and other dementias. METHODS The meeting brought together more than 1200 registered attendees from 62 different countries, representing the realms of academia and industry. RESULTS During the 4-day meeting, presenters illuminated aspects of the cross-talk between APOE and immunity, with a focus on the roles of microglia, triggering receptor expressed on myeloid cells 2 (TREM2), and components of inflammation (e.g., tumor necrosis factor α [TNFα]). DISCUSSION This manuscript emphasizes the importance of diversity in current and future research and presents an integrated view of innate immune functions in Alzheimer's disease as well as related promising directions in drug development.
Collapse
|
6
|
Kessler K, Giannisis A, Bial G, Foquet L, Nielsen HM, Raber J. Behavioral and cognitive performance of humanized APOEε3/ε3 liver mice in relation to plasma apolipoprotein E levels. Sci Rep 2023; 13:1728. [PMID: 36720957 PMCID: PMC9889814 DOI: 10.1038/s41598-023-28165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/13/2023] [Indexed: 02/01/2023] Open
Abstract
Plasma apolipoprotein E levels were previously associated with the risk of developing Alzheimer's disease (AD), levels of cerebrospinal fluid AD biomarkers, cognition and imaging brain measures. Outside the brain, the liver is the primary source of apoE and liver transplantation studies have demonstrated that liver-derived apoE does not cross the blood-brain-barrier. How hepatic apoE may be implicated in behavioral and cognitive performance is not clear. In the current study, we behaviorally tested FRGN mice with humanized liver harboring the ε3/ε3 genotype (E3-human liver (HL)) and compared their behavioral and cognitive performance with that of age-matched ε3/ε3 targeted replacement (E3-TR) mice, the latter produces human apoE3 throughout the body whereas the E3-HL mice endogenously produce human apoE3 only in the liver. We also compared the liver weights and plasma apoE levels, and assessed whether plasma apoE levels were correlated with behavioral or cognitive measures in both models. E3-HL were more active but performed cognitively worse than E3-TR mice. E3-HL mice moved more in the open field containing objects, showed higher activity levels in the Y maze, showed higher activity levels during the baseline period in the fear conditioning test than E3-TR mice, and swam faster than E3-TR mice during training to locate the visible platform in the water maze. However, E3-HL mice showed reduced spatial memory retention in the water maze and reduced fear learning and contextual and cued fear memory than E3-TR mice. Liver weights were greater in E3-HL than E3-TR mice and sex-dependent only in the latter model. Plasma apoE3 levels were similar to those found in humans and comparable in female and male E3-TR mice but higher in female E3-HL mice. Finally, we found correlations between plasma apoE levels and behavioral and cognitive measures which were predominantly model-dependent. Our study demonstrates mouse-model dependent associations between plasma apoE levels, behavior and cognition in an 'AD-neutral' setting and suggests that a humanized liver might be sufficient to induce mouse behavioral and cognitive phenotypes.
Collapse
|
7
|
Mortensen JS, Bohr SSR, Harloff-Helleberg S, Hatzakis NS, Saaby L, Nielsen HM. Physical and barrier changes in gastrointestinal mucus induced by the permeation enhancer sodium 8-[(2-hydroxybenzoyl)amino]octanoate (SNAC). J Control Release 2022; 352:163-178. [PMID: 36314534 DOI: 10.1016/j.jconrel.2022.09.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022]
Abstract
Drug delivery systems (DDS) for oral delivery of peptide drugs contain excipients that facilitate and enhance absorption. However, little knowledge exists on how DDS excipients such as permeation enhancers interact with the gastrointestinal mucus barrier. This study aimed to investigate interactions of the permeation enhancer sodium 8-[(2-hydroxybenzoyl)amino]octanoate (SNAC) with ex vivo porcine intestinal mucus (PIM), ex vivo porcine gastric mucus (PGM), as well as with in vitro biosimilar mucus (BM) by profiling their physical and barrier properties upon exposure to SNAC. Bulk mucus permeability studies using the peptides cyclosporine A and vancomycin, ovalbumin as a model protein, as well as fluorescein-isothiocyanate dextrans (FDs) of different molecular weights and different surface charges were conducted in parallel to mucus retention force studies using a texture analyzer, rheological studies, cryo-scanning electron microscopy (cryo-SEM), and single particle tracking of fluorescence-labelled nanoparticles to investigate the effects of the SNAC-mucus interaction. The exposure of SNAC to PIM increased the mucus retention force, storage modulus, viscosity, increased nanoparticle confinement within PIM as well as decreased the permeation of cyclosporine A and ovalbumin through PIM. Surprisingly, the viscosity of PGM and the permeation of cyclosporine A and ovalbumin through PGM was unaffected by the presence of SNAC, thus the effect of SNAC depended on the regional site that mucus was collected from. In the absence of SNAC, the permeation of different molecular weight and differently charged FDs through PIM was comparable to that through BM. However, while bulk permeation of neither of the FDs through PIM was affected by SNAC, the presence of SNAC decreased the permeation of FD4 and increased the permeation of FD150 kDa through BM. Additionally, and in contrast to observations in PIM, nanoparticle confinement within BM remained unaffected by the presence of SNAC. In conclusion, the present study showed that SNAC altered the physical and barrier properties of PIM, but not of PGM. The effects of SNAC in PIM were not observed in the BM in vitro model. Altogether, the study highlights the need for further understanding how permeation enhancers influence the mucus barrier and illustrates that the selected mucus model for such studies should be chosen with care.
