1
|
Tang SN, Salazar-Puerta AI, Heimann MK, Kuchynsky K, Rincon-Benavides MA, Kordowski M, Gunsch G, Bodine L, Diop K, Gantt C, Khan S, Bratasz A, Kokiko-Cochran O, Fitzgerald J, Laudier DM, Hoyland JA, Walter BA, Higuita-Castro N, Purmessur D. Engineered extracellular vesicle-based gene therapy for the treatment of discogenic back pain. Biomaterials 2024; 308:122562. [PMID: 38583365 PMCID: PMC11164054 DOI: 10.1016/j.biomaterials.2024.122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/23/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Painful musculoskeletal disorders such as intervertebral disc (IVD) degeneration associated with chronic low back pain (termed "Discogenic back pain", DBP), are a significant socio-economic burden worldwide and contribute to the growing opioid crisis. Yet there are very few if any successful interventions that can restore the tissue's structure and function while also addressing the symptomatic pain. Here we have developed a novel non-viral gene therapy, using engineered extracellular vesicles (eEVs) to deliver the developmental transcription factor FOXF1 to the degenerated IVD in an in vivo model. Injured IVDs treated with eEVs loaded with FOXF1 demonstrated robust sex-specific reductions in pain behaviors compared to control groups. Furthermore, significant restoration of IVD structure and function in animals treated with FOXF1 eEVs were observed, with significant increases in disc height, tissue hydration, proteoglycan content, and mechanical properties. This is the first study to successfully restore tissue function while modulating pain behaviors in an animal model of DBP using eEV-based non-viral delivery of transcription factor genes. Such a strategy can be readily translated to other painful musculoskeletal disorders.
Collapse
|
2
|
Tan Z, Chen P, Dong X, Guo S, Leung VYL, Cheung JPY, Chan D, Richardson SM, Hoyland JA, To MKT, Cheah KSE. Progenitor-like cells contributing to cellular heterogeneity in the nucleus pulposus are lost in intervertebral disc degeneration. Cell Rep 2024; 43:114342. [PMID: 38865240 DOI: 10.1016/j.celrep.2024.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
The nucleus pulposus (NP) in the intervertebral disc (IVD) arises from embryonic notochord. Loss of notochordal-like cells in humans correlates with onset of IVD degeneration, suggesting that they are critical for healthy NP homeostasis and function. Comparative transcriptomic analyses identified expression of progenitor-associated genes (GREM1, KRT18, and TAGLN) in the young mouse and non-degenerated human NP, with TAGLN expression reducing with aging. Lineage tracing using Tagln-CreERt2 mice identified peripherally located proliferative NP (PeriNP) cells in developing and postnatal NP that provide a continuous supply of cells to the entire NP. PeriNP cells were diminished in aged mice and absent in puncture-induced degenerated discs. Single-cell transcriptomes of postnatal Tagln-CreERt2 IVD cells indicate enrichment for TGF-β signaling in Tagln descendant NP sub-populations. Notochord-specific removal of TGF-β/BMP mediator Smad4 results in loss of Tagln+ cells and abnormal NP morphologies. We propose Tagln+ PeriNP cells are potential progenitors crucial for NP homeostasis.
Collapse
|
3
|
Gilbert HTJ, Wignall FEJ, Zeef L, Hoyland JA, Richardson SM. Transcriptomic profiling reveals key early response genes during GDF6-mediated differentiation of human adipose-derived stem cells to nucleus pulposus cells. JOR Spine 2024; 7:e1315. [PMID: 38249721 PMCID: PMC10797253 DOI: 10.1002/jsp2.1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Background Stem cell-based therapies show promise as a means of repairing the degenerate intervertebral disc, with growth factors often used alongside cells to help direct differentiation toward a nucleus pulposus (NP)-like phenotype. We previously demonstrated adipose-derived stem cell (ASC) differentiation with GDF6 as optimal for generating NP-like cells through evaluating end-stage differentiation parameters. Here we conducted a time-resolved transcriptomic characterization of ASCs response to GDF6 stimulation to understand the early drivers of differentiation to NP-like cells. Methods Human ASCs were treated with recombinant human GDF6 for 2, 6, and 12 h. RNA sequencing and detailed bioinformatic analysis were used to assess differential gene expression, gene ontology (GO), and transcription factor involvement during early differentiation. Quantitative polymerase chain reaction (qPCR) was used to validate RNA sequencing findings and inhibitors used to interrogate Smad and Erk signaling pathways, as well as identify primary and secondary response genes. Results The transcriptomic response of ASCs to GDF6 stimulation was time-resolved and highly structured, with "cell differentiation" "developmental processes," and "response to stimulus" identified as key biological process GO terms. The transcription factor ERG1 was identified as a key early response gene. Temporal cluster analysis of differentiation genes identified positive regulation NP cell differentiation, as well as inhibition of osteogenesis and adipogenesis. A role for Smad and Erk signaling in the regulation of GDF6-induced early gene expression response was observed and both primary and secondary response genes were identified. Conclusions This study identifies a multifactorial early gene response that contributes to lineage commitment, with the identification of a number of potentially useful early markers of differentiation of ASCs to NP cells. This detailed insight into the molecular processes in response to GDF6 stimulation of ASCs is important for the development of an efficient and efficacious cell-based therapy for intervertebral disc degeneration-associated back pain.
