1
|
Lebrat M, Xu M, Kendrick LH, Kale A, Gang Y, Seetharaman P, Morera I, Khatami E, Demler E, Greiner M. Observation of Nagaoka polarons in a Fermi-Hubbard quantum simulator. Nature 2024; 629:317-322. [PMID: 38720043 DOI: 10.1038/s41586-024-07272-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/06/2024] [Indexed: 05/12/2024]
Abstract
Quantum interference can deeply alter the nature of many-body phases of matter1. In the case of the Hubbard model, Nagaoka proved that introducing a single itinerant charge can transform a paramagnetic insulator into a ferromagnet through path interference2-4. However, a microscopic observation of this kinetic magnetism induced by individually imaged dopants has been so far elusive. Here we demonstrate the emergence of Nagaoka polarons in a Hubbard system realized with strongly interacting fermions in a triangular optical lattice5,6. Using quantum gas microscopy, we image these polarons as extended ferromagnetic bubbles around particle dopants arising from the local interplay of coherent dopant motion and spin exchange. By contrast, kinetic frustration due to the triangular geometry promotes antiferromagnetic polarons around hole dopants7. Our work augurs the exploration of exotic quantum phases driven by charge motion in strongly correlated systems and over sizes that are challenging for numerical simulation8-10.
Collapse
|
2
|
Bluvstein D, Evered SJ, Geim AA, Li SH, Zhou H, Manovitz T, Ebadi S, Cain M, Kalinowski M, Hangleiter D, Bonilla Ataides JP, Maskara N, Cong I, Gao X, Sales Rodriguez P, Karolyshyn T, Semeghini G, Gullans MJ, Greiner M, Vuletić V, Lukin MD. Logical quantum processor based on reconfigurable atom arrays. Nature 2024; 626:58-65. [PMID: 38056497 PMCID: PMC10830422 DOI: 10.1038/s41586-023-06927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2-6 for large-scale processing. However, the overhead in the realization of error-corrected 'logical' qubits, in which information is encoded across many physical qubits for redundancy2-4, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays7, our system combines high two-qubit gate fidelities8, arbitrary connectivity7,9, as well as fully programmable single-qubit rotations and mid-circuit readout10-15. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code6 distance from d = 3 to d = 7, preparation of colour-code qubits with break-even fidelities5, fault-tolerant creation of logical Greenberger-Horne-Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks16,17, we realize computationally complex sampling circuits18 with up to 48 logical qubits entangled with hypercube connectivity19 with 228 logical two-qubit gates and 48 logical CCZ gates20. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling21,22. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors.
Collapse
|
3
|
Xu M, Kendrick LH, Kale A, Gang Y, Ji G, Scalettar RT, Lebrat M, Greiner M. Author Correction: Frustration- and doping-induced magnetism in a Fermi-Hubbard simulator. Nature 2024; 626:E10. [PMID: 38287163 DOI: 10.1038/s41586-024-07072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
|
4
|
Evered SJ, Bluvstein D, Kalinowski M, Ebadi S, Manovitz T, Zhou H, Li SH, Geim AA, Wang TT, Maskara N, Levine H, Semeghini G, Greiner M, Vuletić V, Lukin MD. High-fidelity parallel entangling gates on a neutral-atom quantum computer. Nature 2023; 622:268-272. [PMID: 37821591 PMCID: PMC10567572 DOI: 10.1038/s41586-023-06481-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/25/2023] [Indexed: 10/13/2023]
Abstract
The ability to perform entangling quantum operations with low error rates in a scalable fashion is a central element of useful quantum information processing1. Neutral-atom arrays have recently emerged as a promising quantum computing platform, featuring coherent control over hundreds of qubits2,3 and any-to-any gate connectivity in a flexible, dynamically reconfigurable architecture4. The main outstanding challenge has been to reduce errors in entangling operations mediated through Rydberg interactions5. Here we report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel, surpassing the surface-code threshold for error correction6,7. Our method uses fast, single-pulse gates based on optimal control8, atomic dark states to reduce scattering9 and improvements to Rydberg excitation and atom cooling. We benchmark fidelity using several methods based on repeated gate applications10,11, characterize the physical error sources and outline future improvements. Finally, we generalize our method to design entangling gates involving a higher number of qubits, which we demonstrate by realizing low-error three-qubit gates12,13. By enabling high-fidelity operation in a scalable, highly connected system, these advances lay the groundwork for large-scale implementation of quantum algorithms14, error-corrected circuits7 and digital simulations15.
