1
|
Bratseth V, Nendl A, Raju SC, Holm K, Broch K, Hov JR, Seljeflot I, Trøseid M, Awoyemi A. Gut dysbiosis and neutrophil extracellular traps in chronic heart failure. Int J Cardiol 2024:132689. [PMID: 39489348 DOI: 10.1016/j.ijcard.2024.132689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/15/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Chronic heart failure (HF) patients have reduced microbiota diversity. Leakage of microbes and their metabolites into the bloodstream may activate neutrophils. Neutrophil extracellular traps (NETs) consist of chromatin and proteases, and may contribute to HF pathogenesis. We assessed associations between circulating NETs and 1) cardiac function, 2) the degree of gut microbiota diversity and 3) gut leakage and microbial metabolites in HF patients. METHODS A cross-sectional study including 124 patients with chronic HF and left ventricular ejection fraction ≤40 %. Severe HF was defined as N-terminal pro-B-type natriuretic peptide concentrations above median. We measured citrullinated histone H3 (CitH3), myeloperoxidase- and double-stranded-DNA in the blood. Gut leakage markers included bacterial lipopolysaccharides and soluble cluster of differentiation 14. The microbial metabolites included circulating trimethylamine N-oxide and butyrate producing capacity. We used the Shannon diversity-index and a dysbiosis-index based on bacteria with altered relative abundance to characterize the gut microbiota profile. RESULTS Quartile 4 of CitH3 was associated with more severe HF compared to quartiles 1-3, after adjustments for age, gender and hypertension (adjusted odds ratio [95 %CI] 3.21[1.18-8.69], p = 0.022). CitH3 was moderately associated with hypertension (p = 0.04), higher CRP levels (p = 0.016) and lower Shannon diversity index, (p = 0.039). No other NET marker associated with severe HF. CONCLUSIONS In chronic HF patients with reduced LVEF, high levels of CitH3 were associated with disease severity, inflammation and reduced gut microbiota diversity. Our results suggest that enhanced release of NETs could be involved in progressive HF, although the contribution of the gut microbiota seems limited in this context.
Collapse
|
2
|
Schneider KM, Kummen M, Trivedi PJ, Hov JR. Role of microbiome in autoimmune liver diseases. Hepatology 2024; 80:965-987. [PMID: 37369002 PMCID: PMC11407779 DOI: 10.1097/hep.0000000000000506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/25/2023] [Indexed: 06/29/2023]
Abstract
The microbiome plays a crucial role in integrating environmental influences into host physiology, potentially linking it to autoimmune liver diseases, such as autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis. All autoimmune liver diseases are associated with reduced diversity of the gut microbiome and altered abundance of certain bacteria. However, the relationship between the microbiome and liver diseases is bidirectional and varies over the course of the disease. This makes it challenging to dissect whether such changes in the microbiome are initiating or driving factors in autoimmune liver diseases, secondary consequences of disease and/or pharmacological intervention, or alterations that modify the clinical course that patients experience. Potential mechanisms include the presence of pathobionts, disease-modifying microbial metabolites, and more nonspecific reduced gut barrier function, and it is highly likely that the effect of these change during the progression of the disease. Recurrent disease after liver transplantation is a major clinical challenge and a common denominator in these conditions, which could also represent a window to disease mechanisms of the gut-liver axis. Herein, we propose future research priorities, which should involve clinical trials, extensive molecular phenotyping at high resolution, and experimental studies in model systems. Overall, autoimmune liver diseases are characterized by an altered microbiome, and interventions targeting these changes hold promise for improving clinical care based on the emerging field of microbiota medicine.
Collapse
|
3
|
Hov JR, Molberg Ø, Karlsen TH. Tubulin beta 5 is not the target of antineutrophil antibodies in primary sclerosing cholangitis. Clin Exp Immunol 2024; 218:75-77. [PMID: 38960384 PMCID: PMC11404114 DOI: 10.1093/cei/uxae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
|
4
|
Hov JR. Sclerosing cholangitis and inflammatory bowel disease: a paradoxical relationship? Gut 2024:gutjnl-2024-332835. [PMID: 39025493 DOI: 10.1136/gutjnl-2024-332835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
|
5
|
Lin W, Gerullat L, Braadland PR, Fournier A, Hov JR, Globisch D. Rapid and Bifunctional Chemoselective Metabolome Analysis of Liver Disease Plasma Using the Reagent 4-Nitrophenyl-2H-azirine. Angew Chem Int Ed Engl 2024; 63:e202318579. [PMID: 38235602 DOI: 10.1002/anie.202318579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/19/2024]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic inflammatory disease of the bile ducts that has been associated with diverse metabolic carboxylic acids. Mass spectrometric techniques are the method of choice for their analysis. However, the broad investigation of this metabolite class remains challenging. Derivatization of carboxylic acids represents a strategy to overcome these limitations but available methods suffer from diverse analytical challenges. Herein, we have designed a novel strategy introducing 4-nitrophenyl-2H-azirine as a new chemoselective moiety for the first time for carboxylic acid metabolites. This moiety was selected as it rapidly forms a stable amide bond and also generates a new ketone, which can be analyzed by our recently developed quant-SCHEMA method specific for carbonyl metabolites. Optimization of this new method revealed a high reproducibility and robustness, which was utilized to validate 102 metabolic carboxylic acids using authentic synthetic standard conjugates in human plasma samples including nine metabolites that were newly detected. Using this sequential analysis of the carbonyl- and carboxylic acid-metabolomes revealed alterations of the ketogenesis pathway, which demonstrates the vast benefit of our unique methodology. We anticipate that the developed azirine moiety with rapid functional group transformation will find broad application in diverse chemical biology research fields.