Collapse
|
4
|
Vitale M, Ligorio C, Richardson SM, Hoyland JA, Bella J. Collagen-like Osteoclast-Associated Receptor (OSCAR)-Binding Motifs Show a Co-Stimulatory Effect on Osteoclastogenesis in a Peptide Hydrogel System. Int J Mol Sci 2023; 25:445. [PMID: 38203618 PMCID: PMC10779143 DOI: 10.3390/ijms25010445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Osteoclastogenesis, one of the dynamic pathways underlying bone remodelling, is a complex process that includes many stages. This complexity, while offering a wealth of therapeutic opportunities, represents a substantial challenge in unravelling the underlying mechanisms. As such, there is a high demand for robust model systems to understand osteoclastogenesis. Hydrogels seeded with osteoclast precursors and decorated with peptides or proteins mimicking bone's extracellular matrix could provide a useful synthetic tool to study pre-osteoclast-matrix interactions and their effect on osteoclastogenesis. For instance, fibrillar collagens have been shown to provide a co-stimulatory pathway for osteoclastogenesis through interaction with the osteoclast-associated receptor (OSCAR), a regulator of osteoclastogenesis expressed on the surface of pre-osteoclast cells. Based on this rationale, here we design two OSCAR-binding peptides and one recombinant OSCAR-binding protein, and we combine them with peptide-based hydrogels to study their effect on osteoclastogenesis. The OSCAR-binding peptides adopt the collagen triple-helical conformation and interact with OSCAR, as shown by circular dichroism spectropolarimetry and surface plasmon resonance. Furthermore, they have a positive effect on osteoclastogenesis, as demonstrated by appropriate gene expression and tartrate-resistant acid phosphatase staining typical of osteoclast formation. Combination of the OSCAR-binding peptides or the OSCAR-binding recombinant protein with peptide-based hydrogels enhances osteoclast differentiation when compared to the non-modified hydrogels, as demonstrated by multi-nucleation and by F-actin staining showing a characteristic osteoclast-like morphology. We envisage that these hydrogels could be used as a platform to study osteoclastogenesis and, in particular, to investigate the effect of costimulatory pathways involving OSCAR.
Collapse
|
5
|
Dudek M, Pathiranage DRJ, Bano-Otalora B, Paszek A, Rogers N, Gonçalves CF, Lawless C, Wang D, Luo Z, Yang L, Guilak F, Hoyland JA, Meng QJ. Mechanical loading and hyperosmolarity as a daily resetting cue for skeletal circadian clocks. Nat Commun 2023; 14:7237. [PMID: 37963878 PMCID: PMC10646113 DOI: 10.1038/s41467-023-42056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/28/2023] [Indexed: 11/16/2023] Open
Abstract
Daily rhythms in mammalian behaviour and physiology are generated by a multi-oscillator circadian system entrained through environmental cues (e.g. light and feeding). The presence of tissue niche-dependent physiological time cues has been proposed, allowing tissues the ability of circadian phase adjustment based on local signals. However, to date, such stimuli have remained elusive. Here we show that daily patterns of mechanical loading and associated osmotic challenge within physiological ranges reset circadian clock phase and amplitude in cartilage and intervertebral disc tissues in vivo and in tissue explant cultures. Hyperosmolarity (but not hypo-osmolarity) resets clocks in young and ageing skeletal tissues and induce genome-wide expression of rhythmic genes in cells. Mechanistically, RNAseq and biochemical analysis revealed the PLD2-mTORC2-AKT-GSK3β axis as a convergent pathway for both in vivo loading and hyperosmolarity-induced clock changes. These results reveal diurnal patterns of mechanical loading and consequent daily oscillations in osmolarity as a bona fide tissue niche-specific time cue to maintain skeletal circadian rhythms in sync.
Collapse
|
6
|
Williams RJ, Laagland LT, Bach FC, Ward L, Chan W, Tam V, Medzikovic A, Basatvat S, Paillat L, Vedrenne N, Snuggs JW, Poramba-Liyanage DW, Hoyland JA, Chan D, Camus A, Richardson SM, Tryfonidou MA, Le Maitre CL. Recommendations for intervertebral disc notochordal cell investigation: From isolation to characterization. JOR Spine 2023; 6:e1272. [PMID: 37780826 PMCID: PMC10540834 DOI: 10.1002/jsp2.1272] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 10/03/2023] Open
Abstract
Background Lineage-tracing experiments have established that the central region of the mature intervertebral disc, the nucleus pulposus (NP), develops from the embryonic structure called "the notochord". However, changes in the cells derived from the notochord which form the NP (i.e., notochordal cells [NCs]), in terms of their phenotype and functional identity from early developmental stages to skeletal maturation are less understood. These key issues require further investigation to better comprehend the role of NCs in homeostasis and degeneration as well as their potential for regeneration. Progress in utilizing NCs is currently hampered due to poor consistency and lack of consensus methodology for in vitro NC extraction, manipulation, and characterization. Methods Here, an international group has come together to provide key recommendations and methodologies for NC isolation within key species, numeration, in vitro manipulation and culture, and characterization. Results Recommeded protocols are provided for isolation and culture of NCs. Experimental testing provided recommended methodology for numeration of NCs. The issues of cryopreservation are demonstrated, and a pannel of immunohistochemical markers are provided to inform NC characterization. Conclusions Together we hope this article provides a road map for in vitro studies of NCs to support advances in research into NC physiology and their potential in regenerative therapies.
Collapse
|
7
|
Wang X, Adlam DJ, Wang R, Altujjar A, Jia Z, Saunders JM, Hoyland JA, Rai N, Saunders BR. Injectable Colloidal Hydrogels of N-Vinylformamide Microgels Dispersed in Covalently Interlinked pH-Responsive Methacrylic Acid-Based Microgels. Biomacromolecules 2023; 24:2173-2183. [PMID: 37026759 PMCID: PMC10170504 DOI: 10.1021/acs.biomac.3c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Injectable hydrogels offer great potential to augment damaged or degenerated soft tissues. A key criterion for such gels is that their modulus is as close as possible to that of the target tissue. The majority of synthetic hydrogels have used low molecular weight polymer chains which may cause problems if they diffuse away from the injection site and/or increase the local osmotic pressure. We previously introduced a different approach of injecting preformed ultra-high molecular weight pH-responsive microgels (MGs) that interlink to form hydrogels. MGs are crosslinked polymer colloid particles that swell when the pH approaches the particle pKa. These colloidal hydrogels are termed doubly crosslinked microgels (DX MGs). The gel moduli of previous DX MGs were much greater than that reported for human nucleus pulposus (NP) tissue of the spinal intervertebral disk. Here, we replace some of the pH-responsive poly(ethyl acrylate-co-methacrylic acid) (PEA-MAA) MGs with hydrophilic non-ionic MGs based on poly(N-vinylformamide) (NVF). We investigate the morphology and mechanical properties of these new injectable composite DX MGs and show that the mechanical properties can be tuned by systematically varying the NVF MG content. Using this approach, the gel moduli close to that for NP tissue are achieved. These injectable new pH-responsive gels exhibit low cytotoxicity. Our work provides a potential new system for minimally invasive intervertebral disk augmentation.