Collapse
|
5
|
Su L, Douglas A, Szurek M, Groth R, Ozturk SF, Krahn A, Hébert AH, Phelps GA, Ebadi S, Dickerson S, Ferlaino F, Marković O, Greiner M. Dipolar quantum solids emerging in a Hubbard quantum simulator. Nature 2023; 622:724-729. [PMID: 37880438 DOI: 10.1038/s41586-023-06614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/05/2023] [Indexed: 10/27/2023]
Abstract
In quantum mechanical many-body systems, long-range and anisotropic interactions promote rich spatial structure and can lead to quantum frustration, giving rise to a wealth of complex, strongly correlated quantum phases1. Long-range interactions play an important role in nature; however, quantum simulations of lattice systems have largely not been able to realize such interactions. A wide range of efforts are underway to explore long-range interacting lattice systems using polar molecules2-5, Rydberg atoms2,6-8, optical cavities9-11 or magnetic atoms12-15. Here we realize novel quantum phases in a strongly correlated lattice system with long-range dipolar interactions using ultracold magnetic erbium atoms. As we tune the dipolar interaction to be the dominant energy scale in our system, we observe quantum phase transitions from a superfluid into dipolar quantum solids, which we directly detect using quantum gas microscopy with accordion lattices. Controlling the interaction anisotropy by orienting the dipoles enables us to realize a variety of stripe-ordered states. Furthermore, by transitioning non-adiabatically through the strongly correlated regime, we observe the emergence of a range of metastable stripe-ordered states. This work demonstrates that novel strongly correlated quantum phases can be realized using long-range dipolar interactions in optical lattices, opening the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
Collapse
|
6
|
Xu M, Kendrick LH, Kale A, Gang Y, Ji G, Scalettar RT, Lebrat M, Greiner M. Frustration- and doping-induced magnetism in a Fermi-Hubbard simulator. Nature 2023; 620:971-976. [PMID: 37532942 DOI: 10.1038/s41586-023-06280-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/02/2023] [Indexed: 08/04/2023]
Abstract
Geometrical frustration in strongly correlated systems can give rise to a plethora of novel ordered states and intriguing magnetic phases, such as quantum spin liquids1-3. Promising candidate materials for such phases4-6 can be described by the Hubbard model on an anisotropic triangular lattice, a paradigmatic model capturing the interplay between strong correlations and magnetic frustration7-11. However, the fate of frustrated magnetism in the presence of itinerant dopants remains unclear, as well as its connection to the doped phases of the square Hubbard model12. Here we investigate the local spin order of a Hubbard model with controllable frustration and doping, using ultracold fermions in anisotropic optical lattices continuously tunable from a square to a triangular geometry. At half-filling and strong interactions U/t ≈ 9, we observe at the single-site level how frustration reduces the range of magnetic correlations and drives a transition from a collinear Néel antiferromagnet to a short-range correlated 120° spiral phase. Away from half-filling, the triangular limit shows enhanced antiferromagnetic correlations on the hole-doped side and a reversal to ferromagnetic correlations at particle dopings above 20%, hinting at the role of kinetic magnetism in frustrated systems. This work paves the way towards exploring possible chiral ordered or superconducting phases in triangular lattices8,13 and realizing t-t' square lattice Hubbard models that may be essential to describe superconductivity in cuprate materials14.
