1
|
Dunn MF, Becerra-Rivera VA. The Biosynthesis and Functions of Polyamines in the Interaction of Plant Growth-Promoting Rhizobacteria with Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2671. [PMID: 37514285 PMCID: PMC10385936 DOI: 10.3390/plants12142671] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are members of the plant rhizomicrobiome that enhance plant growth and stress resistance by increasing nutrient availability to the plant, producing phytohormones or other secondary metabolites, stimulating plant defense responses against abiotic stresses and pathogens, or fixing nitrogen. The use of PGPR to increase crop yield with minimal environmental impact is a sustainable and readily applicable replacement for a portion of chemical fertilizer and pesticides required for the growth of high-yielding varieties. Increased plant health and productivity have long been gained by applying PGPR as commercial inoculants to crops, although with uneven results. The establishment of plant-PGPR relationships requires the exchange of chemical signals and nutrients between the partners, and polyamines (PAs) are an important class of compounds that act as physiological effectors and signal molecules in plant-microbe interactions. In this review, we focus on the role of PAs in interactions between PGPR and plants. We describe the basic ecology of PGPR and the production and function of PAs in them and the plants with which they interact. We examine the metabolism and the roles of PAs in PGPR and plants individually and during their interaction with one another. Lastly, we describe some directions for future research.
Collapse
|
2
|
Ballesteros-Gutiérrez M, Albareda M, Barbas C, López-Gonzálvez Á, Dunn MF, Palacios JM. A host-specific diaminobutyrate aminotransferase contributes to symbiotic performance, homoserine metabolism, and competitiveness in the Rhizobium leguminosarum/ Pisum sativum system. Front Microbiol 2023; 14:1182563. [PMID: 37260681 PMCID: PMC10228743 DOI: 10.3389/fmicb.2023.1182563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/25/2023] [Indexed: 06/02/2023] Open
Abstract
Rhizobium leguminosarum bv. viciae (Rlv) UPM791 effectively nodulates pea and lentil, but bacteroids contain a number of proteins differentially expressed depending on the host. One of these host-dependent proteins (C189) is similar to a diaminobutyrate-2-oxoglutarate aminotransferase (DABA-AT). DABA-AT activity was demonstrated with cell extracts and with purified protein, so C189 was renamed as Dat. The dat gene was strongly induced in the central, active area of pea nodules, but not in lentil. Mutants defective in dat were impaired in symbiotic performance with pea plants, exhibiting reduced shoot dry weight, smaller nodules, and a lower competitiveness for nodulation. In contrast, there were no significant differences between mutant and wild-type in symbiosis with lentil plants. A comparative metabolomic approach using cell-free extracts from bacteroids induced in pea and lentil showed significant differences among the strains in pea bacteroids whereas no significant differences were found in lentil. Targeted metabolomic analysis revealed that the dat mutation abolished the presence of 2,4-diaminobutyrate (DABA) in pea nodules, indicating that DABA-AT reaction is oriented toward the production of DABA from L-aspartate semialdehyde. This analysis also showed the presence of L-homoserine, a likely source of aspartate semialdehyde, in pea bacteroids but not in those induced in lentil. The dat mutant showed impaired growth when cells were grown with L-homoserine as nitrogen source. Inclusion of DABA or L-homoserine as N source suppressed pantothenate auxotropy in Rlv UPM791, suggesting DABA as source of the pantothenate precursor β-alanine. These data indicate that Rlv UPM791 Dat enzyme is part of an adaptation mechanism of this bacterium to a homoserine-rich environment such as pea nodule and rhizosphere.