Collapse
|
8
|
Basatvat S, Bach FC, Barcellona MN, Binch AL, Buckley CT, Bueno B, Chahine NO, Chee A, Creemers LB, Dudli S, Fearing B, Ferguson SJ, Gansau J, Gantenbein B, Gawri R, Glaeser JD, Grad S, Guerrero J, Haglund L, Hernandez PA, Hoyland JA, Huang C, Iatridis JC, Illien‐Junger S, Jing L, Kraus P, Laagland LT, Lang G, Leung V, Li Z, Lufkin T, van Maanen JC, McDonnell EE, Panebianco CJ, Presciutti SM, Rao S, Richardson SM, Romereim S, Schmitz TC, Schol J, Setton L, Sheyn D, Snuggs JW, Sun Y, Tan X, Tryfonidou MA, Vo N, Wang D, Williams B, Williams R, Yoon ST, Le Maitre CL. Harmonization and standardization of nucleus pulposus cell extraction and culture methods. JOR Spine 2023; 6:e1238. [PMID: 36994456 PMCID: PMC10041384 DOI: 10.1002/jsp2.1238] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Background In vitro studies using nucleus pulposus (NP) cells are commonly used to investigate disc cell biology and pathogenesis, or to aid in the development of new therapies. However, lab-to-lab variability jeopardizes the much-needed progress in the field. Here, an international group of spine scientists collaborated to standardize extraction and expansion techniques for NP cells to reduce variability, improve comparability between labs and improve utilization of funding and resources. Methods The most commonly applied methods for NP cell extraction, expansion, and re-differentiation were identified using a questionnaire to research groups worldwide. NP cell extraction methods from rat, rabbit, pig, dog, cow, and human NP tissue were experimentally assessed. Expansion and re-differentiation media and techniques were also investigated. Results Recommended protocols are provided for extraction, expansion, and re-differentiation of NP cells from common species utilized for NP cell culture. Conclusions This international, multilab and multispecies study identified cell extraction methods for greater cell yield and fewer gene expression changes by applying species-specific pronase usage, 60-100 U/ml collagenase for shorter durations. Recommendations for NP cell expansion, passage number, and many factors driving successful cell culture in different species are also addressed to support harmonization, rigor, and cross-lab comparisons on NP cells worldwide.
Collapse
|
9
|
Eckersley A, Ozols M, Chen P, Tam V, Ward LJ, Hoyland JA, Trafford A, Yuan XM, Schiller HB, Chan D, Sherratt MJ. Peptide location fingerprinting identifies species- and tissue-conserved structural remodelling of proteins as a consequence of ageing and disease. Matrix Biol 2022; 114:108-137. [PMID: 35618217 DOI: 10.1016/j.matbio.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 12/30/2022]
Abstract
Extracellular matrices (ECMs) in the intervertebral disc (IVD), lung and artery are thought to undergo age-dependant accumulation of damage by chronic exposure to mechanisms such as reactive oxygen species, proteases and glycation. It is unknown whether this damage accumulation is species-dependant (via differing lifespans and hence cumulative exposures) or whether it can influence the progression of age-related diseases such as atherosclerosis. Peptide location fingerprinting (PLF) is a new proteomic analysis method, capable of the non-targeted identification of structure-associated changes within proteins. Here we applied PLF to publicly available ageing human IVD (outer annulus fibrosus), ageing mouse lung and human arterial atherosclerosis datasets and bioinformatically identified novel target proteins alongside common age-associated differences within protein structures which were conserved between three ECM-rich organs, two species, three IVD tissue regions, sexes and in an age-related disease. We identify peptide yield differences across protein structures which coincide with biological regions, potentially reflecting the functional consequences of ageing or atherosclerosis for macromolecular assemblies (collagen VI), enzyme/inhibitor activity (alpha-2 macroglobulin), activation states (complement C3) and interaction states (laminins, perlecan, fibronectin, filamin-A, collagen XIV and apolipoprotein-B). Furthermore, we show that alpha-2 macroglobulin and collagen XIV exhibit possible shared structural consequences in IVD ageing and arterial atherosclerosis, providing novel links between an age-related disease and intrinsic ageing. Crucially, we also demonstrate that fibronectin, laminin beta chains and filamin-A all exhibit conserved age-associated structural differences between mouse lung and human IVD, providing evidence that ECM, and their associating proteins, may be subjected to potentially similar mechanisms or consequences of ageing across both species, irrespective of differences in lifespan and tissue function.
Collapse
|
10
|
Vitale M, Ligorio C, Smith IP, Richardson SM, Hoyland JA, Bella J. Incorporation of Natural and Recombinant Collagen Proteins within Fmoc-Based Self-Assembling Peptide Hydrogels. Gels 2022; 8:254. [PMID: 35621553 PMCID: PMC9140497 DOI: 10.3390/gels8050254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 11/30/2022] Open
Abstract
Hydrogel biomaterials mimic the natural extracellular matrix through their nanofibrous ultrastructure and composition and provide an appropriate environment for cell-matrix and cell-cell interactions within their polymeric network. Hydrogels can be modified with different proteins, cytokines, or cell-adhesion motifs to control cell behavior and cell differentiation. Collagens are desirable and versatile proteins for hydrogel modification due to their abundance in the vertebrate extracellular matrix and their interactions with cell-surface receptors. Here, we report a quick, inexpensive and effective protocol for incorporation of natural, synthetic and recombinant collagens into Fmoc-based self-assembling peptide hydrogels. The hydrogels are modified through a diffusion protocol in which collagen molecules of different molecular sizes are successfully incorporated and retained over time. Characterization studies show that these collagens interact with the hydrogel fibers without affecting the overall mechanical properties of the composite hydrogels. Furthermore, the collagen molecules incorporated into the hydrogels are still biologically active and provide sites for adhesion and spreading of human fibrosarcoma cells through interaction with the α2β1 integrin. Our protocol can be used to incorporate different types of collagen molecules into peptide-based hydrogels without any prior chemical modification. These modified hydrogels could be used in studies where collagen-based substrates are required to differentiate and control the cell behavior. Our protocol can be easily adapted to the incorporation of other bioactive proteins and peptides into peptide-based hydrogels to modulate their characteristics and their interaction with different cell types.