Collapse
|
8
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
|
9
|
Giannisis A, Al-Grety A, Carlsson H, Patra K, Twohig D, Sando SB, Lauridsen C, Berge G, Grøntvedt GR, Bråthen G, White LR, Kultima K, Nielsen HM. Plasma apolipoprotein E levels in longitudinally followed patients with mild cognitive impairment and Alzheimer’s disease. Alzheimers Res Ther 2022; 14:115. [PMID: 36002891 PMCID: PMC9400269 DOI: 10.1186/s13195-022-01058-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Low levels of plasma apolipoprotein E (apoE) and presence of the APOE ε4 allele are associated with an increased risk of Alzheimer’s disease (AD). Although the increased risk of AD in APOE ε4-carriers is well-established, the protein levels have received limited attention.
Methods
We here report the total plasma apoE and apoE isoform levels at baseline from a longitudinally (24 months) followed cohort including controls (n = 39), patients with stable amnestic mild cognitive impairment during 24 months follow up (MCI-MCI, n = 30), patients with amnestic MCI (aMCI) that during follow-up were clinically diagnosed with AD with dementia (ADD) (MCI-ADD, n = 28), and patients with AD with dementia (ADD) at baseline (ADD, n = 28). We furthermore assessed associations between plasma apoE levels with cerebrospinal fluid (CSF) AD biomarkers and α-synuclein, as well as both CSF and plasma neurofilament light chain (NfL), YKL-40 and kallikrein 6.
Results
Irrespective of clinical diagnosis, the highest versus the lowest apoE levels were found in APOE ε2/ε3 versus APOE ε4/ε4 subjects, with the most prominent differences exhibited in females. Total plasma apoE levels were 32% and 21% higher in the controls versus MCI-ADD and ADD patients, respectively. Interestingly, MCI-ADD patients exhibited a 30% reduction in plasma apoE compared to MCI-MCI patients. This decrease appeared to be associated with brain amyloid-β (Aβ42) pathology regardless of disease status as assessed using the Amyloid, Tau, and Neurodegeneration (A/T/N) classification. In addition to the association between low plasma apoE and low levels of CSF Aβ42, lower apoE levels were also related to higher levels of CSF total tau (t-tau) and tau phosphorylated at Threonine 181 residue (p-tau) and NfL as well as a worse performance on the mini-mental-state-examination. In MCI-ADD patients, low levels of plasma apoE were associated with higher levels of CSF α-synuclein and kallikrein 6. No significant correlations between plasma apoE and the astrocytic inflammatory marker YKL40 were observed.
Conclusions
Our results demonstrate important associations between low plasma apoE levels, Aβ pathology, and progression from aMCI to a clinical ADD diagnosis.