Collapse
|
7
|
Léonard J, Kim S, Kwan J, Segura P, Grusdt F, Repellin C, Goldman N, Greiner M. Realization of a fractional quantum Hall state with ultracold atoms. Nature 2023; 619:495-499. [PMID: 37344594 DOI: 10.1038/s41586-023-06122-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/24/2023] [Indexed: 06/23/2023]
Abstract
Strongly interacting topological matter1 exhibits fundamentally new phenomena with potential applications in quantum information technology2,3. Emblematic instances are fractional quantum Hall (FQH) states4, in which the interplay of a magnetic field and strong interactions gives rise to fractionally charged quasi-particles, long-ranged entanglement and anyonic exchange statistics. Progress in engineering synthetic magnetic fields5-21 has raised the hope to create these exotic states in controlled quantum systems. However, except for a recent Laughlin state of light22, preparing FQH states in engineered systems remains elusive. Here we realize a FQH state with ultracold atoms in an optical lattice. The state is a lattice version of a bosonic ν = 1/2 Laughlin state4,23 with two particles on 16 sites. This minimal system already captures many hallmark features of Laughlin-type FQH states24-28: we observe a suppression of two-body interactions, we find a distinctive vortex structure in the density correlations and we measure a fractional Hall conductivity of σH/σ0 = 0.6(2) by means of the bulk response to a magnetic perturbation. Furthermore, by tuning the magnetic field, we map out the transition point between the normal and the FQH regime through a spectroscopic investigation of the many-body gap. Our work provides a starting point for exploring highly entangled topological matter with ultracold atoms29-33.
Collapse
|
8
|
Ebadi S, Keesling A, Cain M, Wang TT, Levine H, Bluvstein D, Semeghini G, Omran A, Liu JG, Samajdar R, Luo XZ, Nash B, Gao X, Barak B, Farhi E, Sachdev S, Gemelke N, Zhou L, Choi S, Pichler H, Wang ST, Greiner M, Vuletic V, Lukin MD. Quantum optimization of maximum independent set using Rydberg atom arrays. Science 2022; 376:1209-1215. [PMID: 35511943 DOI: 10.1126/science.abo6587] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Realizing quantum speedup for practically relevant, computationally hard problems is a central challenge in quantum information science. Using Rydberg atom arrays with up to 289 qubits in two spatial dimensions, we experimentally investigate quantum algorithms for solving the Maximum Independent Set problem. We use a hardware-efficient encoding associated with Rydberg blockade, realize closed-loop optimization to test several variational algorithms, and subsequently apply them to systematically explore a class of graphs with programmable connectivity. We find the problem hardness is controlled by the solution degeneracy and number of local minima, and experimentally benchmark the quantum algorithm's performance against classical simulated annealing. On the hardest graphs, we observe a superlinear quantum speedup in finding exact solutions in the deep circuit regime and analyze its origins.
Collapse
|
9
|
Bluvstein D, Levine H, Semeghini G, Wang TT, Ebadi S, Kalinowski M, Keesling A, Maskara N, Pichler H, Greiner M, Vuletić V, Lukin MD. A quantum processor based on coherent transport of entangled atom arrays. Nature 2022; 604:451-456. [PMID: 35444318 PMCID: PMC9021024 DOI: 10.1038/s41586-022-04592-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/28/2022] [Indexed: 11/23/2022]
Abstract
The ability to engineer parallel, programmable operations between desired qubits within a quantum processor is key for building scalable quantum information systems1,2. In most state-of-the-art approaches, qubits interact locally, constrained by the connectivity associated with their fixed spatial layout. Here we demonstrate a quantum processor with dynamic, non-local connectivity, in which entangled qubits are coherently transported in a highly parallel manner across two spatial dimensions, between layers of single- and two-qubit operations. Our approach makes use of neutral atom arrays trapped and transported by optical tweezers; hyperfine states are used for robust quantum information storage, and excitation into Rydberg states is used for entanglement generation3–5. We use this architecture to realize programmable generation of entangled graph states, such as cluster states and a seven-qubit Steane code state6,7. Furthermore, we shuttle entangled ancilla arrays to realize a surface code state with thirteen data and six ancillary qubits8 and a toric code state on a torus with sixteen data and eight ancillary qubits9. Finally, we use this architecture to realize a hybrid analogue–digital evolution2 and use it for measuring entanglement entropy in quantum simulations10–12, experimentally observing non-monotonic entanglement dynamics associated with quantum many-body scars13,14. Realizing a long-standing goal, these results provide a route towards scalable quantum processing and enable applications ranging from simulation to metrology. A quantum processer is realized using arrays of neutral atoms that are transported in a parallel manner by optical tweezers during computations, and used for quantum error correction and simulations.