Collapse
|
11
|
Ligorio C, Hoyland JA, Saiani A. Self-Assembling Peptide Hydrogels as Functional Tools to Tackle Intervertebral Disc Degeneration. Gels 2022; 8:gels8040211. [PMID: 35448112 PMCID: PMC9028266 DOI: 10.3390/gels8040211] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
Low back pain (LBP), caused by intervertebral disc (IVD) degeneration, is a major contributor to global disability. In its healthy state, the IVD is a tough and well-hydrated tissue, able to act as a shock absorber along the spine. During degeneration, the IVD is hit by a cell-driven cascade of events, which progressively lead to extracellular matrix (ECM) degradation, chronic inflammation, and pain. Current treatments are divided into palliative care (early stage degeneration) and surgical interventions (late-stage degeneration), which are invasive and poorly efficient in the long term. To overcome these limitations, alternative tissue engineering and regenerative medicine strategies, in which soft biomaterials are used as injectable carriers of cells and/or biomolecules to be delivered to the injury site and restore tissue function, are currently being explored. Self-assembling peptide hydrogels (SAPHs) represent a promising class of de novo synthetic biomaterials able to merge the strengths of both natural and synthetic hydrogels for biomedical applications. Inherent features, such as shear-thinning behaviour, high biocompatibility, ECM biomimicry, and tuneable physiochemical properties make these hydrogels appropriate and functional tools to tackle IVD degeneration. This review will describe the pathogenesis of IVD degeneration, list biomaterials requirements to attempt IVD repair, and focus on current peptide hydrogel materials exploited for this purpose.
Collapse
|
12
|
Wang D, Peng P, Dudek M, Hu X, Xu X, Shang Q, Wang D, Jia H, Wang H, Gao B, Zheng C, Mao J, Gao C, He X, Cheng P, Wang H, Zheng J, Hoyland JA, Meng QJ, Luo Z, Yang L. Restoring the dampened expression of the core clock molecule BMAL1 protects against compression-induced intervertebral disc degeneration. Bone Res 2022; 10:20. [PMID: 35217644 PMCID: PMC8881495 DOI: 10.1038/s41413-022-00187-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022] Open
Abstract
The circadian clock participates in maintaining homeostasis in peripheral tissues, including intervertebral discs (IVDs). Abnormal mechanical loading is a known risk factor for intervertebral disc degeneration (IDD). Based on the rhythmic daily loading pattern of rest and activity, we hypothesized that abnormal mechanical loading could dampen the IVD clock, contributing to IDD. Here, we investigated the effects of abnormal loading on the IVD clock and aimed to inhibit compression-induced IDD by targeting the core clock molecule brain and muscle Arnt-like protein-1 (BMAL1). In this study, we showed that BMAL1 KO mice exhibit radiographic features similar to those of human IDD and that BMAL1 expression was negatively correlated with IDD severity by systematic analysis based on 149 human IVD samples. The intrinsic circadian clock in the IVD was dampened by excessive loading, and BMAL1 overexpression by lentivirus attenuated compression-induced IDD. Inhibition of the RhoA/ROCK pathway by Y-27632 or melatonin attenuated the compression-induced decrease in BMAL1 expression. Finally, the two drugs partially restored BMAL1 expression and alleviated IDD in a diurnal compression model. Our results first show that excessive loading dampens the circadian clock of nucleus pulposus tissues via the RhoA/ROCK pathway, the inhibition of which potentially protects against compression-induced IDD by preserving BMAL1 expression. These findings underline the importance of the circadian clock for IVD homeostasis and provide a potentially effective therapeutic strategy for IDD.
Collapse
|
13
|
Vitale M, Ligorio C, McAvan B, Hodson NW, Allan C, Richardson SM, Hoyland JA, Bella J. Hydroxyapatite-decorated Fmoc-hydrogel as a bone-mimicking substrate for osteoclast differentiation and culture. Acta Biomater 2022; 138:144-154. [PMID: 34781025 PMCID: PMC8756142 DOI: 10.1016/j.actbio.2021.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 12/25/2022]
Abstract
Hydrogels are water-swollen networks with great potential for tissue engineering applications. However, their use in bone regeneration is often hampered due to a lack of materials' mineralization and poor mechanical properties. Moreover, most studies are focused on osteoblasts (OBs) for bone formation, while osteoclasts (OCs), cells involved in bone resorption, are often overlooked. Yet, the role of OCs is pivotal for bone homeostasis and aberrant OC activity has been reported in several pathological diseases, such as osteoporosis and bone cancer. For these reasons, the aim of this work is to develop customised, reinforced hydrogels to be used as material platform to study cell function, cell-material interactions and ultimately to provide a substrate for OC differentiation and culture. Here, Fmoc-based RGD-functionalised peptide hydrogels have been modified with hydroxyapatite nanopowder (Hap) as nanofiller, to create nanocomposite hydrogels. Atomic force microscopy showed that Hap nanoparticles decorate the peptide nanofibres with a repeating pattern, resulting in stiffer hydrogels with improved mechanical properties compared to Hap- and RGD-free controls. Furthermore, these nanocomposites supported adhesion of Raw 264.7 macrophages and their differentiation in 2D to mature OCs, as defined by the adoption of a typical OC morphology (presence of an actin ring, multinucleation, and ruffled plasma membrane). Finally, after 7 days of culture OCs showed an increased expression of TRAP, a typical OC differentiation marker. Collectively, the results suggest that the Hap/Fmoc-RGD hydrogel has a potential for bone tissue engineering, as a 2D model to study impairment or upregulation of OC differentiation. STATEMENT OF SIGNIFICANCE: Altered osteoclasts (OC) function is one of the major cause of bone fracture in the most commonly skeletal disorders (e.g. osteoporosis). Peptide hydrogels can be used as a platform to mimic the bone microenvironment and provide a tool to assess OC differentiation and function. Moreover, hydrogels can incorporate different nanofillers to yield hybrid biomaterials with enhanced mechanical properties and improved cytocompatibility. Herein, Fmoc-based RGD-functionalised peptide hydrogels were decorated with hydroxyapatite (Hap) nanoparticles to generate a hydrogel with improved rheological properties. Furthermore, they are able to support osteoclastogenesis of Raw264.7 cells in vitro as confirmed by morphology changes and expression of OC-markers. Therefore, this Hap-decorated hydrogel can be used as a template to successfully differentiate OC and potentially study OC dysfunction.