Collapse
|
6
|
Trøseid M, Molinaro A, Gelpi M, Vestad B, Kofoed KF, Fuchs A, Køber L, Holm K, Benfield T, Ueland PM, Hov JR, Nielsen SD, Knudsen AD. Gut Microbiota Alterations and Circulating Imidazole Propionate Levels Are Associated With Obstructive Coronary Artery Disease in People With HIV. J Infect Dis 2024; 229:898-907. [PMID: 38195204 PMCID: PMC10938217 DOI: 10.1093/infdis/jiad604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The impact of gut microbiota and its metabolites on coronary artery disease (CAD) in people with human immunodeficiency virus (PWH) is unknown. Emerging evidence suggests that imidazole propionate (ImP), a microbial metabolite, is linked with cardiometabolic diseases. METHODS Fecal samples from participants of the Copenhagen Comorbidity in HIV infection (COCOMO) study were processed for 16S rRNA sequencing and ImP measured with liquid chromatography-tandem mass spectrometry. CAD severity was investigated by coronary computed tomography-angiography, and participants grouped according to obstructive CAD (n = 60), nonobstructive CAD (n = 80), or no CAD (n = 114). RESULTS Participants with obstructive CAD had a gut microbiota with lower diversity and distinct compositional shift, with increased abundance of Rumiococcus gnavus and Veillonella, known producers of ImP. ImP plasma levels were associated with this dysbiosis, and significantly elevated in participants with obstructive CAD. However, gut dysbiosis but not plasma ImP was independently associated with obstructive CAD after adjustment for traditional and HIV-related risk factors (adjusted odds ratio, 2.7; 95% confidence interval, 1.1-7.2; P = .048). CONCLUSIONS PWH with obstructive CAD displays a distinct gut microbiota profile and increased circulating ImP plasma levels. Future studies should determine whether gut dysbiosis and related metabolites such as ImP are predictive of incident cardiovascular events.
Collapse
|
7
|
Jørgensen SF, Macpherson ME, Bjørnetrø T, Holm K, Kummen M, Rashidi A, Michelsen AE, Lekva T, Halvorsen B, Trøseid M, Mollnes TE, Berge RK, Yndestad A, Ueland T, Karlsen TH, Aukrust P, Hov JR, Fevang B. Retraction Note: Rifaximin alters gut microbiota profile, but does not affect systemic inflammation - a randomized controlled trial in common variable immunodeficiency. Sci Rep 2024; 14:3704. [PMID: 38355714 PMCID: PMC10867022 DOI: 10.1038/s41598-024-54117-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
|
8
|
Raju SC, Molinaro A, Awoyemi A, Jørgensen SF, Braadland PR, Nendl A, Seljeflot I, Ueland PM, McCann A, Aukrust P, Vestad B, Mayerhofer C, Broch K, Gullestad L, Lappegård KT, Halvorsen B, Kristiansen K, Hov JR, Trøseid M. Microbial-derived imidazole propionate links the heart failure-associated microbiome alterations to disease severity. Genome Med 2024; 16:27. [PMID: 38331891 PMCID: PMC10854170 DOI: 10.1186/s13073-024-01296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Interactions between the gut microbiota, diet, and host metabolism contribute to the development of cardiovascular disease, but a firm link between disease-specific gut microbiota alterations and circulating metabolites is lacking. METHODS We performed shot-gun sequencing on 235 samples from 166 HF patients and 69 healthy control samples. Separate plasma samples from healthy controls (n = 53) were used for the comparison of imidazole propionate (ImP) levels. Taxonomy and functional pathways for shotgun sequencing data was assigned using MetaPhlAn3 and HUMAnN3 pipelines. RESULTS Here, we show that heart failure (HF) is associated with a specific compositional and functional shift of the gut microbiota that is linked to circulating levels of the microbial histidine-derived metabolite ImP. Circulating ImP levels are elevated in chronic HF patients compared to controls and associated with HF-related gut microbiota alterations. Contrary to the microbiota composition, ImP levels provide insight into etiology and severity of HF and also associate with markers of intestinal permeability and systemic inflammation. CONCLUSIONS Our findings establish a connection between changes in the gut microbiota, the presence, etiology, and severity of HF, and the gut-microbially produced metabolite ImP. While ImP appears promising as a circulating biomarker reflecting gut dysbiosis related to HF, further studies are essential to demonstrate its causal or contributing role in HF pathogenesis. TRIAL REGISTRATION NCT02637167, registered December 22, 2015.