Collapse
|
10
|
Giannisis A, Patra K, Edlund AK, Nieto LA, Benedicto-Gras J, Moussaud S, de la Rosa A, Twohig D, Bengtsson T, Fu Y, Bu G, Bial G, Foquet L, Hammarstedt C, Strom S, Kannisto K, Raber J, Ellis E, Nielsen HM. Brain integrity is altered by hepatic APOE ε4 in humanized-liver mice. Mol Psychiatry 2022; 27:3533-3543. [PMID: 35418601 PMCID: PMC9708568 DOI: 10.1038/s41380-022-01548-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
Abstract
Liver-generated plasma apolipoprotein E (apoE) does not enter the brain but nonetheless correlates with Alzheimer's disease (AD) risk and AD biomarker levels. Carriers of APOEε4, the strongest genetic AD risk factor, exhibit lower plasma apoE and altered brain integrity already at mid-life versus non-APOEε4 carriers. Whether altered plasma liver-derived apoE or specifically an APOEε4 liver phenotype promotes neurodegeneration is unknown. Here we investigated the brains of Fah-/-, Rag2-/-, Il2rg-/- mice on the Non-Obese Diabetic (NOD) background (FRGN) with humanized-livers of an AD risk-associated APOE ε4/ε4 versus an APOE ε2/ε3 genotype. Reduced endogenous mouse apoE levels in the brains of APOE ε4/ε4 liver mice were accompanied by various changes in markers of synaptic integrity, neuroinflammation and insulin signaling. Plasma apoE4 levels were associated with unfavorable changes in several of the assessed markers. These results propose a previously unexplored role of the liver in the APOEε4-associated risk of neurodegenerative disease.
Collapse
|
11
|
Huang J, Jacobsen J, Genina N, Larsen SW, Nielsen HM, Müllertz A, Mu H. Investigating the effect of graphene oxide in chitosan/alginate-based foams on the release and antifungal activity of clotrimazole in vitro. Eur J Pharm Sci 2022; 174:106204. [PMID: 35550171 DOI: 10.1016/j.ejps.2022.106204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 12/14/2022]
Abstract
Polyelectrolyte complexes (PECs) have been used as the matrix of solid foams for drug delivery. This study aimed at investigating the effect of graphene oxide (GO) and the composition of excipients in chitosan/alginate-based buccal foams on the clotrimazole release and antifungal activities. The investigation has been focused on the interactions of the drug with excipients in the foams, and the changes of ionization degree upon exposure to various media are discussed. The solid foams were prepared by mixing the excipients and clotrimazole via probe sonication, followed by a freeze-drying method. The pH values of the formulations were measured during the foam preparation process to estimate the ionization degree of clotrimazole and the other excipients. The foam matrix was the PECs between the cationic chitosan and anionic alginate. The mechanical strength of clotrimazole-loaded foams was lower than that of drug-free foams due to the positively charged clotrimazole interacting with the anionic alginate and interfering the PECs between chitosan and alginate. Addition of GO in the clotrimazole-loaded matrix made the foams mechanically stronger and contributed to a faster release of clotrimazole from the buccal foams by disrupting the electrostatic interactions between alginate and clotrimazole. However, addition of 1 wt% GO in the formulations didn't affect the antifungal activity of clotrimazole-loaded foams significantly. A lower amount GO in the formulation may be required for enhancing the antifungal effect, which should be further investigated in future.
Collapse
|
12
|
Cao L, Mulder HA, Liu H, Nielsen HM, S Rensen AC. Competitive gene flow does not necessarily maximize the genetic gain of genomic breeding programs in the presence of genotype-by-environment interaction. J Dairy Sci 2021; 104:8122-8134. [PMID: 33934864 DOI: 10.3168/jds.2020-19823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022]
Abstract
National and international across-population selection is often recommended and fairly common in the current breeding practice of dairy cattle, with the primary aims to increase genetic gain and genetic variability. The aim of this study was to test the hypothesis that the strategy of truncation selection of sires across populations [i.e., competitive gene flow strategy (CGF)] may not necessarily maximize genetic gain in the long term in the presence of genotype-by-environment interaction (G×E). Two alternative strategies used to be compared with CGF were forced gene flow (FGF) strategies, with 10 or 50% of domestic dams forced to be mated with foreign sires (FGF10%, FGF50%). Two equal-size populations (Ndams = 1,000) that were selected for the same breeding goal trait (h2 = 0.3) under G×E correlation (rg) of either 0.9 or 0.8 were simulated to test these 3 different strategies. Each population first experienced either 5 or 20 differentiation generations (Gd), then 15 migration generations. Discrete generations were simulated for simplicity. Each population performed a within-population conventional breeding program during differentiation generations and the 3 across-population sire selection strategies based on joint genomic prediction during migration generations. The 4 Gd_rg combinations defined 4 different levels of differentiation degree between the 2 populations at the start of migration. The true rate of inbreeding over the last 10 migration generations in each scenario was constrained at 0.01 to provide a fair basis for comparison of genetic gain across scenarios. Results showed that CGF maximized the genetic gain after 15 migration generations in 5_0.9 combination only, the case of the lowest differentiation degree, with a superiority of 0.4% (0.04 genetic SD units) over the suboptimal strategy. While in 5_0.8, 20_0.9, and 20_0.8 combinations, 2 FGF strategies had a superiority in genetic gain of 2.3 to 12.5% (0.21-1.07 genetic SD units) over CGF after 15 migration generations, especially FGF50%. The superiority of FGF strategies over CGF was that they alleviated inbreeding, introduced new genetic variance in the early migration period, and improved accuracy in the entire migration period. Therefore, we concluded that CGF does not necessarily maximize the genetic gain of across-population genomic breeding programs given moderate G×E. The across-population selection strategy remains to be optimized to maximize genetic gain.