Collapse
|
14
|
Eckersley A, Ozols M, Chen P, Tam V, Hoyland JA, Trafford A, Chan D, Sherratt MJ. Peptide Location Fingerprinting Reveals Tissue Region-Specific Differences in Protein Structures in an Ageing Human Organ. Int J Mol Sci 2021; 22:10408. [PMID: 34638745 PMCID: PMC8509034 DOI: 10.3390/ijms221910408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
In ageing tissues, long-lived extracellular matrix (ECM) proteins are susceptible to the accumulation of structural damage due to diverse mechanisms including glycation, oxidation and protease cleavage. Peptide location fingerprinting (PLF) is a new mass spectrometry (MS) analysis technique capable of identifying proteins exhibiting structural differences in complex proteomes. PLF applied to published young and aged intervertebral disc (IVD) MS datasets (posterior, lateral and anterior regions of the annulus fibrosus) identified 268 proteins with age-associated structural differences. For several ECM assemblies (collagens I, II and V and aggrecan), these differences were markedly conserved between degeneration-prone (posterior and lateral) and -resistant (anterior) regions. Significant differences in peptide yields, observed within collagen I α2, collagen II α1 and collagen V α1, were located within their triple-helical regions and/or cleaved C-terminal propeptides, indicating potential accumulation of damage and impaired maintenance. Several proteins (collagen V α1, collagen II α1 and aggrecan) also exhibited tissue region (lateral)-specific differences in structure between aged and young samples, suggesting that some ageing mechanisms may act locally within tissues. This study not only reveals possible age-associated differences in ECM protein structures which are tissue-region specific, but also highlights the ability of PLF as a proteomic tool to aid in biomarker discovery.
Collapse
|
15
|
Ligorio C, O'Brien M, Hodson NW, Mironov A, Iliut M, Miller AF, Vijayaraghavan A, Hoyland JA, Saiani A. TGF-β3-loaded graphene oxide - self-assembling peptide hybrid hydrogels as functional 3D scaffolds for the regeneration of the nucleus pulposus. Acta Biomater 2021; 127:116-130. [PMID: 33831573 DOI: 10.1016/j.actbio.2021.03.077] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022]
Abstract
Intervertebral disc (IVD) degeneration is a process that starts in the central nucleus pulposus (NP) and leads to inflammation, extracellular matrix (ECM) degradation, and progressive loss of disc height. Early treatment of IVD degeneration is critical to the reduction of low back pain and related disability. As such, minimally invasive therapeutic approaches that can halt and reverse NP degeneration at the early stages of the disease are needed. Recently, we developed an injectable graphene oxide (GO) - self-assembling peptide FEFKFEFK (F: phenylalanine; K: lysine; E: glutamic acid) hybrid hydrogels as potential delivery platform for cells and/or drugs in the NP. In this current study, we explored the possibility of using the GO present in these hybrid hydrogels as a vehicle for the sequestration and controlled delivery of transforming growth factor beta-3 (TGF-β3), an anabolic growth factor (GF) known to direct NP cell fate and function. For this purpose, we first investigated the potential of GO to bind and sequestrate TGF-β3. We then cultured bovine NP cells in the new functional scaffolds and investigated their response to the presence of GO and TGF-β3. Our results clearly showed that GO flakes can sequestrate TGF-β3 through strong binding interactions resulting in a slow and prolonged release, with the GF remaining active even when bound to the GO flakes. The adsorption of the GF on the GO flakes to create TGF-β3-loaded GO flakes and their subsequent incorporation in the hydrogels through mixing, [(GO/TGF-β3Ads)-F8] hydrogel, led to the upregulation of NP-specific genes, accompanied by the production and deposition of an NP-like ECM, rich in aggrecan and collagen II. NP cells actively interacted with TGF-β3-loaded GO flakes and remodeled the scaffolds through endocytosis. This work highlights the potential of using GO as a nanocarrier for the design of functional hybrid peptide-based hydrogels. STATEMENT OF SIGNIFICANCE: Intervertebral disc (IVD) degeneration is a process that starts in the central nucleus pulposus (NP) and leads to inflammation, extracellular matrix (ECM) degradation, and progressive loss of disc height. As such, minimally invasive therapeutic approaches that can halt and reverse NP degeneration at the early stages of the disease are needed. In this current study, we explored the possibility of using peptide - GO hybrid hydrogels as a vehicle for the sequestration and controlled delivery of transforming growth factor beta-3 (TGF-β3), an anabolic growth factor (GF) known to direct NP cell fate and function.