Collapse
|
9
|
Serrano-Villar S, Tincati C, Raju SC, Sáenz JS, Moreno E, Bargiela R, Cabello-Ubeda A, Sendagorta E, Kurz A, Perez Molina JA, de Benito A, Hov JR, Fernandez-Lopez L, Muriel A, Del Campo R, Moreno S, Trøseid M, Seifert J, Ferrer M. Author Correction: Microbiome-derived cobalamin and succinyl-CoA as biomarkers for improved screening of anal cancer. Nat Med 2024; 30:303. [PMID: 37587221 DOI: 10.1038/s41591-023-02529-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
|
10
|
Serrano-Villar S, Tincati C, Raju SC, Sáenz JS, Moreno E, Bargiela R, Cabello-Ubeda A, Sendagorta E, Kurz A, Perez Molina JA, de Benito A, Hov JR, Fernandez-Lopez L, Muriel A, Del Campo R, Moreno S, Trøseid M, Seifert J, Ferrer M. Microbiome-derived cobalamin and succinyl-CoA as biomarkers for improved screening of anal cancer. Nat Med 2023; 29:1738-1749. [PMID: 37464040 DOI: 10.1038/s41591-023-02407-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/18/2023] [Indexed: 07/20/2023]
Abstract
Human papillomavirus can cause preinvasive, high-grade squamous intraepithelial lesions (HSILs) as precursors to cancer in the anogenital area, and the microbiome is suggested to be a contributing factor. Men who have sex with men (MSM) living with human immunodeficiency virus (HIV) have a high risk of anal cancer, but current screening strategies for HSIL detection lack specificity. Here, we investigated the anal microbiome to improve HSIL screening. We enrolled participants living with HIV, divided into a discovery (n = 167) and validation cohort (n = 46), and who were predominantly (93.9%) cisgender MSM undergoing HSIL screening with high-resolution anoscopy and anal biopsies. We identified no microbiome composition signatures associated with HSILs, but elevated levels of microbiome-encoded proteins producing succinyl coenzyme A and cobalamin were significantly associated with HSILs in both cohorts. Measurement of these candidate biomarkers alone in anal cytobrushes outperformed anal cytology as a diagnostic indicator for HSILs, increasing the sensitivity from 91.2% to 96.6%, the specificity from 34.1% to 81.8%, and reclassifying 82% of false-positive results as true negatives. We propose that these two microbiome-derived biomarkers may improve the current strategy of anal cancer screening.
Collapse
|
11
|
Gui W, Hole MJ, Molinaro A, Edlund K, Jørgensen KK, Su H, Begher-Tibbe B, Gaßler N, Schneider CV, Muthukumarasamy U, Mohs A, Liao L, Jaeger J, Mertens CJ, Bergheim I, Strowig T, Hengstler JG, Hov JR, Marschall HU, Trautwein C, Schneider KM. Colitis ameliorates cholestatic liver disease via suppression of bile acid synthesis. Nat Commun 2023; 14:3304. [PMID: 37280200 DOI: 10.1038/s41467-023-38840-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by chronic inflammation and progressive fibrosis of the biliary tree. The majority of PSC patients suffer from concomitant inflammatory bowel disease (IBD), which has been suggested to promote disease development and progression. However, the molecular mechanisms by which intestinal inflammation may aggravate cholestatic liver disease remain incompletely understood. Here, we employ an IBD-PSC mouse model to investigate the impact of colitis on bile acid metabolism and cholestatic liver injury. Unexpectedly, intestinal inflammation and barrier impairment improve acute cholestatic liver injury and result in reduced liver fibrosis in a chronic colitis model. This phenotype is independent of colitis-induced alterations of microbial bile acid metabolism but mediated via hepatocellular NF-κB activation by lipopolysaccharide (LPS), which suppresses bile acid metabolism in-vitro and in-vivo. This study identifies a colitis-triggered protective circuit suppressing cholestatic liver disease and encourages multi-organ treatment strategies for PSC.
Collapse
|
12
|
Hole MJ, Jørgensen KK, Holm K, Braadland PR, Meyer-Myklestad MH, Medhus AW, Reikvam DH, Götz A, Grzyb K, Boberg KM, Karlsen TH, Kummen M, Hov JR. Reply: The mucosal gut signature in primary sclerosing cholangitis before and after liver transplantation. Is the dysbiosis index really predictive for the recurrence of PSC? Hepatology 2023; 77:E188-E189. [PMID: 36815351 DOI: 10.1097/hep.0000000000000340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023]
|
13
|
Macpherson ME, Skarpengland T, Hov JR, Ranheim T, Vestad B, Dahl TB, Fraz MSA, Michelsen AE, Holven KB, Fevang B, Berge RK, Aukrust P, Halvorsen B, Jørgensen SF. Increased Plasma Levels of Triglyceride-Enriched Lipoproteins Associate with Systemic Inflammation, Lipopolysaccharides, and Gut Dysbiosis in Common Variable Immunodeficiency. J Clin Immunol 2023:10.1007/s10875-023-01475-x. [PMID: 36995502 DOI: 10.1007/s10875-023-01475-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
PURPOSE Triglycerides (TG) and their major transport lipoprotein in the circulation (VLDL) appear to be related to inflammation. Patients with common variable immunodeficiency (CVID) have inflammatory complications associated with gut microbial dysbiosis. We hypothesized that CVID patients have disturbed TG/VLDL profiles associated with these clinical characteristics. METHODS We measured plasma concentrations of TGs, inflammatory markers, and lipopolysaccharide (LPS) in 95 CVID patients and 28 healthy controls. Additionally, in 40 CVID patients, we explored plasma lipoprotein profiling, fatty acid, gut microbial dysbiosis, and diet. RESULTS TG levels were increased in CVID patients as compared to healthy controls (1.36 ± 0.53 mmol/l versus 1.08 ± 0.56 [mean, SD], respectively, P = 0.008), particularly in the clinical subgroup "Complications," characterized by autoimmunity and organ-specific inflammation, compared to "Infection only" (1.41 mmol/l, 0.71[median, IQR] versus [1.02 mmol/l, 0.50], P = 0.021). Lipoprotein profile analyses showed increased levels of all sizes of VLDL particles in CVID patients compared to controls. TG levels correlated positively with CRP (rho = 0.256, P = 0.015), IL-6 (rho = 0.237, P = 0.021), IL-12 (rho = 0.265, P = 0.009), LPS (r = 0.654, P = 6.59 × 10-13), CVID-specific gut dysbiosis index (r = 0.315, P = 0.048), and inversely with a favorable fatty acid profile (docosahexaenoic acid [rho = - 0.369, P = 0.021] and linoleic acid [rho = - 0.375, P = 0.019]). TGs and VLDL lipids did not appear to be associated with diet and there were no differences in body mass index (BMI) between CVID patients and controls. CONCLUSION We found increased plasma levels of TGs and all sizes of VLDL particles, which were associated with systemic inflammation, LPS, and gut dysbiosis in CVID, but not diet or BMI.