Collapse
|
13
|
Edlund AK, Chen K, Lee W, Protas H, Su Y, Reiman E, Caselli R, Nielsen HM. Plasma Apolipoprotein E3 and Glucose Levels Are Associated in APOE ɛ3/ɛ4 Carriers. J Alzheimers Dis 2021; 81:339-354. [PMID: 33814450 PMCID: PMC8203224 DOI: 10.3233/jad-210065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Altered cerebral glucose metabolism, especially prominent in APOE ɛ4 carriers, occurs years prior to symptoms in Alzheimer's disease (AD). We recently found an association between a higher ratio of plasma apolipoprotein E4 (apoE4) over apoE3, and cerebral glucose hypometabolism in cognitively healthy APOE ɛ3/ɛ4 subjects. Plasma apoE does not cross the blood-brain barrier, hence we speculate that apoE is linked to peripheral glucose metabolism which is known to affect glucose metabolism in the brain. OBJECTIVE Explore potential associations between levels of plasma insulin and glucose with previously acquired plasma apoE, cerebral metabolic rate of glucose (CMRgl), gray matter volume, and neuropsychological test scores. METHODS Plasma insulin and glucose levels were determined by ELISA and a glucose oxidase assay whereas apoE levels were earlier quantified by mass-spectrometry in 128 cognitively healthy APOE ɛ3/ɛ4 subjects. Twenty-five study subjects had previously undergone FDG-PET and structural MRI. RESULTS Lower plasma apoE3 associated with higher plasma glucose but not insulin in male subjects and subjects with a body mass index above 25. Negative correlations were found between plasma glucose and CMRgl in the left prefrontal and bilateral occipital regions. These associations may have functional implications since glucose levels in turn were negatively associated with neuropsychological test scores. CONCLUSION Plasma apoE3 but not apoE4 may be involved in insulin-independent processes governing plasma glucose levels. Higher plasma glucose, which negatively affects brain glucose metabolism, was associated with lower plasma apoE levels in APOE ɛ3/ɛ4 subjects. High plasma glucose and low apoE levels may be a hazardous combination leading to an increased risk of AD.
Collapse
|
14
|
Giannisis A, Patra K, Edlund AK, Rosa ADL, Nieto LA, Gras JB, Moussaud S, Bengtsson T, Fu Y, Bu G, Bial G, Foquet L, Hammarstedt C, Strom S, Kannisto K, Ellis E, Nielsen HM. Effects of a liver
APOEε4
‐genotype on synaptic integrity, gliosis and insulin signaling in the brain. Alzheimers Dement 2020. [DOI: 10.1002/alz.042463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Twohig D, Karampatsi D, Edlund AK, Nielsen HM. Regional variability and solubility of apolipoprotein E in brains from patients with Alzheimer’s and Parkinson’s disease. Alzheimers Dement 2020. [DOI: 10.1002/alz.044266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Edlund AK, Giannisis A, Patra K, Morrema TH, Hoozemans JJ, Bial G, Foquet L, Nielsen HM. Effects of a high‐fat diet on the brain in FRGN mice with humanized livers. Alzheimers Dement 2020. [DOI: 10.1002/alz.046198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Kargo M, Clasen JB, Nielsen HM, Byskov K, Norberg E. Short communication: Heterosis and breed effects for milk production and udder health traits in crosses between Danish Holstein, Danish Red, and Danish Jersey. J Dairy Sci 2020; 104:678-682. [PMID: 33162080 DOI: 10.3168/jds.2019-17866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 08/17/2020] [Indexed: 11/19/2022]
Abstract
During the last decade, the use of systematic crossbreeding in dairy cattle herds has increased in several countries of the world. The aim of this study was to estimate the effect of breed proportion and heterosis on milk production traits and udder health traits in dairy cattle. The study was based on records on milk yield (MY), protein yield (PY), fat yield (FY), somatic cell score (SCS), and mastitis (MAST) from 73,695 first-lactation dairy cows in 130 Danish herds applying systematic crossbreeding programs. Around 45% of the cows were crosses between Danish Holstein (DH), Danish Red (DR), or Danish Jersey (DJ), and the remaining were purebred DH, DR, or DJ. The statistical model included the fixed effects of herd-year, calving month, and calving age and an effect representing the lactation status of the cow. In addition, the model