Collapse
|
10
|
Semeghini G, Levine H, Keesling A, Ebadi S, Wang TT, Bluvstein D, Verresen R, Pichler H, Kalinowski M, Samajdar R, Omran A, Sachdev S, Vishwanath A, Greiner M, Vuletić V, Lukin MD. Probing topological spin liquids on a programmable quantum simulator. Science 2021; 374:1242-1247. [PMID: 34855494 DOI: 10.1126/science.abi8794] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
|
11
|
Bohrdt A, Kim S, Lukin A, Rispoli M, Schittko R, Knap M, Greiner M, Léonard J. Analyzing Nonequilibrium Quantum States through Snapshots with Artificial Neural Networks. PHYSICAL REVIEW LETTERS 2021; 127:150504. [PMID: 34678012 DOI: 10.1103/physrevlett.127.150504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 08/11/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Current quantum simulation experiments are starting to explore nonequilibrium many-body dynamics in previously inaccessible regimes in terms of system sizes and timescales. Therefore, the question emerges as to which observables are best suited to study the dynamics in such quantum many-body systems. Using machine learning techniques, we investigate the dynamics and, in particular, the thermalization behavior of an interacting quantum system that undergoes a nonequilibrium phase transition from an ergodic to a many-body localized phase. We employ supervised and unsupervised training methods to distinguish nonequilibrium from equilibrium data, using the network performance as a probe for the thermalization behavior of the system. We test our methods with experimental snapshots of ultracold atoms taken with a quantum gas microscope. Our results provide a path to analyze highly entangled large-scale quantum states for system sizes where numerical calculations of conventional observables become challenging.
Collapse
|
12
|
Miles C, Bohrdt A, Wu R, Chiu C, Xu M, Ji G, Greiner M, Weinberger KQ, Demler E, Kim EA. Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data. Nat Commun 2021; 12:3905. [PMID: 34162847 PMCID: PMC8222395 DOI: 10.1038/s41467-021-23952-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/27/2021] [Indexed: 11/09/2022] Open
Abstract
Image-like data from quantum systems promises to offer greater insight into the physics of correlated quantum matter. However, the traditional framework of condensed matter physics lacks principled approaches for analyzing such data. Machine learning models are a powerful theoretical tool for analyzing image-like data including many-body snapshots from quantum simulators. Recently, they have successfully distinguished between simulated snapshots that are indistinguishable from one and two point correlation functions. Thus far, the complexity of these models has inhibited new physical insights from such approaches. Here, we develop a set of nonlinearities for use in a neural network architecture that discovers features in the data which are directly interpretable in terms of physical observables. Applied to simulated snapshots produced by two candidate theories approximating the doped Fermi-Hubbard model, we uncover that the key distinguishing features are fourth-order spin-charge correlators. Our approach lends itself well to the construction of simple, versatile, end-to-end interpretable architectures, thus paving the way for new physical insights from machine learning studies of experimental and numerical data.
Collapse
|
13
|
Bluvstein D, Omran A, Levine H, Keesling A, Semeghini G, Ebadi S, Wang TT, Michailidis AA, Maskara N, Ho WW, Choi S, Serbyn M, Greiner M, Vuletić V, Lukin MD. Controlling quantum many-body dynamics in driven Rydberg atom arrays. Science 2021; 371:1355-1359. [PMID: 33632894 DOI: 10.1126/science.abg2530] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/12/2021] [Indexed: 11/02/2022]
Abstract
The control of nonequilibrium quantum dynamics in many-body systems is challenging because interactions typically lead to thermalization and a chaotic spreading throughout Hilbert space. We investigate nonequilibrium dynamics after rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions. Using a programmable quantum simulator based on Rydberg atom arrays, we show that coherent revivals associated with so-called quantum many-body scars can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order. We map Hilbert space dynamics, geometry dependence, phase diagrams, and system-size dependence of this emergent phenomenon, demonstrating new ways to steer complex dynamics in many-body systems and enabling potential applications in quantum information science.