Collapse
|
3
|
Chávez-Jacobo VM, Becerra-Rivera VA, Guerrero G, Dunn MF. The Sinorhizobium meliloti NspS-MbaA system affects biofilm formation, exopolysaccharide production and motility in response to specific polyamines. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001293. [PMID: 36748569 PMCID: PMC9993111 DOI: 10.1099/mic.0.001293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We previously showed that specific polyamines (PAs) present in the extracellular environment markedly affect extracellular polysaccharide (EPS) production, biofilm formation and motility in Sinorhizobium meliloti Rm8530. We hypothesized that extracellular PA signals were sensed and transduced by the NspS and MbaA proteins, respectively, which are homologs of the PA-sensing, c-di-GMP modulating NspS-MbaA proteins described in Vibrio cholerae. Here we show that the decrease in biofilm formation and EPS production in the quorum-sensing (QS)-deficient S. meliloti wild-type strain 1021 in cultures containing putrescine or spermine did not occur in a 1021 nspS mutant (1021 nspS). The transcriptional expression of nspS in strain 1021 was significantly increased in cultures containing either of these polyamines, but not by exogenous cadaverine, 1,3-diaminopropane (DAP), spermidine (Spd) or norspermidine (NSpd). Cell aggregation in liquid cultures did not differ markedly between strain 1021 and 1021 nspS in the presence or absence of PAs. The S. meliloti QS-proficient Rm8530 wild-type and nspS mutant (Rm8530 nspS) produced similar levels of biofilm under control conditions and 3.2- and 2.2-fold more biofilm, respectively, in cultures with NSpd, but these changes did not correlate with EPS production. Cells of Rm8530 nspS aggregated from two- to several-fold more than the wild-type in cultures without PAs or in those containing Spm. NSpd, Spd and DAP differently affected swimming and swarming motility in strains 1021 and Rm8530 and their respective nspS mutants. nspS transcription in strain Rm8530 was greatly reduced by exogenous Spm. Bioinformatic analysis revealed similar secondary structures and functional domains in the MbaA proteins of S. meliloti and V. cholerae, while their NspS proteins differed in some residues implicated in polyamine recognition in the latter species. NspS-MbaA homologs occur in a small subset of soil and aquatic bacterial species that commonly interact with eukaryotes. We speculate that the S. meliloti NspS-MbaA system modulates biofilm formation, EPS production and motility in response to environmental or host plant-produced PAs.
Collapse
|
4
|
Ghosh RK, Hilario E, Chang CEA, Mueller LJ, Dunn MF. Allosteric regulation of substrate channeling: Salmonella typhimurium tryptophan synthase. Front Mol Biosci 2022; 9:923042. [PMID: 36172042 PMCID: PMC9512447 DOI: 10.3389/fmolb.2022.923042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The regulation of the synthesis of L-tryptophan (L-Trp) in enteric bacteria begins at the level of gene expression where the cellular concentration of L-Trp tightly controls expression of the five enzymes of the Trp operon responsible for the synthesis of L-Trp. Two of these enzymes, trpA and trpB, form an αββα bienzyme complex, designated as tryptophan synthase (TS). TS carries out the last two enzymatic processes comprising the synthesis of L-Trp. The TS α-subunits catalyze the cleavage of 3-indole D-glyceraldehyde 3′-phosphate to indole and D-glyceraldehyde 3-phosphate; the pyridoxal phosphate-requiring β-subunits catalyze a nine-step reaction sequence to replace the L-Ser hydroxyl by indole giving L-Trp and a water molecule. Within αβ dimeric units of the αββα bienzyme complex, the common intermediate indole is channeled from the α site to the β site via an interconnecting 25 Å-long tunnel. The TS system provides an unusual example of allosteric control wherein the structures of the nine different covalent intermediates along the β-reaction catalytic path and substrate binding to the α-site provide the allosteric triggers for switching the αββα system between the open (T) and closed (R) allosteric states. This triggering provides a linkage that couples the allosteric conformational coordinate to the covalent chemical reaction coordinates at the α- and β-sites. This coupling drives the α- and β-sites between T and R conformations to achieve regulation of substrate binding and/or product release, modulation of the α- and β-site catalytic activities, prevention of indole escape from the confines of the active sites and the interconnecting tunnel, and synchronization of the α- and β-site catalytic activities. Here we review recent advances in the understanding of the relationships between structure, function, and allosteric regulation of the complex found in Salmonella typhimurium.