Collapse
|
14
|
Kaarbø M, Yang M, Hov JR, Holm K, de Sousa MML, Macpherson ME, Reims HM, Kran AMB, Halvorsen B, Karlsen TH, Aukrust P, Lundin KEA, Fevang B, Bjørås M, Jørgensen SF. Duodenal inflammation in common variable immunodeficiency has altered transcriptional response to viruses. J Allergy Clin Immunol 2023; 151:767-777. [PMID: 36220400 DOI: 10.1016/j.jaci.2022.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND A substantial proportion of common variable immunodeficiency (CVID) patients has duodenal inflammation of largely unknown etiology. However, because of its histologic similarities with celiac disease, gluten sensitivity has been proposed as a potential mechanism. OBJECTIVE We aimed to elucidate the role of the duodenal microenvironment in the pathogenesis of duodenal inflammation in CVID by investigating the transcriptional, proteomic, and microbial signatures of duodenal biopsy samples in CVID. METHODS DNA, total RNA, and protein were isolated from snap-frozen pieces of duodenal biopsy samples from CVID (with and without duodenal inflammation), healthy controls, and patients with celiac disease (untreated). RNA sequencing, mass spectrometry-based proteomics, and 16S ribosomal DNA sequencing (bacteria) were then performed. RESULTS CVID separated from controls in regulation of transcriptional response to lipopolysaccharide and cellular immune responses. These differences were independent of mucosal inflammation. Instead, CVID patients with duodenal inflammation displayed alterations in transcription of genes involved in response to viral infections. Four proteins were differently regulated between CVID patients and healthy controls-DBNL, TRMT11, GCHFR, and IGHA2-independent of duodenal inflammation. Despite similar histology, there were major differences in CVID with duodenal inflammation and celiac disease both at the RNA and protein level. No significant difference was observed in the bacterial gut microbial signature between CVID, celiac, and healthy controls. CONCLUSION Our findings suggest the existence of altered functions of the duodenal epithelium, particularly in response to lipopolysaccharide and viruses. The latter finding was related to duodenal inflammation, suggesting that viruses, not gluten sensitivity, could be related to duodenal inflammation in CVID.
Collapse
|
15
|
Hole MJ, Jørgensen KK, Holm K, Braadland PR, Meyer‐Myklestad MH, Medhus AW, Reikvam DH, Götz A, Grzyb K, Boberg KM, Karlsen TH, Kummen M, Hov JR. A shared mucosal gut microbiota signature in primary sclerosing cholangitis before and after liver transplantation. Hepatology 2023; 77:715-728. [PMID: 36056902 PMCID: PMC9936983 DOI: 10.1002/hep.32773] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Several characteristic features of the fecal microbiota have been described in primary sclerosing cholangitis (PSC), whereas data on mucosal microbiota are less consistent. We aimed to use a large colonoscopy cohort to investigate key knowledge gaps, including the role of gut microbiota in PSC with inflammatory bowel disease (IBD), the effect of liver transplantation (LT), and whether recurrent PSC (rPSC) may be used to define consistent microbiota features in PSC irrespective of LT. APPROACH AND RESULTS We included 84 PSC and 51 liver transplanted PSC patients (PSC-LT) and 40 healthy controls (HCs) and performed sequencing of the 16S ribosomal RNA gene (V3-V4) from ileocolonic biopsies. Intraindividual microbial diversity was reduced in both PSC and PSC-LT versus HCs. An expansion of Proteobacteria was more pronounced in PSC-LT (up to 19% relative abundance) than in PSC (up to 11%) and HCs (up to 8%; Q FDR < 0.05). When investigating PSC before (PSC vs. HC) and after LT (rPSC vs. no-rPSC), increased variability (dispersion) in the PSC group was found. Five genera were associated with PSC before and after LT. A dysbiosis index calculated from the five genera, and the presence of the potential pathobiont, Klebsiella , were associated with reduced LT-free survival. Concomitant IBD was associated with reduced Akkermansia . CONCLUSIONS Consistent mucosal microbiota features associated with PSC, PSC-IBD, and disease severity, irrespective of LT status, highlight the usefulness of investigating PSC and rPSC in parallel, and suggest that the impact of gut microbiota on posttransplant liver health should be investigated further.