Collapse
|
14
|
Chiu CS, Ji G, Bohrdt A, Xu M, Knap M, Demler E, Grusdt F, Greiner M, Greif D. String patterns in the doped Hubbard model. Science 2020; 365:251-256. [PMID: 31320533 DOI: 10.1126/science.aav3587] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 06/05/2019] [Indexed: 11/02/2022]
Abstract
Understanding strongly correlated quantum many-body states is one of the most difficult challenges in modern physics. For example, there remain fundamental open questions on the phase diagram of the Hubbard model, which describes strongly correlated electrons in solids. In this work, we realize the Hubbard Hamiltonian and search for specific patterns within the individual images of many realizations of strongly correlated ultracold fermions in an optical lattice. Upon doping a cold-atom antiferromagnet, we find consistency with geometric strings, entities that may explain the relationship between hole motion and spin order, in both pattern-based and conventional observables. Our results demonstrate the potential for pattern recognition to provide key insights into cold-atom quantum many-body systems.
Collapse
|
15
|
Omran A, Levine H, Keesling A, Semeghini G, Wang TT, Ebadi S, Bernien H, Zibrov AS, Pichler H, Choi S, Cui J, Rossignolo M, Rembold P, Montangero S, Calarco T, Endres M, Greiner M, Vuletić V, Lukin MD. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 2020; 365:570-574. [PMID: 31395778 DOI: 10.1126/science.aax9743] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/08/2019] [Indexed: 11/03/2022]
Abstract
Quantum entanglement involving coherent superpositions of macroscopically distinct states is among the most striking features of quantum theory, but its realization is challenging because such states are extremely fragile. Using a programmable quantum simulator based on neutral atom arrays with interactions mediated by Rydberg states, we demonstrate the creation of "Schrödinger cat" states of the Greenberger-Horne-Zeilinger (GHZ) type with up to 20 qubits. Our approach is based on engineering the energy spectrum and using optimal control of the many-body system. We further demonstrate entanglement manipulation by using GHZ states to distribute entanglement to distant sites in the array, establishing important ingredients for quantum information processing and quantum metrology.
Collapse
|
16
|
Schorr S, Nguyen D, Haßdenteufel S, Nagaraj N, Cavalié A, Greiner M, Weissgerber P, Loi M, Paton AW, Paton JC, Molinari M, Förster F, Dudek J, Lang S, Helms V, Zimmermann R. Identification of signal peptide features for substrate specificity in human Sec62/Sec63-dependent ER protein import. FEBS J 2020; 287:4612-4640. [PMID: 32133789 DOI: 10.1111/febs.15274] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/22/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
In mammalian cells, one-third of all polypeptides are integrated into the membrane or translocated into the lumen of the endoplasmic reticulum (ER) via the Sec61 channel. While the Sec61 complex facilitates ER import of most precursor polypeptides, the Sec61-associated Sec62/Sec63 complex supports ER import in a substrate-specific manner. So far, mainly posttranslationally imported precursors and the two cotranslationally imported precursors of ERj3 and prion protein were found to depend on the Sec62/Sec63 complex in vitro. Therefore, we determined the rules for engagement of Sec62/Sec63 in ER import in intact human cells using a recently established unbiased proteomics approach. In addition to confirming ERj3, we identified 22 novel Sec62/Sec63 substrates under these in vivo-like conditions. As a common feature, those previously unknown substrates share signal peptides (SP) with comparatively longer but less hydrophobic hydrophobic region of SP and lower carboxy-terminal region of SP (C-region) polarity. Further analyses with four substrates, and ERj3 in particular, revealed the combination of a slowly gating SP and a downstream translocation-disruptive positively charged cluster of amino acid residues as decisive for the Sec62/Sec63 requirement. In the case of ERj3, these features were found to be responsible for an additional immunoglobulin heavy-chain binding protein (BiP) requirement and to correlate with sensitivity toward the Sec61-channel inhibitor CAM741. Thus, the human Sec62/Sec63 complex may support Sec61-channel opening for precursor polypeptides with slowly gating SPs by direct interaction with the cytosolic amino-terminal peptide of Sec61α or via recruitment of BiP and its interaction with the ER-lumenal loop 7 of Sec61α. These novel insights into the mechanism of human ER protein import contribute to our understanding of the etiology of SEC63-linked polycystic liver disease. DATABASES: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository (http://www.ebi.ac.uk/pride/archive/projects/Identifiers) with the dataset identifiers: PXD008178, PXD011993, and PXD012078. Supplementary information was deposited at Mendeley Data (https://data.mendeley.com/datasets/6s5hn73jcv/2).