Collapse
|
5
|
Bosken YK, Ai R, Hilario E, Ghosh RK, Dunn MF, Kan S, Niks D, Zhou H, Ma W, Mueller LJ, Fan L, Chang CA. Discovery of antimicrobial agent targeting tryptophan synthase. Protein Sci 2022; 31:432-442. [PMID: 34767267 PMCID: PMC8820114 DOI: 10.1002/pro.4236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023]
Abstract
Antibiotic resistance is a continually growing challenge in the treatment of various bacterial infections worldwide. New drugs and new drug targets are necessary to curb the threat of infectious diseases caused by multidrug-resistant pathogens. The tryptophan biosynthesis pathway is essential for bacterial growth but is absent in higher animals and humans. Drugs that can inhibit the bacterial biosynthesis of tryptophan offer a new class of antibiotics. In this work, we combined a structure-based strategy using in silico docking screening and molecular dynamics (MD) simulations to identify compounds targeting the α subunit of tryptophan synthase with experimental methods involving the whole-cell minimum inhibitory concentration (MIC) test, solution state NMR, and crystallography to confirm the inhibition of L-tryptophan biosynthesis. Screening 1,800 compounds from the National Cancer Institute Diversity Set I against α subunit revealed 28 compounds for experimental validation; four of the 28 hit compounds showed promising activity in MIC testing. We performed solution state NMR experiments to demonstrate that a one successful inhibitor, 3-amino-3-imino-2-phenyldiazenylpropanamide (Compound 1) binds to the α subunit. We also report a crystal structure of Salmonella enterica serotype Typhimurium tryptophan synthase in complex with Compound 1 which revealed a binding site at the αβ interface of the dimeric enzyme. MD simulations were carried out to examine two binding sites for the compound. Our results show that this small molecule inhibitor could be a promising lead for future drug development.
Collapse
|
6
|
Vargas-Lagunas C, Mora Y, Aguilar A, Reyes-González AR, Arteaga-Ide A, Dunn MF, Encarnación S, Girard L, Peralta H, Mora J. A Tar aspartate receptor and Rubisco-like protein substitute biotin in the growth of rhizobial strains. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35077343 PMCID: PMC8914248 DOI: 10.1099/mic.0.001130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biotin is a key cofactor of metabolic carboxylases, although many rhizobial strains are biotin auxotrophs. When some of these strains were serially subcultured in minimal medium, they showed diminished growth and increased excretion of metabolites. The addition of biotin, or genetic complementation with biotin synthesis genes resulted in full growth of Rhizobium etli CFN42 and Rhizobium phaseoli CIAT652 strains. Half of rhizobial genomes did not show genes for biotin biosynthesis, but three-quarters had genes for biotin transport. Some strains had genes for an avidin homologue (rhizavidin), a protein with high affinity for biotin but an unknown role in bacteria. A CFN42-derived rhizavidin mutant showed a sharper growth decrease in subcultures, revealing a role in biotin storage. In the search of biotin-independent growth of subcultures, CFN42 and CIAT652 strains with excess aeration showed optimal growth, as they also did, unexpectedly, with the addition of aspartic acid analogues α- and N-methyl aspartate. Aspartate analogues can be sensed by the chemotaxis aspartate receptor Tar. A tar homologue was identified and its mutants showed no growth recovery with aspartate analogues, indicating requirement of the Tar receptor in such a phenotype. Additionally, tar mutants did not recover full growth with excess aeration. A Rubisco-like protein was found to be necessary for growth as the corresponding mutants showed no recovery either with high aeration or aspartate analogues; also, diminished carboxylation was observed. Taken together, our results indicate a route of biotin-independent growth in rhizobial strains that included oxygen, a Tar receptor and a previously uncharacterized Rubisco-like protein.
Collapse
|
7
|
Holmes JB, Liu V, Caulkins BG, Hilario E, Ghosh RK, Drago VN, Young RP, Romero JA, Gill AD, Bogie PM, Paulino J, Wang X, Riviere G, Bosken YK, Struppe J, Hassan A, Guidoulianov J, Perrone B, Mentink-Vigier F, Chang CEA, Long JR, Hooley RJ, Mueser TC, Dunn MF, Mueller LJ. Imaging active site chemistry and protonation states: NMR crystallography of the tryptophan synthase α-aminoacrylate intermediate. Proc Natl Acad Sci U S A 2022; 119:e2109235119. [PMID: 34996869 PMCID: PMC8764694 DOI: 10.1073/pnas.2109235119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 02/07/2023] Open
Abstract
NMR-assisted crystallography-the integrated application of solid-state NMR, X-ray crystallography, and first-principles computational chemistry-holds significant promise for mechanistic enzymology: by providing atomic-resolution characterization of stable intermediates in enzyme active sites, including hydrogen atom locations and tautomeric equilibria, NMR crystallography offers insight into both structure and chemical dynamics. Here, this integrated approach is used to characterize the tryptophan synthase α-aminoacrylate intermediate, a defining species for pyridoxal-5'-phosphate-dependent enzymes that catalyze β-elimination and replacement reactions. For this intermediate, NMR-assisted crystallography is able to identify the protonation states of the ionizable sites on the cofactor, substrate, and catalytic side chains as well as the location and orientation of crystallographic waters within the active site. Most notable is the water molecule immediately adjacent to the substrate β-carbon, which serves as a hydrogen bond donor to the ε-amino group of the acid-base catalytic residue βLys87. From this analysis, a detailed three-dimensional picture of structure and reactivity emerges, highlighting the fate of the L-serine hydroxyl leaving group and the reaction pathway back to the preceding transition state. Reaction of the α-aminoacrylate intermediate with benzimidazole, an isostere of the natural substrate indole, shows benzimidazole bound in the active site and poised for, but unable to initiate, the subsequent bond formation step. When modeled into the benzimidazole position, indole is positioned with C3 in contact with the α-aminoacrylate Cβ and aligned for nucleophilic attack. Here, the chemically detailed, three-dimensional structure from NMR-assisted crystallography is key to understanding why benzimidazole does not react, while indole does.