included a regression on calving interval from first to second lactation, a regression on the proportion of DH, DR, and DJ genes, and a regression on the degree of heterozygosity between DH and DR, DH and DJ, and DR and DJ. Random effects were the genetic effect of the cow and a residual. The effect of breed proportions was estimated relatively to DH. For MY, a pure DR yielded 461 kg milk less than DH, whereas a pure DJ yielded 2,259 kg milk less than a pure DH. Compared with DH, PY was 41.7 kg less for DJ, whereas PY for DR was 4.0 kg less than for DH. For FY, a DR yielded 10.6 kg less than DH, whereas there was no significant effect of breed proportion between DJ and DH. A DR cow had lower SCS (0.13) than DH, whereas DJ had higher SCS (0.14) than DH. There was no significant effect of breed proportion on MAST between the 3 breeds. Heterosis was significant in all combinations of breeds for MY, FY, and PY. Heterosis for crosses between DH and DR was 257 kg (3.2%), 11.9 kg (3.2%), and 8.9 kg (3.2%) for MY, PY, and FY, respectively. Corresponding figures for crosses between DH and DJ were 314 kg (4.4%), 14.3 kg (4.4%), and 10.4 kg (4.0%), whereas heterosis between DR and DJ was 462 kg (6.7%), 19.6 kg (6.7%), and 13.9 kg (5.4%) for MY, PY, and FY, respectively. Heterosis was only significant for SCS in the crosses between DH and DR. Heterosis effects for MAST were nonsignificant for all the crosses. The results obtained in this study demonstrate that in first lactation cows, there is a positive effect of heterosis on milk production traits, but limited effect on udder health traits.
Collapse
|
18
|
Rodriguez-Vieitez E, Nielsen HM. Associations Between APOE Variants, Tau and α-Synuclein. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1184:177-186. [PMID: 32096038 DOI: 10.1007/978-981-32-9358-8_15] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neurodegenerative diseases are characterized by the aggregation and deposition of misfolded proteins in the brain, most prominently amyloid-β (Aβ), tau and α-synuclein (α-syn), and are thus referred to as proteinopathies. While tau is a hallmark of Alzheimer's disease (AD) and other non-AD tauopathies, and α-synuclein is the pathological feature of the spectrum of synucleinopathies including Parkinson's disease (PD), Parkinson's disease with dementia (PDD) and dementia with Lewy bodies (DLB), the presence of co-pathologies is very frequent in all these diseases. Positive and synergistic associations between the different types of protein deposits have been reported, leading to worse prognosis and cognitive decline. A large variation in phenotypic clinical presentation of these diseases, largely due to the frequent presence of co-pathologies, makes differential diagnosis challenging. The observed clinico-pathological overlaps suggest common underlying mechanisms, in part due to shared genetic risk factors. The ε4 allele of the apolipoprotein (APOE) gene is one of the major genetic risk factors for the sporadic forms of proteinopathies, but the biological mechanisms linking APOE, tau and α-syn are not fully understood. This chapter describes current experimental evidence on the relationships between APOE variants, tau and α-syn, from clinical studies on fluid biomarkers and positron emission tomography (PET) imaging, and from basic experimental studies in cellular/molecular biology and animal models. The chapter focuses on recent advances and identifies knowledge gaps. In particular, no PET tracer for assessment of brain α-syn deposits is yet available, although it is subject of intense research and development, therefore experimental evidence on in vivo α-syn levels is based on measures in the cerebrospinal fluid (CSF) and plasma. Moreover, tau PET imaging studies comparing the patterns of tracer retention in synucleinopathies versus in other proteinopathies are scarce and much is still unknown regarding the relationships between APOE variants and fluid and/or imaging biomarkers of tau and α-syn. Further research incorporating multimodal imaging, fluid biomarkers and genetic factors will help elucidate the biological mechanisms underlying these proteinopathies, and contribute to differential diagnosis and patient stratification for clinical trials.