Collapse
|
16
|
Lakstins K, Yeater T, Arnold L, Khan S, Hoyland JA, Purmessur D. Investigating the role of culture conditions on hypertrophic differentiation in human cartilage endplate cells. J Orthop Res 2021; 39:1204-1216. [PMID: 32285966 DOI: 10.1002/jor.24692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/18/2020] [Accepted: 03/28/2020] [Indexed: 02/04/2023]
Abstract
Cartilage endplate degeneration/calcification has been linked to the onset and progression of intervertebral disc degeneration and there is a critical need to understand mechanisms, such as hypertrophic differentiation, of cartilage endplate degeneration/calcification to inform treatment strategies for discogenic back pain. In vitro cell culture conditions capable of inducing hypertrophic differentiation are used to study pathophysiological mechanisms in articular chondrocytes, but culture conditions capable of inducing a hypertrophic cartilage endplate cell phenotype have yet to be explored. The goal of this study was to investigate the role of culture conditions capable of inducing hypertrophic differentiation in articular chondrocytes on hypertrophic differentiation in human cartilage endplate cells. Isolated human cartilage endplate cells were cultured as pellets for 21 days at either 5% O2 (physiologic for cartilage) or 20.7% O2 (hyperoxic) and treated with 10% fetal bovine serum or Wnt agonist, two stimuli used to induce hypertrophic differentiation in articular chondrocytes. Cartilage endplate cells did not exhibit a hypertrophic cell morphology in response to fetal bovine serum or Wnt agonist but did display other hallmarks of chondrocyte hypertrophy and degeneration such as hypertrophic gene and protein expression, and a decrease in healthy proteoglycans and an increase in fibrous collagen accumulation. These findings demonstrate that cartilage endplate cells take on a degenerative phenotype in response to hypertrophic stimuli in vitro, but do not undergo classical changes in morphology associated with hypertrophic differentiation regardless of oxygen levels, highlighting potential differences in the response of cartilage endplate cells versus articular chondrocytes to the same stimuli.
Collapse
|
17
|
Dudek M, Angelucci C, Pathiranage D, Wang P, Mallikarjun V, Lawless C, Swift J, Kadler KE, Boot-Handford RP, Hoyland JA, Lamande SR, Bateman JF, Meng QJ. Circadian time series proteomics reveals daily dynamics in cartilage physiology. Osteoarthritis Cartilage 2021; 29:739-749. [PMID: 33610821 PMCID: PMC8113022 DOI: 10.1016/j.joca.2021.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cartilage in joints such as the hip and knee experiences repeated phases of heavy loading and low load recovery during the 24-h day/night cycle. Our previous work has shown 24 h rhythmic changes in gene expression at transcript level between night and day in wild type mouse cartilage which is lost in a circadian clock knock-out mouse model. However, it remains unknown to what extent circadian rhythms also regulate protein level gene expression in this matrix rich tissue. METHODS We investigated daily changes of protein abundance in mouse femoral head articular cartilage by performing a 48-h time-series LC-MS/MS analysis. RESULTS Out of the 1,177 proteins we identified across all time points, 145 proteins showed rhythmic changes in their abundance within the femoral head cartilage. Among these were molecules that have been implicated in key cartilage functions, including CTGF, MATN1, PAI-1 and PLOD1 & 2. Pathway analysis revealed that protein synthesis, cytoskeleton and glucose metabolism exhibited time-of-day dependent functions. Analysis of published cartilage proteomics datasets revealed that a significant portion of rhythmic proteins were dysregulated in osteoarthritis and/or ageing. CONCLUSIONS Our circadian proteomics study reveals that articular cartilage is a much more dynamic tissue than previously thought, with chondrocytes driving circadian rhythms not only in gene transcription but also in protein abundance. Our results clearly call for the consideration of circadian timing mechanisms not only in cartilage biology, but also in the pathogenesis, treatment strategies and biomarker detection in osteoarthritis.
Collapse
|
18
|
Nedeva IR, Vitale M, Elson A, Hoyland JA, Bella J. Role of OSCAR Signaling in Osteoclastogenesis and Bone Disease. Front Cell Dev Biol 2021; 9:641162. [PMID: 33912557 PMCID: PMC8072347 DOI: 10.3389/fcell.2021.641162] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Formation of mature bone-resorbing cells through osteoclastogenesis is required for the continuous remodeling and repair of bone tissue. In aging and disease this process may become aberrant, resulting in excessive bone degradation and fragility fractures. Interaction of receptor-activator of nuclear factor-κB (RANK) with its ligand RANKL activates the main signaling pathway for osteoclastogenesis. However, compelling evidence indicates that this pathway may not be sufficient for the production of mature osteoclast cells and that co-stimulatory signals may be required for both the expression of osteoclast-specific genes and the activation of osteoclasts. Osteoclast-associated receptor (OSCAR), a regulator of osteoclast differentiation, provides one such co-stimulatory pathway. This review summarizes our present knowledge of osteoclastogenesis signaling and the role of OSCAR in the normal production of bone-resorbing cells and in bone disease. Understanding the signaling mechanism through this receptor and how it contributes to the production of mature osteoclasts may offer a more specific and targeted approach for pharmacological intervention against pathological bone resorption.
Collapse
|
19
|
Binch ALA, Ratcliffe LPD, Milani AH, Saunders BR, Armes SP, Hoyland JA. Site-Directed Differentiation of Human Adipose-Derived Mesenchymal Stem Cells to Nucleus Pulposus Cells Using an Injectable Hydroxyl-Functional Diblock Copolymer Worm Gel. Biomacromolecules 2021; 22:837-845. [PMID: 33470795 DOI: 10.1021/acs.biomac.0c01556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adipose-derived mesenchymal stem cells (ASCs) have been identified for their promising therapeutic potential to regenerate and repopulate the degenerate intervertebral disk (IVD), which is a major cause of lower back pain. The optimal cell delivery system remains elusive but encapsulation of cells within scaffolds is likely to offer a decisive advantage over the delivery of cells in solution by ensuring successful retention within the tissue. Herein, we evaluate the use of a fully synthetic, thermoresponsive poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA) diblock copolymer worm gel that mimics the structure of hydrophilic glycosaminoglycans. The objective was to use this gel to direct differentiation of human ASCs toward a nucleus pulposus (NP) phenotype, with or without the addition of discogenic growth factors TGFβ or GDF6. Accordingly, human ASCs were incorporated into a cold, free-flowing aqueous dispersion of the diblock copolymer, gelation induced by warming to 37 °C and cell culture was conducted for 14 days with or without such growth factors to assess the expression of characteristic NP markers compared to those produced when using collagen gels. In principle, the shear-thinning nature of the biocompatible worm gel enables encapsulated human ASCs to be injected into the IVD using a 21G needle. Moreover, we find significantly higher gene expression levels of ACAN, SOX-9, KRT8, and KR18 for ASCs encapsulated within worm gels compared to collagen scaffolds, regardless of the growth factors employed. In summary, such wholly synthetic worm gels offer considerable potential as an injectable cell delivery scaffold for the treatment of degenerate disk disease by promoting the transition of ASCs toward an NP-phenotype.