Collapse
|
8
|
Ghosh RK, Hilario E, Liu V, Wang Y, Niks D, Holmes JB, Sakhrani VV, Mueller LJ, Dunn MF. Mutation of βGln114 to Ala Alters the Stabilities of Allosteric States in Tryptophan Synthase Catalysis. Biochemistry 2021; 60:3173-3186. [PMID: 34595921 PMCID: PMC9122093 DOI: 10.1021/acs.biochem.1c00383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The tryptophan synthase (TS) bienzyme complexes found in bacteria, yeasts, and molds are pyridoxal 5'-phosphate (PLP)-requiring enzymes that synthesize l-Trp. In the TS catalytic cycle, switching between the open and closed states of the α- and β-subunits via allosteric interactions is key to the efficient conversion of 3-indole-d-glycerol-3'-phosphate and l-Ser to l-Trp. In this process, the roles played by β-site residues proximal to the PLP cofactor have not yet been fully established. βGln114 is one such residue. To explore the roles played by βQ114, we conducted a detailed investigation of the βQ114A mutation on the structure and function of tryptophan synthase. Initial steady-state kinetic and static ultraviolet-visible spectroscopic analyses showed the Q to A mutation impairs catalytic activity and alters the stabilities of intermediates in the β-reaction. Therefore, we conducted X-ray structural and solid-state nuclear magnetic resonance spectroscopic studies to compare the wild-type and βQ114A mutant enzymes. These comparisons establish that the protein structural changes are limited to the Gln to Ala replacement, the loss of hydrogen bonds among the side chains of βGln114, βAsn145, and βArg148, and the inclusion of waters in the cavity created by substitution of the smaller Ala side chain. Because the conformations of the open and closed allosteric states are not changed by the mutation, we hypothesize that the altered properties arise from the lost hydrogen bonds that alter the relative stabilities of the open (βT state) and closed (βR state) conformations of the β-subunit and consequently alter the distribution of intermediates along the β-subunit catalytic path.
Collapse
|
9
|
Hernández VM, Arteaga A, Dunn MF. Diversity, properties and functions of bacterial arginases. FEMS Microbiol Rev 2021; 45:6308370. [PMID: 34160574 DOI: 10.1093/femsre/fuab034] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
The metalloenzyme arginase hydrolyzes L-arginine to produce L-ornithine and urea. In bacteria, arginase has important functions in basic nitrogen metabolism and redistribution, production of the key metabolic precursor L-ornithine, stress resistance and pathogenesis. We describe the regulation and specific functions of the arginase pathway as well as summarize key characteristics of related arginine catabolic pathways. The use of arginase-derived ornithine as a precursor molecule is reviewed. We discuss the biochemical and transcriptional regulation of arginine metabolism, including arginase, with the latter topic focusing on the RocR and AhrC transcriptional regulators in the model organism Bacillus subtilis. Finally, we consider similarities and contrasts in the structure and catalytic mechanism of the arginases from Bacillus caldovelox and Helicobacter pylori. The overall aim of this review is to provide a panorama of the diversity of physiological functions, regulation, and biochemical features of arginases in a variety of bacterial species.