Collapse
|
16
|
Hov JR, Karlsen TH. The microbiota and the gut-liver axis in primary sclerosing cholangitis. Nat Rev Gastroenterol Hepatol 2023; 20:135-154. [PMID: 36352157 DOI: 10.1038/s41575-022-00690-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/11/2022]
Abstract
Primary sclerosing cholangitis (PSC) offers unique opportunities to explore the gut-liver axis owing to the close association between liver disease and colonic inflammation. It is well established that the gut microbiota in people with PSC differs from that of healthy individuals, but details of the microbial factors that demarcate PSC from inflammatory bowel disease (IBD) without PSC are poorly understood. In this Review, we aim to provide an overview of the latest literature on the gut microbiome in PSC and PSC with IBD, critically examining hypotheses on how microorganisms could contribute to the pathogenesis of PSC. A particular emphasis will be put on pathogenic features of the gut microbiota that might explain the occurrence of bile duct inflammation and liver disease in the context of IBD, and we postulate the potential existence of a specific yet unknown factor related to the gut-liver axis as causative in PSC. Available data are scrutinized in the perspective of therapeutic approaches related to the gut-liver axis.
Collapse
|
17
|
Trøseid M, Holter JC, Holm K, Vestad B, Sazonova T, Granerud BK, Dyrhol-Riise AM, Holten AR, Tonby K, Kildal AB, Heggelund L, Tveita A, Bøe S, Müller KE, Jenum S, Hov JR, Ueland T. Gut microbiota composition during hospitalization is associated with 60-day mortality after severe COVID-19. Crit Care 2023; 27:69. [PMID: 36814280 PMCID: PMC9946863 DOI: 10.1186/s13054-023-04356-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/12/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Gut microbiota alterations have been reported in hospitalized COVID-19 patients, with reduced alpha diversity and altered microbiota composition related to respiratory failure. However, data regarding gut microbiota and mortality are scarce. METHODS Rectal swabs for gut microbiota analyses were collected within 48 h after hospital admission (baseline; n = 123) and three-month post-admission (n = 50) in a subset of patients included in the Norwegian SARS-CoV2 cohort study. Samples were analysed by sequencing the 16S rRNA gene. Gut microbiota diversity and composition at baseline were assessed in relation to need for intensive care unit (ICU) admission during hospitalization. The primary objective was to investigate whether the ICU-related gut microbiota was associated with 60-day mortality. RESULTS Gut microbiota diversity (Shannon index) at baseline was lower in COVID-19 patients requiring ICU admission during hospitalization than in those managed in general wards. A dysbiosis index representing a balance of enriched and reduced taxa in ICU compared with ward patients, including decreased abundance of butyrate-producing microbes and enrichment of a partly oral bacterial flora, was associated with need of ICU admission independent of antibiotic use, dexamethasone use, chronic pulmonary disease, PO2/FiO2 ratio, C-reactive protein, neutrophil counts or creatinine levels (adjusted p < 0.001). The ICU-related dysbiosis index at baseline correlated with systemic inflammation and was associated with 60-day mortality in univariate analyses (Hazard ratio 3.70 [2.00-8.6], p < 0.001), as well as after separate adjustment for covariates. At the three-month follow-up, the dysbiosis index remained elevated in ICU patients compared with ward patients (adjusted p = 0.007). CONCLUSIONS Although our data should be regarded as exploratory due to low number of clinical end points, they suggest that gut microbiota alterations during hospitalization could be related to poor prognosis after severe COVID-19. Larger studies of gut involvement during COVID-19 in relation to long-term clinical outcome are warranted. Trial registration NCT04381819 . Retrospectively registered May 11, 2020.
Collapse
|
18
|
Mikaeloff F, Gelpi M, Benfeitas R, Knudsen AD, Vestad B, Høgh J, Hov JR, Benfield T, Murray D, Giske CG, Mardinoglu A, Trøseid M, Nielsen SD, Neogi U. Network-based multi-omics integration reveals metabolic at-risk profile within treated HIV-infection. eLife 2023; 12:82785. [PMID: 36794912 PMCID: PMC10017104 DOI: 10.7554/elife.82785] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/15/2023] [Indexed: 02/17/2023] Open
Abstract
Multiomics technologies improve the biological understanding of health status in people living with HIV on antiretroviral therapy (PWH). Still, a systematic and in-depth characterization of metabolic risk profile during successful long-term treatment is lacking. Here, we used multi-omics (plasma lipidomic, metabolomic, and fecal 16 S microbiome) data-driven stratification and characterization to identify the metabolic at-risk profile within PWH. Through network analysis and similarity network fusion (SNF), we identified three groups of PWH (SNF-1-3): healthy (HC)-like (SNF-1), mild at-risk (SNF-3), and severe at-risk (SNF-2). The PWH in the SNF-2 (45%) had a severe at-risk metabolic profile with increased visceral adipose tissue, BMI, higher incidence of metabolic syndrome (MetS), and increased di- and triglycerides despite having higher CD4+ T-cell counts than the other two clusters. However, the HC-like and the severe at-risk group had a similar metabolic profile differing from HIV-negative controls (HNC), with dysregulation of amino acid metabolism. At the microbiome profile, the HC-like group had a lower α-diversity, a lower proportion of men having sex with men (MSM) and was enriched in Bacteroides. In contrast, in at-risk groups, there was an increase in Prevotella, with a high proportion of MSM, which could potentially lead to higher systemic inflammation and increased cardiometabolic risk profile. The multi-omics integrative analysis also revealed a complex microbial interplay of the microbiome-associated metabolites in PWH. Those severely at-risk clusters may benefit from personalized medicine and lifestyle intervention to improve their dysregulated metabolic traits, aiming to achieve healthier aging.