Collapse
|
19
|
Patra K, Giannisis A, Edlund AK, Sando SB, Lauridsen C, Berge G, Grøntvedt GR, Bråthen G, White LR, Nielsen HM. Plasma Apolipoprotein E Monomer and Dimer Profile and Relevance to Alzheimer's Disease. J Alzheimers Dis 2019; 71:1217-1231. [PMID: 31524156 DOI: 10.3233/jad-190175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The APOEɛ4 gene variant is the strongest genetic risk factor for Alzheimer's disease (AD), whereas APOEɛ3 conventionally is considered as 'risk neutral' although APOEɛ3-carriers also develop AD. Previous studies have shown that the apolipoprotein E3 (apoE3) isoform occurs as monomers, homodimers and heterodimers with apolipoprotein A-II in human body fluids and brain tissue, but the relevance of a plasma apoE3 monomer/dimer profile to AD is unknown. Here we assessed the distribution of monomers, homodimers and heterodimers in plasma from control subjects and patients with mild cognitive impairment (MCI) and AD with either a homozygous APOEɛ3 (n = 31 control subjects, and n = 14 MCI versus n = 5 AD patients) or APOEɛ4 genotype (n = 1 control subject, n = 21 MCI and n = 7 AD patients). Total plasma apoE levels were lower in APOEɛ4-carriers and overall correlated significantly to CSF Aβ42, p(Thr181)-tau and t-tau levels. Apolipoprotein E dimers were only observed in the APOEɛ3-carriers and associated with total plasma apoE levels, negatively correlated to apoE monomers, but were unrelated to plasma homocysteine levels. Importantly, the APOEɛ3-carrying AD patients versus controls exhibited a significant decrease in apoE homodimers (17.8±9.6% versus 26.7±6.3%, p = 0.025) paralleled by an increase in apoE monomers (67.8±18.3% versus 48.5±11.2%, p = 0.008). In the controls, apoE monomers and heterodimers were significantly associated with plasma triglycerides; the apoE heterodimers were also associated with levels of high-density lipoprotein cholesterol. The physiological relevance of apoE dimer formation needs to be further investigated, though the distribution of apoE in monomers and dimers appears to be of relevance to AD in APOEɛ3 subjects.
Collapse
|
20
|
Twohig D, Nielsen HM. α-synuclein in the pathophysiology of Alzheimer's disease. Mol Neurodegener 2019; 14:23. [PMID: 31186026 PMCID: PMC6558879 DOI: 10.1186/s13024-019-0320-x] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
The Alzheimer’s disease (AD) afflicted brain is neuropathologically defined by extracellular amyloid-β (Aβ) plaques and intraneuronal neurofibrillary tangles composed of hyperphosphorylated tau protein. However, accumulating evidence suggests that the presynaptic protein α-synuclein (αSyn), mainly associated with synucleinopathies like Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), is involved in the pathophysiology of AD. Lewy-related pathology (LRP), primarily comprised of αSyn, is present in a majority of autopsied AD brains, and higher levels of αSyn in the cerebrospinal fluid (CSF) of patients with mild cognitive impairment (MCI) and AD have been linked to cognitive decline. Recent studies also suggest that the asymptomatic accumulation of Aβ plaques is associated with higher CSF αSyn levels in subjects at risk of sporadic AD and in individuals carrying autosomal dominant AD mutations. Experimental evidence has further linked αSyn mainly to tau hyperphosphorylation, but also to the pathological actions of Aβ and the APOEε4 allele, the latter being a major genetic risk factor for both AD and DLB. In this review, we provide a summary of the current evidence proposing an involvement of αSyn either as an active or passive player in the pathophysiological ensemble of AD, and furthermore describe in detail the current knowledge of αSyn structure and inferred function.