Collapse
|
10
|
Hilario E, Fan L, Mueller LJ, Dunn MF. PCR Mutagenesis, Cloning, Expression, Fast Protein Purification Protocols and Crystallization of the Wild Type and Mutant Forms of Tryptophan Synthase. J Vis Exp 2020. [PMID: 33044464 DOI: 10.3791/61839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Structural studies with tryptophan synthase (TS) bienzyme complex (α2β2 TS) from Salmonella typhimurium have been performed to better understand its catalytic mechanism, allosteric behavior, and details of the enzymatic transformation of substrate to product in PLP-dependent enzymes. In this work, a novel expression system to produce the isolated α- and isolated β-subunit allowed the purification of high amounts of pure subunits and α2β2 StTS complex from the isolated subunits within 2 days. Purification was carried out by affinity chromatography followed by cleavage of the affinity tag, ammonium sulfate precipitation, and size exclusion chromatography (SEC). To better understand the role of key residues at the enzyme β-site, site-direct mutagenesis was performed in prior structural studies. Another protocol was created to purify the wild type and mutant α2β2 StTS complexes. A simple, fast and efficient protocol using ammonium sulfate fractionation and SEC allowed purification of α2β2 StTS complex in a single day. Both purification protocols described in this work have considerable advantages when compared with previous protocols to purify the same complex using PEG 8000 and spermine to crystalize the α2β2 StTS complex along the purification protocol. Crystallization of wild type and some mutant forms occurs under slightly different conditions, impairing the purification of some mutants using PEG 8000 and spermine. To prepare crystals suitable for x-ray crystallographic studies several efforts were made to optimize crystallization, crystal quality and cryoprotection. The methods presented here should be generally applicable for purification of tryptophan synthase subunits and wild type and mutant α2β2 StTS complexes.
Collapse
|
11
|
Leguizamon SC, Dunn MF, Scott TF. Sequence-directed dynamic covalent assembly of base-4-encoded oligomers. Chem Commun (Camb) 2020; 56:7817-7820. [PMID: 32618971 DOI: 10.1039/d0cc01083a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As an information-bearing biomacromolecule, DNA is encoded in base-4, where each residue site can be occupied by any one of four nucleobases. Mimicking the information dense, sequence-selective hybridization of DNA, we demonstrate two orthogonal dynamic covalent interactions to effect the selective assembly of molecular ladders and grids from base-4-encoded oligo(peptoid)s.
Collapse
|
12
|
Sakhrani VV, Hilario E, Caulkins BG, Hatcher-Skeers ME, Fan L, Dunn MF, Mueller LJ. Backbone assignments and conformational dynamics in the S. typhimurium tryptophan synthase α-subunit from solution-state NMR. JOURNAL OF BIOMOLECULAR NMR 2020; 74:341-354. [PMID: 32415580 PMCID: PMC7451264 DOI: 10.1007/s10858-020-00320-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Backbone assignments for the isolated α-subunit of Salmonella typhimurium tryptophan synthase (TS) are reported based on triple resonance solution-state NMR experiments on a uniformly 2H,13C,15N-labeled sample. From the backbone chemical shifts, secondary structure and random coil index order parameters (RCI-S2) are predicted. Titration with the 3-indole-D-glycerol 3'-phosphate analog, N-(4'-trifluoromethoxybenzenesulfonyl)-2-aminoethyl phosphate (F9), leads to chemical shift perturbations indicative of conformational changes from which an estimate of the dissociation constant is obtained. Comparisons of the backbone chemical-shifts, RCI-S2 values, and site-specific relaxation times with and without F9 reveal allosteric changes including modulation in secondary structures and loop rigidity induced upon ligand binding. A comparison is made to the X-ray crystal structure of the α-subunit in the full TS αββα bi-enzyme complex and to two new X-ray crystal structures of the isolated TS α-subunit reported in this work.