Collapse
|
19
|
Hov JR. Editorial: dietary interventions to understand and treat primary sclerosing cholangitis-is gluten-free diet a starting point? Aliment Pharmacol Ther 2023; 57:265-266. [PMID: 36565005 DOI: 10.1111/apt.17326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Awoyemi A, Hov JR, Trøseid M. Phenylacetylglutamine From the Gut Microbiota: A Future Therapeutic Target in Heart Failure? Circ Heart Fail 2023; 16:e010222. [PMID: 36524473 DOI: 10.1161/circheartfailure.122.010222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Storm-Larsen C, Hande LN, Kummen M, Thunhaug H, Vestad B, Hansen SH, Hovland A, Trøseid M, Lappegård KT, Hov JR. Reduced gut microbial diversity in familial hypercholesterolemia with no effect of omega-3 polyunsaturated fatty acids intervention - a pilot trial. Scandinavian Journal of Clinical and Laboratory Investigation 2022; 82:363-370. [PMID: 35913798 DOI: 10.1080/00365513.2022.2102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Individuals with familial hypercholesterolemia (FH) undergo an aggressive treatment with cholesterol-lowering drugs to prevent coronary heart disease. Recent evidence suggests an interplay between the gut microbiota, blood lipid levels and lipid-lowering drugs, but this has yet to be studied in individuals with FH. The objective of the study was to characterize the gut microbiota of individuals with familial hypercholesterolemia and examine if effects of omega-3 polyunsaturated fatty acids (PUFAs) on blood lipids act through modification of the gut microbiome. The gut microbiota composition of individuals with FH (N = 21) and healthy controls (N = 144) was analyzed by extracting DNA from stool samples and sequencing of the V3-V4 region of the 16S rRNA gene. A subgroup (n = 15) of the participants received omega-3 polyunsaturated fatty acids (PUFAs) supplementation or placebo in a crossover manner, and the effect of PUFAs on the gut microbiota was also investigated. Individuals with FH had a different gut microbiota composition compared to healthy controls, characterized by reduced richness (p = .001) and reduction of several genera belonging to Clostridia and Coriobacteriia. Patients using ezetimibe in addition to statins appeared to have lower richness compared to those only using statins (p = .01). Intervention with omega-3 PUFAs had negligible impact on the microbiota composition. Positive effects on blood lipids after intervention with omega-3 PUFA were not associated with baseline gut microbiota composition or gut microbial changes during treatment. Further, patients with FH have an altered gut microbiota compared to healthy controls, possibly driven by the use of ezetimibe.
Collapse
|
22
|
Degenhardt F, Ellinghaus D, Juzenas S, Lerga-Jaso J, Wendorff M, Maya-Miles D, Uellendahl-Werth F, ElAbd H, Rühlemann MC, Arora J, Özer O, Lenning OB, Myhre R, Vadla MS, Wacker EM, Wienbrandt L, Blandino Ortiz A, de Salazar A, Garrido Chercoles A, Palom A, Ruiz A, Garcia-Fernandez AE, Blanco-Grau A, Mantovani A, Zanella A, Holten AR, Mayer A, Bandera A, Cherubini A, Protti A, Aghemo A, Gerussi A, Ramirez A, Braun A, Nebel A, Barreira A, Lleo A, Teles A, Kildal AB, Biondi A, Caballero-Garralda A, Ganna A, Gori A, Glück A, Lind A, Tanck A, Hinney A, Carreras Nolla A, Fracanzani AL, Peschuck A, Cavallero A, Dyrhol-Riise AM, Ruello A, Julià A, Muscatello A, Pesenti A, Voza A, Rando-Segura A, Solier A, Schmidt A, Cortes B, Mateos B, Nafria-Jimenez B, Schaefer B, Jensen B, Bellinghausen C, Maj C, Ferrando C, de la Horra C, Quereda C, Skurk C, Thibeault C, Scollo C, Herr C, Spinner CD, Gassner C, Lange C, Hu C, Paccapelo C, Lehmann C, Angelini C, Cappadona C, Azuure C, Bianco C, Cea C, Sancho C, Hoff DAL, Galimberti D, Prati D, Haschka D, Jiménez D, Pestaña D, Toapanta D, Muñiz-Diaz E, Azzolini E, Sandoval E, Binatti E, Scarpini E, Helbig ET, Casalone E, Urrechaga E, Paraboschi EM, Pontali E, Reverter E, Calderón EJ, Navas E, Solligård E, Contro E, Arana-Arri E, Aziz F, Garcia F, García Sánchez F, Ceriotti F, Martinelli-Boneschi F, Peyvandi F, Kurth F, Blasi F, Malvestiti F, Medrano FJ, Mesonero F, Rodriguez-Frias F, Hanses F, Müller F, Hemmrich-Stanisak G, Bellani G, Grasselli G, Pezzoli G, Costantino G, Albano G, Cardamone G, Bellelli G, Citerio G, Foti G, Lamorte G, Matullo G, Baselli G, Kurihara H, Neb H, My I, Kurth I, Hernández I, Pink I, de Rojas I, Galván-Femenia I, Holter JC, Afset JE, Heyckendorf J, Kässens J, Damås JK, Rybniker J, Altmüller J, Ampuero J, Martín J, Erdmann J, Banales JM, Badia JR, Dopazo J, Schneider J, Bergan J, Barretina J, Walter J, Hernández Quero J, Goikoetxea J, Delgado