Collapse
|
17
|
Torlai G, Timar B, van Nieuwenburg EPL, Levine H, Omran A, Keesling A, Bernien H, Greiner M, Vuletić V, Lukin MD, Melko RG, Endres M. Integrating Neural Networks with a Quantum Simulator for State Reconstruction. PHYSICAL REVIEW LETTERS 2019; 123:230504. [PMID: 31868463 DOI: 10.1103/physrevlett.123.230504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/15/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate quantum many-body state reconstruction from experimental data generated by a programmable quantum simulator by means of a neural-network model incorporating known experimental errors. Specifically, we extract restricted Boltzmann machine wave functions from data produced by a Rydberg quantum simulator with eight and nine atoms in a single measurement basis and apply a novel regularization technique to mitigate the effects of measurement errors in the training data. Reconstructions of modest complexity are able to capture one- and two-body observables not accessible to experimentalists, as well as more sophisticated observables such as the Rényi mutual information. Our results open the door to integration of machine learning architectures with intermediate-scale quantum hardware.
Collapse
|
18
|
Levine H, Keesling A, Semeghini G, Omran A, Wang TT, Ebadi S, Bernien H, Greiner M, Vuletić V, Pichler H, Lukin MD. Parallel Implementation of High-Fidelity Multiqubit Gates with Neutral Atoms. PHYSICAL REVIEW LETTERS 2019; 123:170503. [PMID: 31702233 DOI: 10.1103/physrevlett.123.170503] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Indexed: 06/10/2023]
Abstract
We report the implementation of universal two- and three-qubit entangling gates on neutral-atom qubits encoded in long-lived hyperfine ground states. The gates are mediated by excitation to strongly interacting Rydberg states and are implemented in parallel on several clusters of atoms in a one-dimensional array of optical tweezers. Specifically, we realize the controlled-phase gate, enacted by a novel, fast protocol involving only global coupling of two qubits to Rydberg states. We benchmark this operation by preparing Bell states with fidelity F≥95.0(2)%, and extract gate fidelity ≥97.4(3)%, averaged across five atom pairs. In addition, we report a proof-of-principle implementation of the three-qubit Toffoli gate, in which two control atoms simultaneously constrain the behavior of one target atom. These experiments demonstrate key ingredients for high-fidelity quantum information processing in a scalable neutral-atom platform.
Collapse
|
19
|
Rispoli M, Lukin A, Schittko R, Kim S, Tai ME, Léonard J, Greiner M. Quantum critical behaviour at the many-body localization transition. Nature 2019; 573:385-389. [DOI: 10.1038/s41586-019-1527-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 07/03/2019] [Indexed: 11/09/2022]
|
20
|
Kim D, Keesling A, Omran A, Levine H, Bernien H, Greiner M, Lukin MD, Englund DR. Large-scale uniform optical focus array generation with a phase spatial light modulator. OPTICS LETTERS 2019; 44:3178-3181. [PMID: 31199410 DOI: 10.1364/ol.44.003178] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/19/2019] [Indexed: 05/27/2023]
Abstract
In this Letter, to the best of our knowledge, we report a new method to generate uniform large-scale optical focus arrays (LOFAs). By identifying and removing undesired phase rotation in the iterative Fourier transform algorithm (IFTA), our approach rapidly produces computer-generated holograms of highly uniform LOFAs. The new algorithm also shows a faster compensation of system-induced LOFA intensity inhomogeneity than the conventional IFTA. After only three adaptive correction steps, we demonstrate LOFAs consisting of O(103) optical foci with an intensity uniformity greater than 98%.