Collapse
|
21
|
Twohig D, Rodriguez-Vieitez E, Sando SB, Berge G, Lauridsen C, Møller I, Grøntvedt GR, Bråthen G, Patra K, Bu G, Benzinger TLS, Karch CM, Fagan A, Morris JC, Bateman RJ, Nordberg A, White LR, Nielsen HM. The relevance of cerebrospinal fluid α-synuclein levels to sporadic and familial Alzheimer's disease. Acta Neuropathol Commun 2018; 6:130. [PMID: 30477568 PMCID: PMC6260771 DOI: 10.1186/s40478-018-0624-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 12/30/2022] Open
Abstract
Accumulating evidence demonstrating higher cerebrospinal fluid (CSF) α-synuclein (αSyn) levels and αSyn pathology in the brains of Alzheimer's disease (AD) patients suggests that αSyn is involved in the pathophysiology of AD. To investigate whether αSyn could be related to specific aspects of the pathophysiology present in both sporadic and familial disease, we quantified CSF levels of αSyn and assessed links to various disease parameters in a longitudinally followed cohort (n = 136) including patients with sporadic mild cognitive impairment (MCI) and AD, and in a cross-sectional sample from the Dominantly Inherited Alzheimer's Network (n = 142) including participants carrying autosomal dominant AD (ADAD) gene mutations and their non-mutation carrying family members.Our results show that sporadic MCI patients that developed AD over a period of two years exhibited higher baseline αSyn levels (p = 0.03), which inversely correlated to their Mini-Mental State Examination scores, compared to cognitively normal controls (p = 0.02). In the same patients, there was a dose-dependent positive association between CSF αSyn and the APOEε4 allele. Further, CSF αSyn levels were higher in symptomatic ADAD mutation carriers versus non-mutation carriers (p = 0.03), and positively correlated to the estimated years from symptom onset (p = 0.05) across all mutation carriers. In asymptomatic (Clinical Dementia Rating < 0.5) PET amyloid-positive ADAD mutation carriers CSF αSyn was positively correlated to 11C-Pittsburgh Compound-B (PiB) retention in several brain regions including the posterior cingulate, superior temporal and frontal cortical areas. Importantly, APOEε4-positive ADAD mutation carriers exhibited an association between CSF αSyn levels and mean cortical PiB retention (p = 0.032). In both the sporadic AD and ADAD cohorts we found several associations predominantly between CSF levels of αSyn, tau and amyloid-β1-40.Our results suggest that higher CSF αSyn levels are linked to AD pathophysiology at the early stages of disease development and to the onset of cognitive symptoms in both sporadic and autosomal dominant AD. We conclude that APOEε4 may promote the processes driven by αSyn, which in turn may reflect on molecular mechanisms linked to the asymptomatic build-up of amyloid plaque burden in brain regions involved in the early stages of AD development.
Collapse
|
22
|
Patra K, Giannisis A, Nielsen HM. O2‐12‐06: NEUROPATHOLOGICAL FINDINGS DRIVEN BY AN APOEε4 LIVER PHENOTYPE. Alzheimers Dement 2018. [DOI: 10.1016/j.jalz.2018.06.2711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Schultz N, Brännström K, Byman E, Moussaud S, Nielsen HM, Olofsson A, Wennström M. Amyloid-beta 1-40 is associated with alterations in NG2+ pericyte population ex vivo and in vitro. Aging Cell 2018; 17:e12728. [PMID: 29453790 PMCID: PMC5946076 DOI: 10.1111/acel.12728] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2017] [Indexed: 12/17/2022] Open
Abstract
The population of brain pericytes, a cell type important for vessel stability and blood brain barrier function, has recently been shown altered in patients with Alzheimer's disease (AD). The underlying reason for this alteration is not fully understood, but progressive accumulation of the AD characteristic peptide amyloid‐beta (Aβ) has been suggested as a potential culprit. In the current study, we show reduced number of hippocampal NG2+ pericytes and an association between NG2+ pericyte numbers and Aβ1‐40 levels in AD patients. We further demonstrate, using in vitro studies, an aggregation‐dependent impact of Aβ1‐40 on human NG2+ pericytes. Fibril‐EP Aβ1‐40 exposure reduced pericyte viability and proliferation and increased caspase 3/7 activity. Monomer Aβ1‐40 had quite the opposite effect: increased pericyte viability and proliferation and reduced caspase 3/7 activity. Oligomer‐EP Aβ1‐40 had no impact on either of the cellular events. Our findings add to the growing number of studies suggesting a significant impact on pericytes in the brains of AD patients and suggest different aggregation forms of Aβ1‐40 as potential key regulators of the brain pericyte population size.