J, Guerrero JM, Fazaal J, Kraft J, Schröder J, Risnes K, Banasik K, Müller KE, Gaede KI, Garcia-Etxebarria K, Tonby K, Heggelund L, Izquierdo-Sanchez L, Bettini LR, Sumoy L, Sander LE, Lippert LJ, Terranova L, Nkambule L, Knopp L, Gustad LT, Garbarino L, Santoro L, Téllez L, Roade L, Ostadreza M, Intxausti M, Kogevinas M, Riveiro-Barciela M, Berger MM, Schaefer M, Niemi MEK, Gutiérrez-Stampa MA, Carrabba M, Figuera Basso ME, Valsecchi MG, Hernandez-Tejero M, Vehreschild MJGT, Manunta M, Acosta-Herrera M, D'Angiò M, Baldini M, Cazzaniga M, Grimsrud MM, Cornberg M, Nöthen MM, Marquié M, Castoldi M, Cordioli M, Cecconi M, D'Amato M, Augustin M, Tomasi M, Boada M, Dreher M, Seilmaier MJ, Joannidis M, Wittig M, Mazzocco M, Ciccarelli M, Rodríguez-Gandía M, Bocciolone M, Miozzo M, Imaz Ayo N, Blay N, Chueca N, Montano N, Braun N, Ludwig N, Marx N, Martínez N, Cornely OA, Witzke O, Palmieri O, Faverio P, Preatoni P, Bonfanti P, Omodei P, Tentorio P, Castro P, Rodrigues PM, España PP, Hoffmann P, Rosenstiel P, Schommers P, Suwalski P, de Pablo R, Ferrer R, Bals R, Gualtierotti R, Gallego-Durán R, Nieto R, Carpani R, Morilla R, Badalamenti S, Haider S, Ciesek S, May S, Bombace S, Marsal S, Pigazzini S, Klein S, Pelusi S, Wilfling S, Bosari S, Volland S, Brunak S, Raychaudhuri S, Schreiber S, Heilmann-Heimbach S, Aliberti S, Ripke S, Dudman S, Wesse T, Zheng T, Bahmer T, Eggermann T, Illig T, Brenner T, Pumarola T, Feldt T, Folseraas T, Gonzalez Cejudo T, Landmesser U, Protzer U, Hehr U, Rimoldi V, Monzani V, Skogen V, Keitel V, Kopfnagel V, Friaza V, Andrade V, Moreno V, Albrecht W, Peter W, Poller W, Farre X, Yi X, Wang X, Khodamoradi Y, Karadeniz Z, Latiano A, Goerg S, Bacher P, Koehler P, Tran F, Zoller H, Schulte EC, Heidecker B, Ludwig KU, Fernández J, Romero-Gómez M, Albillos A, Invernizzi P, Buti M, Duga S, Bujanda L, Hov JR, Lenz TL, Asselta R, de Cid R, Valenti L, Karlsen TH, Cáceres M, Franke A. Detailed stratified GWAS analysis for severe COVID-19 in four European populations. Hum Mol Genet 2022; 31:3945-3966. [PMID: 35848942 PMCID: PMC9703941 DOI: 10.1093/hmg/ddac158] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/11/2022] [Accepted: 07/26/2022] [Indexed: 12/11/2022] Open
Abstract
Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.
Collapse
|
23
|
Cruz R, Almeida SDD, Heredia ML, Quintela I, Ceballos FC, Pita G, Lorenzo-Salazar JM, González-Montelongo R, Gago-Domínguez M, Porras MS, Castaño JAT, Nevado J, Aguado JM, Aguilar C, Aguilera-Albesa S, Almadana V, Almoguera B, Alvarez N, Andreu-Bernabeu Á, Arana-Arri E, Arango C, Arranz MJ, Artiga MJ, Baptista-Rosas RC, Barreda-Sánchez M, Belhassen-Garcia M, Bezerra JF, Bezerra MAC, Boix-Palop L, Brion M, Brugada R, Bustos M, Calderón EJ, Carbonell C, Castano L, Castelao JE, Conde-Vicente R, Cordero-Lorenzana ML, Cortes-Sanchez JL, Corton M, Darnaude MT, De Martino-Rodríguez A, Campo-Pérez V, Bustamante AD, Domínguez-Garrido E, Luchessi AD, Eirós R, Sanabria GME, Fariñas MC, Fernández-Robelo U, Fernández-Rodríguez A, Fernández-Villa T, Gil-Fournier B, Gómez-Arrue J, Álvarez BG, Quirós FGB, González-Peñas J, Gutiérrez-Bautista JF, Herrero MJ, Herrero-Gonzalez A, Jimenez-Sousa MA, Lattig MC, Borja AL, Lopez-Rodriguez R, Mancebo E, Martín-López C, Martín V, Martinez-Nieto O, Martinez-Lopez I, Martinez-Resendez MF, Martinez-Perez Á, Mazzeu JA, Macías EM, Minguez P, Cuerda VM, Silbiger VN, Oliveira SF, Ortega-Paino E, Parellada M, Paz-Artal E, Santos NPC, Pérez-Matute P, Perez P, Pérez-Tomás ME, Perucho T, Pinsach-Abuin ML, Pompa-Mera EN, Porras-Hurtado GL, Pujol A, León SR, Resino S, Fernandes MR, Rodríguez-Ruiz E, Rodriguez-Artalejo F, Rodriguez-Garcia JA, Ruiz-Cabello F, Ruiz-Hornillos J, Ryan P, Soria JM, Souto JC, Tamayo E, Tamayo-Velasco A, Taracido-Fernandez JC, Teper A, Torres-Tobar L, Urioste M, Valencia-Ramos J, Yáñez Z, Zarate R, Nakanishi T, Pigazzini S, Degenhardt F, Butler-Laporte G, Maya-Miles D, Bujanda L, Bouysran Y, Palom A, Ellinghaus D, Martínez-Bueno M, Rolker S, Amitrano S, Roade L, Fava F, Spinner CD, Prati D, Bernardo D, Garcia F, Darcis G, Fernández-Cadenas I, Holter JC, Banales JM, Frithiof R, Duga S, Asselta R, Pereira AC, Romero-Gómez M, Nafría-Jiménez B, Hov JR, Migeotte I, Renieri A, Planas AM, Ludwig KU, Buti M, Rahmouni S, Alarcón-Riquelme ME, Schulte EC, Franke A, Karlsen TH, Valenti L, Zeberg H, Richards B, Ganna A, Boada M, Rojas I, Ruiz A, Sánchez P, Real LM, Guillen-Navarro E, Ayuso C, González-Neira A, Riancho JA, Rojas-Martinez A, Flores C, Lapunzina P, Carracedo Á. Novel genes and sex differences in COVID-19 severity. Hum Mol Genet 2022; 31:3789-3806. [PMID: 35708486 DOI: 10.1093/hmg/ddac132] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 01/08/2023] Open