Collapse
|
20
|
Tang S, Salazar-Puerta A, Richards J, Khan S, Hoyland JA, Gallego-Perez D, Walter B, Higuita-Castro N, Purmessur D. Non-viral reprogramming of human nucleus pulposus cells with FOXF1 via extracellular vesicle delivery: an in vitro and in vivo study. Eur Cell Mater 2021; 41:90-107. [PMID: 33465243 PMCID: PMC8514169 DOI: 10.22203/ecm.v041a07] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is characterized by decreased cellularity and proteoglycan synthesis and increased inflammation, catabolism, and neural/vascular ingrowth. Regenerative methods for IVD degeneration are largely cell-therapy-based or involve viral vectors, which are associated with mutagenesis and undesired immune responses. The present study used bulk electroporation and engineered extracellular vesicles (EVs) to deliver forkhead-box F1 (FOXF1) mRNA to degenerate human nucleus pulposus (NP) cells as a minimally invasive therapeutic strategy for IVD regeneration. Bulk electroporation was used to investigate FOXF1 effects on human NP cells during a 4-week culture in 3D agarose constructs. Engineered EV delivery of FOXF1 into human IVD cells in monolayer was determined, with subsequent in vivo validation in a pilot mouse IVD puncture model. FOXF1 transfection significantly altered gene expression by upregulating healthy NP markers [FOXF1, keratin 19 (KRT19)], decreasing inflammatory cytokines [interleukin (IL)-1β, -6], catabolic enzymes [metalloproteinase 13 (MMP13)] and nerve growth factor (NGF), with significant increases in glycosaminoglycan accumulation in human NP cells. Engineered EVs loaded with FOXF1 demonstrated successful encapsulation of FOXF1 cargo and effective uptake by human NP cells cultured in monolayer. Injection of FOXF1-loaded EVs into the mouse IVD in vivo resulted in a significant upregulation of FOXF1 and Brachyury, compared to controls at 7 d post-injection, with no evidence of cytotoxicity. This is the first study to demonstrate non-viral delivery of FOXF1 and reprogramming of human NP cells in vitro and mouse IVD cells in vivo. This strategy represents a non-addictive approach for treating IVD degeneration and associated back pain.
Collapse
|
21
|
Hodgkinson T, Gilbert HTJ, Pandya T, Diwan AD, Hoyland JA, Richardson SM. Regenerative Response of Degenerate Human Nucleus Pulposus Cells to GDF6 Stimulation. Int J Mol Sci 2020; 21:E7143. [PMID: 32992671 PMCID: PMC7582366 DOI: 10.3390/ijms21197143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Growth differentiation factor (GDF) family members have been implicated in the development and maintenance of healthy nucleus pulposus (NP) tissue, making them promising therapeutic candidates for treatment of intervertebral disc (IVD) degeneration and associated back pain. GDF6 has been shown to promote discogenic differentiation of mesenchymal stem cells, but its effect on NP cells remains largely unknown. Our aim was to investigate GDF6 signalling in adult human NP cells derived from degenerate tissue and determine the signal transduction pathways critical for GDF6-mediated phenotypic changes and tissue homeostatic mechanisms. This study demonstrates maintained expression of GDF6 receptors in human NP and annulus fibrosus (AF) cells across a range of degeneration grades at gene and protein level. We observed an anabolic response in NP cells treated with recombinant GDF6 (increased expression of matrix and NP-phenotypic markers; increased glycosaminoglycan production; no change in catabolic enzyme expression), and identified the signalling pathways involved in these responses (SMAD1/5/8 and ERK1/2 phosphorylation, validated by blocking studies). These findings suggest that GDF6 promotes a healthy disc tissue phenotype in degenerate NP cells through SMAD-dependent and -independent (ERK1/2) mechanisms, which is important for development of GDF6 therapeutic strategies for treatment of degenerate discs.
Collapse
|
22
|
Hodgkinson T, Wignall F, Hoyland JA, Richardson SM. High BMPR2 expression leads to enhanced SMAD1/5/8 signalling and GDF6 responsiveness in human adipose-derived stem cells: implications for stem cell therapies for intervertebral disc degeneration. J Tissue Eng 2020; 11:2041731420919334. [PMID: 32489577 PMCID: PMC7238299 DOI: 10.1177/2041731420919334] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/26/2020] [Indexed: 01/08/2023] Open
Abstract
Stem cell–based regenerative strategies are promising for intervertebral disc
degeneration. Stimulation of bone-marrow- and adipose-derived multipotent stem
cells with recombinant human growth differentiation factor 6 (rhGDF6) promotes
anabolic nucleus pulposus like phenotypes. In comparison to mesenchymal stem
cells, adipose-derived multipotent stem cells exhibit greater NP-marker gene
expression and proteoglycan-rich matrix production. To understand these response
differences, we investigated bone morphogenetic protein receptor profiles in
donor-matched human mesenchymal stem cells and adipose-derived multipotent stem
cells, determined differences in rhGDF6 signalling and their importance in
NP-like differentiation between cell populations. Bone morphogenetic protein
receptor expression in mesenchymal stem cells and adipose-derived multipotent
stem cells revealed elevated and less variable expression of BMPR2 in
adipose-derived multipotent stem cells, which corresponded with increased
downstream pathway activation (SMAD1/5/8, ERK1/2). Inhibitor studies
demonstrated SMAD1/5/8 signalling was required for rhGDF6-induced
nucleus-pulposus-like adipose-derived multipotent stem cell differentiation,
while ERK1/2 contributed significantly to critical nucleus pulposus gene
expression, aggrecan and type II collagen production. These data inform cell
regenerative therapeutic choices for intervertebral disc degeneration
regeneration and identify further potential optimisation targets.