Collapse
|
24
|
Ogaki K, Martens YA, Heckman MG, Koga S, Labbé C, Lorenzo-Betancor O, Wernick AI, Walton RL, Soto AI, Vargas ER, Nielsen HM, Fujioka S, Kanekiyo T, Uitti RJ, van Gerpen JA, Cheshire WP, Wszolek ZK, Low PA, Singer W, Dickson DW, Bu G, Ross OA. Multiple system atrophy and apolipoprotein E. Mov Disord 2018; 33:647-650. [PMID: 29442376 PMCID: PMC5889322 DOI: 10.1002/mds.27297] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/06/2017] [Accepted: 11/26/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Dysregulation of the specialized lipid metabolism involved in myelin synthesis and maintenance by oligodendrocytes has been associated with the unique neuropathology of MSA. We hypothesized that apolipoprotein E, which is associated with neurodegeneration, may also play a role in the pathogenesis of MSA. OBJECTIVE This study evaluated genetic associations of Apolipoprotein E alleles with risk of MSA and α-synuclein pathology, and also examined whether apolipoprotein E isoforms differentially affect α-synuclein uptake in a oligodendrocyte cell. METHODS One hundred sixty-eight pathologically confirmed MSA patients, 89 clinically diagnosed MSA patients, and 1,277 control subjects were genotyped for Apolipoprotein E. Human oligodendrocyte cell lines were incubated with α-synuclein and recombinant human apolipoprotein E, with internalized α-synuclein imaged by confocal microscopy and cells analyzed by flow cytometry. RESULTS No significant association with risk of MSA or was observed for either Apolipoprotein E ɛ2 or ɛ4. α-Synuclein burden was also not associated with Apolipoprotein E alleles in the pathologically confirmed patients. Interestingly, in our cell assays, apolipoprotein E ɛ4 significantly reduced α-synuclein uptake in the oligodendrocytic cell line. CONCLUSIONS Despite differential effects of apolipoprotein E isoforms on α-synuclein uptake in a human oligodendrocytic cell, we did not observe a significant association at the Apolipoprotein E locus with risk of MSA or α-synuclein pathology. © 2018 International Parkinson and Movement Disorder Society.
Collapse
|
25
|
Patra K, Soosaipillai A, Sando SB, Lauridsen C, Berge G, Møller I, Grøntvedt GR, Bråthen G, Begcevic I, Moussaud S, Minthon L, Hansson O, Diamandis EP, White LR, Nielsen HM. Assessment of kallikrein 6 as a cross-sectional and longitudinal biomarker for Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2018; 10:9. [PMID: 29378650 PMCID: PMC5789599 DOI: 10.1186/s13195-018-0336-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/04/2018] [Indexed: 11/15/2022]
Abstract
Background Kallikrein 6 (KLK6) is known to be an age-related protease expressed at high levels in the central nervous system. It was previously shown to be involved in proteolysis of extracellular proteins implicated in neurodegenerative diseases such as Alzheimer’s disease (AD), prompting validation of KLK6 as a potential biomarker of disease. However, analyses of both plasma and cerebrospinal fluid (CSF) levels of KLK6 in patients with AD have been inconclusive. We present a detailed analysis of KLK6 in plasma and CSF in two separate cohorts in a cross-sectional and a longitudinal clinical setting. Methods The cross-sectional cohort included control subjects without dementia and patients with AD, and the longitudinal cohort included patients with MCI and patients with AD followed over a 2-year period. Plasma and CSF levels of KLK6 were quantified by use of a previously developed and validated enzyme-linked immunosorbent assay. Statistical analyses were performed to compare KLK6 levels between diagnostic groups and to identify potential associations between KLK6 level, age, apolipoprotein E (APOE) genotype, total apoE level and the classical CSF AD biomarkers. Results In the cross-sectional setting, KLK6 levels in plasma but not in CSF were significantly higher in the AD group than in control subjects. CSF but not plasma KLK6 levels were positively correlated with age in both the cross-sectional and longitudinal settings. In both cohorts, the CSF KLK6 levels were significantly and positively correlated with the CSF levels of core AD biomarkers. Total plasma and CSF apoE levels were positively associated with KLK6 in the cross-sectional study. Finally, during the 2-year monitoring period of the longitudinal cohort, CSF KLK6 levels increased with disease progression over time in the investigated patient groups. Conclusions In two separate cohorts we have confirmed the previously reported correlation between age and CSF levels of KLK6. Increased plasma KLK6 levels in patients with AD with a more advanced disease stage suggest KLK6 as a potential biomarker in patients with AD with more severe dementia. Significant correlations between KLK6 levels and core CSF AD biomarkers suggest molecular links between KLK6 and AD-related pathological processes.
Collapse
|