Abstract
Here we describe the results of a genome-wide study conducted in 11 939 COVID-19 positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (p < 5x10-8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (p = 1.3x10-22 and p = 8.1x10-12, respectively), and for variants in 9q21.32 near TLE1 only among females (p = 4.4x10-8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (p = 2.7x10-8) and ARHGAP33 (p = 1.3x10-8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, p = 4.1x10-8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥ 60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided.
Collapse
|
24
|
Valestrand L, Zheng F, Hansen SH, Øgaard J, Hov JR, Björkström NK, Karlsen TH, Jiang X, Melum E. Bile from Patients with Primary Sclerosing Cholangitis Contains Mucosal-Associated Invariant T-Cell Antigens. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:629-641. [PMID: 35063408 DOI: 10.1016/j.ajpath.2021.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/23/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022]
Abstract
Primary sclerosing cholangitis (PSC) is associated with altered microbiota of the gut and bile. Mucosal-associated invariant T (MAIT) cells, enriched in human liver, uniquely recognize microbial-derived metabolites. This study aimed to determine whether bile from patients with PSC contains antigens activating MAIT cells. Bile was collected at the time of liver transplantation from patients with PSC (n = 28). The bile samples were either directly incubated with peripheral blood mononuclear cells from healthy donors or with antigen-presenting cells followed by co-culture with peripheral blood mononuclear cells. MAIT cell activation was assessed by flow cytometry. An anti-MR1 antibody was used to determine whether the activation was major histocompatibility complex class I-related protein (MR1) restricted. Biliary microbiota profiles were generated using 16S rRNA amplicon sequencing, and the abundance of the bacterial gene ribD was predicted. Eight of 28 bile samples could activate MAIT cells. This activation was partly MR1-dependent in five of eight bile samples. Microbial DNA was detected in 15 of 28 bile samples, including the five bile samples leading to MR1-dependent activation. A higher abundance of the ribD gene expression in the group of bile samples that could activate MAIT cells was predicted on the basis of the 16S sequencing. In co-culture experiments, cholangiocytes could take up and present biliary antigens to MAIT cells. These findings suggest a pathophysiological pathway in PSC connecting the immune system and the microbiome.
Collapse
|
25
|
Gelpi M, Vestad B, Raju SC, Hansen SH, Høgh J, Midttun Ø, Ueland PM, Ueland T, Benfield T, Kofoed KF, Hov JR, Trøseid M, Nielsen SD. Association of the kynurenine pathway of tryptophan metabolism with HIV-related gut microbiota alterations and visceral adipose tissue accumulation. J Infect Dis 2022; 225:1948-1954. [PMID: 35089326 DOI: 10.1093/infdis/jiac018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/26/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The aim of the study was to investigate the association between HIV-related gut microbiota changes, alterations in the Kyn pathway of Trp metabolism and visceral adipose tissue in the context of HIV infection. METHODS 383 people with HIV (PWH) were included from the COCOMO study. Gut microbiota composition was analyzed by 16S ribosomal RNA sequencing. Plasma metabolites were analyzed by LC-MS/MS. Visceral (VAT) and subcutaneous (SAT) adipose tissue areas were measured by single slice CT scan (4 th lumbar vertebra). RESULTS HIV-related gut microbiota alterations were associated with lower tryptophan (β -0.01 [-0.03;-0.00]) and higher kynurenine-to-tryptophan ratio (β 0.03 [95% CI, 0.01;0.05]), which in turn was associated with higher VAT-to-SAT ratio (β 0.50 [0.10;0.90]) and larger VAT area (β 30.85 [4.43;57.28]). In mediation analysis, kynurenine-to-tryptophan ratio mediated 10% (p-value 0.023) of the association between VAT-to-SAT ratio and HIV-related gut microbiota. CONCLUSIONS Our data suggest HIV-related gut microbiota compositional changes and gut microbial translocation as potential drivers of high kynurenine-to-tryptophan ratio in PWH. In turn, increased activity in the kynurenine pathway of tryptophan metabolism was associated with larger visceral adipose tissue area. Taken together, our findings may suggest a possible role for this pathway in the gut-adipose tissue axis in the context of HIV infection.
Collapse
|