Collapse
|
21
|
Simonet Roda M, Ziegler A, Griesshaber E, Yin X, Rupp U, Greiner M, Henkel D, Häussermann V, Eisenhauer A, Laudien J, Schmahl WW. Terebratulide brachiopod shell biomineralization by mantle epithelial cells. J Struct Biol 2019; 207:136-157. [PMID: 31071428 DOI: 10.1016/j.jsb.2019.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 11/16/2022]
Abstract
To understand mineral transport pathways for shell secretion and to assess differences in cellular activity during mineralization, we imaged with TEM and FE-SEM ultrastructural characteristics of outer mantle epithelium (OME) cells. Imaging was carried out on Magellania venosa shells embedded/etched, chemically fixed/decalcified and high-pressure frozen/freeze-substituted samples from the commissure, central shell portions and from puncta. Imaging results are complemented with morphometric evaluations of volume fractions of membrane-bound organelles. At the commissure the OME consists of several layers of cells. These cells form oblique extensions that, in cross-section, are round below the primary layer and flat underneath fibres. At the commissure the OME is multi-cell layered, in central shell regions it is single-cell layered. When actively secreting shell carbonate extrapallial space is lacking, because OME cells are in direct contact with the calcite of the forming fibres. Upon termination of secretion, OME cells attach via apical hemidesmosomes to extracellular matrix membranes that line the proximal surface of fibres. At the commissure volume fractions for vesicles, mitochondria and lysosomes are higher relative to single-cell layered regions, whereas for endoplasmic-reticulum and Golgi apparatus there is no difference. FE-SEM, TEM imaging reveals the lack of extrapallial space between OME cells and developing fibres. In addition, there is no indication for an amorphous precursor within fibres when these are in active secretion mode. Accordingly, our results do not support transport of minerals by vesicles from cells to sites of mineralization, rather by transfer of carbonate ions via transport mechanisms associated with OME cell membranes.
Collapse
|
22
|
Lukin A, Rispoli M, Schittko R, Tai ME, Kaufman AM, Choi S, Khemani V, Léonard J, Greiner M. Probing entanglement in a many-body-localized system. SCIENCE (NEW YORK, N.Y.) 2019; 364:256-260. [PMID: 31000657 DOI: 10.1126/science.aau0818] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 03/20/2019] [Indexed: 11/02/2022]
Abstract
An interacting quantum system that is subject to disorder may cease to thermalize owing to localization of its constituents, thereby marking the breakdown of thermodynamics. The key to understanding this phenomenon lies in the system's entanglement, which is experimentally challenging to measure. We realize such a many-body-localized system in a disordered Bose-Hubbard chain and characterize its entanglement properties through particle fluctuations and correlations. We observe that the particles become localized, suppressing transport and preventing the thermalization of subsystems. Notably, we measure the development of nonlocal correlations, whose evolution is consistent with a logarithmic growth of entanglement entropy, the hallmark of many-body localization. Our work experimentally establishes many-body localization as a qualitatively distinct phenomenon from localization in noninteracting, disordered systems.
Collapse
|
23
|
Mazurenko A, Blatt S, Huber F, Parsons MF, Chiu CS, Ji G, Greif D, Greiner M. Implementation of a stable, high-power optical lattice for quantum gas microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:033101. [PMID: 30927819 DOI: 10.1063/1.5066623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
We describe the design and implementation of a stable high-power 1064 nm laser system to generate optical lattices for experiments with ultracold quantum gases. The system is based on a low-noise laser amplified by an array of four heavily modified, high-power fiber amplifiers. The beam intensity is stabilized and controlled with a nonlinear feedback loop. Using real-time monitoring of the resulting optical lattice, we find the stability of the lattice site positions to be well below the lattice spacing over the course of hours. The position of the harmonic trap produced by the Gaussian envelope of the lattice beams is stable to about one lattice spacing and the long-term (six-month) relative root-mean-square stability of the lattice spacing itself is 0.5%.