Collapse
|
23
|
van den Akker GGH, Eijssen LMT, Richardson SM, Rhijn LWV, Hoyland JA, Welting TJM, Voncken JW. A Membranome-Centered Approach Defines Novel Biomarkers for Cellular Subtypes in the Intervertebral Disc. Cartilage 2020; 11:203-220. [PMID: 29629573 PMCID: PMC7097986 DOI: 10.1177/1947603518764260] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Lack of specific marker-sets prohibits definition and functional distinction of cellular subtypes in the intervertebral disc (IVD), such as those from the annulus fibrosus (AF) and the nucleus pulposus (NP). DESIGN We recently generated immortalized cell lines from human NP and AF tissues; these comprise a set of functionally distinct clonal subtypes. Whole transcriptome analyses were performed of 12 phenotypically distinct clonal cell lines (4× NP-Responder, 4× NP-nonResponder, 2× AF-Sheet forming, and 2× AF-nonSheet forming). Data sets were filtered for membrane-associated marker genes and compared to literature. RESULTS Comparison of our immortal cell lines to published primary NP, AF, and articular chondrocytes (AC) transcriptome datasets revealed preservation of AF and NP phenotypes. NP-specific membrane-associated genes were defined by comparison to AF cells in both the primary dataset (46 genes) and immortal cell-lines (161 genes). Definition of AF-specific membrane-associated genes yielded 125 primary AF cell and 92 immortal cell-line markers. Overlap between primary and immortal NP cells yielded high-confidence NP-specific marker genes for NP-R (CLDN11, TMEFF2, CA12, ANXA2, CD44) and NP-nR (EFNA1, NETO2, SLC2A1). Overlap between AF and immortal AF subtypes yielded specific markers for AF-S (COLEC12, LPAR1) and AF-nS (CHIC1). CONCLUSIONS The current study provides a reference platform for preclinical evaluation of novel membrane-associated cell type-specific markers in the IVD. Future research will focus on their biological relevance for IVD function in development, homeostasis, and degenerate conditions.
Collapse
|
24
|
Binch ALA, Richardson SM, Hoyland JA, Barry FP. Combinatorial conditioning of adipose derived-mesenchymal stem cells enhances their neurovascular potential: Implications for intervertebral disc degeneration. JOR Spine 2019; 2:e1072. [PMID: 31891121 PMCID: PMC6920684 DOI: 10.1002/jsp2.1072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are becoming an increasingly attractive option for regenerative therapies due to their availability, self-renewal capacity, multilineage potential, and anti-inflammatory properties. Clinical trials are underway to test the efficacy of stem cell-based therapies for the repair and regeneration of the degenerate intervertebral disc (IVD), a major cause of back pain. Recently, both bone marrow-derived MSCs and adipose-derived stem cells (ASCs) have been assessed for IVD therapy but there is a lack of knowledge surrounding the optimal cell source and the response of transplanted cells to the low oxygen, pro-inflammatory niche of the degenerate disc. Here, we investigated several neurovascular factors from donor-matched MSCs and ASCs that may potentiate the survival and persistence of sensory nerve fibers and blood vessels present within painful degenerate discs and their regulation by oxygen tensions and inflammatory cytokines. METHODS Donor-matched ASCs and MSCs were conditioned with either IL-1β or TNFα under normoxic (21% O2) or hypoxic (5% O2) conditions. Expression and secretion of several potent neurovascular factors were assessed using qRT-PCR and human magnetic Luminex assay. RESULTS ASCs and MSCs expressed constitutive levels of key neurotrophic factors; and stimulation of ASCs with hypoxia triggered increased secretion of both angiogenic factors (Ang-2 and VEGF-A) and neurotrophic (NGF and NT-3) compared to MSCs. We also report increased transcriptional regulation of pain-associated neuropeptides in hypoxia stimulated ASCs compared to those in normoxic conditions. We demonstrate transcriptional and translational upregulation of NGF, NT-3, Ang-1, and FGF-2 in response to cytokines in ASCs in 21% and 5% O2. CONCLUSIONS This work highlights fundamental differences between the neurovascular secretome of donor-matched ASCs and MSCs, demonstrating the importance of cell-selection for tissue specific regeneration to reduce ectopic sensory nerve and blood vessel survival and improve patient outcomes.
Collapse
|
25
|
Pérez-Madrigal MM, Shaw JE, Arno MC, Hoyland JA, Richardson SM, Dove AP. Robust alginate/hyaluronic acid thiol-yne click-hydrogel scaffolds with superior mechanical performance and stability for load-bearing soft tissue engineering. Biomater Sci 2019; 8:405-412. [PMID: 31729512 DOI: 10.1039/c9bm01494b] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hydrogels based on hyaluronic acid (HA) exhibit great potential as tissue engineering (TE) scaffolds as a consequence of their unique biological features. Herein, we examine how the advantages of two natural polymers (i.e. HA and alginate) are combined with the efficiency and rapid nature of the thiol-yne click chemistry reaction to obtain biocompatible matrices with tailored properties. Our injectable click-hydrogels revealed excellent mechanical performance, long-term stability, high cytocompatibility and adequate stiffness for the targeted application. This simple approach yielded HA hydrogels with characteristics that make them suitable for applications as 3D scaffolds to support and promote soft tissue regeneration.
Collapse
|