Collapse
|
24
|
Rotter J, Wilson L, Greiner M, Pollack C, Dinan M. Abstract P4-09-08: Shared-patient physician networks and their impact on the uptake of genomic testing in early-stage breast cancer. Cancer Res 2019. [DOI: 10.1158/1538-7445.sabcs18-p4-09-08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Background: Oncotype DX (ODX) or 21-gene recurrence score genomic testing is used to stratify risk and determine appropriate treatment in women with early-stage breast cancer (BC). Diffusion of ODX by way of physician networks has not been studied.
Objective: To determine the association between physician network connections, defined by shared patients, and the use of ODX testing.
Methods: SEER-Medicare claims from 2008-2012 were used to identify a cohort of woman with a diagnosis of BC from registry/ICD codes, continuously enrolled in Medicare fee-for-service Part A and B one year prior to and one year following diagnosis. We identify receipt of ODX from the associated CPT code, claim reimbursement, and performing NPI. To look at the influence of network connections on ODX use, we split the study into two time periods: early adoption from 2008-2009, and late from 2010-2012. Medical oncologists with a BC-related claim in the cohort above, and any rendered BC-related service are considered 'connected' if they shared two or more BC patients. Analyses describe these connections and explore the association between connectedness to an early adopting medical oncologist and ODX use in parallel physician and patient-level analyses using generalized linear mixed models with a hospital referral region-specific random effect. Models control for physician and patient-level characteristics where applicable.
Results:24,463 women met study criteria; 12,874 were diagnosed with BC in the early adoption time period (1,790 received ODX) and 11,589 were diagnosed in the late period (2,334 received ODX). 2,073 medical oncologists treated these patients from 2008-2009. The mean number of BC patients treated per medical oncologist was 86.8 during the early adoption period, and medical oncologists had a median number of peer connections of 11 (IQR: 7-18). Early adopting medical oncologists had higher numbers of peer connections and higher average patient counts than non-early adopters. A higher percentage of female medical oncologists were early adopters (39%) then male medical oncologists (33%) (p<0.02). Among non-early adopting oncologists, peer connection to at least two early adopting providers in 2008-2009 is associated with a 3.2 (95% CI: 2.0-4.9) times increase in the odds of ordering ODX in 2010-2012 after adjustment for physician gender and time in practice. In patient-level models with controls for physician and patient characteristics, seeing a medical oncologist with connections to at least two early adopting physicians is associated with a 1.6 times (95% CI: 1.1-2.2) increase in the odds of receiving ODX testing in 2010-2012.
Conclusions: We observe a positive adjusted association between connectedness to an early-adopting physician and ODX prescribing/use in both physician-level and patient-level analyses. These results suggest that provider networks may help diffuse new technologies, and that BC genomic testing is likely to be an area of shared practices between providers. Efforts to increase testing, where appropriate, may benefit from a range of peer-to-peer connection strategies.
Citation Format: Rotter J, Wilson L, Greiner M, Pollack C, Dinan M. Shared-patient physician networks and their impact on the uptake of genomic testing in early-stage breast cancer [abstract]. In: Proceedings of the 2018 San Antonio Breast Cancer Symposium; 2018 Dec 4-8; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2019;79(4 Suppl):Abstract nr P4-09-08.
Collapse
|
25
|
Levine H, Keesling A, Omran A, Bernien H, Schwartz S, Zibrov AS, Endres M, Greiner M, Vuletić V, Lukin MD. High-Fidelity Control and Entanglement of Rydberg-Atom Qubits. PHYSICAL REVIEW LETTERS 2018; 121:123603. [PMID: 30296143 DOI: 10.1103/physrevlett.121.123603] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Individual neutral atoms excited to Rydberg states are a promising platform for quantum simulation and quantum information processing. However, experimental progress to date has been limited by short coherence times and relatively low gate fidelities associated with such Rydberg excitations. We report progress towards high-fidelity quantum control of Rydberg-atom qubits. Enabled by a reduction in laser phase noise, our approach yields a significant improvement in coherence properties of individual qubits. We further show that this high-fidelity control extends to the multi-particle case by preparing a two-atom entangled state with a fidelity exceeding 0.97(3), and extending its lifetime with a two-atom dynamical decoupling protocol. These advances open up new prospects for scalable quantum simulation and quantum computation with neutral atoms.
Collapse
|