Collapse
|
13
|
Ide AA, Hernández VM, Medina-Aparicio L, Carcamo-Noriega E, Girard L, Hernández-Lucas I, Dunn MF. Genetic regulation, biochemical properties and physiological importance of arginase from Sinorhizobium meliloti. Microbiology (Reading) 2020; 166:484-497. [DOI: 10.1099/mic.0.000909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In bacteria,l-arginine is a precursor of various metabolites and can serve as a source of carbon and/or nitrogen. Arginine catabolism by arginase, which hydrolyzes arginine tol-ornithine and urea, is common in nature but has not been studied in symbiotic nitrogen-fixing rhizobia. The genome of the alfalfa microsymbiontSinorhizobium meliloti1021 has two genes annotated as arginases,argI1(smc03091) andargI2(sma1711). Biochemical assays with purified ArgI1 and ArgI2 (as 6His-Sumo-tagged proteins) showed that only ArgI1 had detectable arginase activity. A 1021argI1null mutant lacked arginase activity and grew at a drastically reduced rate with arginine as sole nitrogen source. Wild-type growth and arginase activity were restored in theargI1mutant genetically complemented with a genomically integratedargI1gene. In the wild-type, arginase activity andargI1transcription were induced several fold by exogenous arginine. ArgI1 purified as a 6His-Sumo-tagged protein had its highestin vitroenzymatic activity at pH 7.5 with Ni2+as cofactor. The enzyme was also active with Mn2+and Co2+, both of which gave the enzyme the highest activities at a more alkaline pH. The 6His-Sumo-ArgI1 comprised three identical subunits based on the migration of the urea-dissociated protein in a native polyacrylamide gel. A Lrp-like regulator (smc03092) divergently transcribed fromargI1was required for arginase induction by arginine or ornithine. This regulator was designated ArgIR. Electrophoretic mobility shift assays showed that purified ArgIR bound to theargI1promoter in a region preceding the predictedargI1transcriptional start. Our results indicate that ArgI1 is the sole arginase inS. meliloti, that it contributes substantially to arginine catabolismin vivoand thatargI1induction by arginine is dependent on ArgIR.
Collapse
|
14
|
Becerra-Rivera VA, Arteaga A, Leija A, Hernández G, Dunn MF. Polyamines produced by Sinorhizobium meliloti Rm8530 contribute to symbiotically relevant phenotypes ex planta and to nodulation efficiency on alfalfa. MICROBIOLOGY-SGM 2020; 166:278-287. [PMID: 31935179 DOI: 10.1099/mic.0.000886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In nitrogen-fixing rhizobia, emerging evidence shows significant roles for polyamines in growth and abiotic stress resistance. In this work we show that a polyamine-deficient ornithine decarboxylase null mutant (odc2) derived from Sinorhizobium meliloti Rm8530 had significant phenotypic differences from the wild-type, including greatly reduced production of exopolysaccharides (EPS; ostensibly both succinoglycan and galactoglucan), increased sensitivity to oxidative stress and decreased swimming motility. The introduction of the odc2 gene borne on a plasmid into the odc2 mutant restored wild-type phenotypes for EPS production, growth under oxidative stress and swimming. The production of calcofluor-binding EPS (succinoglycan) by the odc2 mutant was also completely or mostly restored in the presence of exogenous spermidine (Spd), norspermidine (NSpd) or spermine (Spm). The odc2 mutant formed about 25 % more biofilm than the wild-type, and its ability to form biofilm was significantly inhibited by exogenous Spd, NSpd or Spm. The odc2 mutant formed a less efficient symbiosis with alfalfa, resulting in plants with significantly less biomass and height, more nodules but less nodule biomass, and 25 % less nitrogen-fixing activity. Exogenously supplied Put was not able to revert these phenotypes and caused a similar increase in plant height and dry weight in uninoculated plants and in those inoculated with the wild-type or odc2 mutant. We discuss ways in which polyamines might affect the phenotypes of the odc2 mutant.
Collapse
|
15
|
Becerra-Rivera VA, Bergström E, Thomas-Oates J, Dunn MF. Polyamines are required for normal growth in Sinorhizobium meliloti. MICROBIOLOGY-SGM 2019; 164:600-613. [PMID: 29619919 DOI: 10.1099/mic.0.000615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polyamines (PAs) are ubiquitous polycations derived from basic l-amino acids whose physiological roles are still being defined. Their biosynthesis and functions in nitrogen-fixing rhizobia such as Sinorhizobium meliloti have not been extensively investigated. Thin layer chromatographic and mass spectrometric analyses showed that S. meliloti Rm8530 produces the PAs, putrescine (Put), spermidine (Spd) and homospermidine (HSpd), in their free forms and norspermidine (NSpd) in a form bound to macromolecules. The S. meliloti genome encodes two putative ornithine decarboxylases (ODC) for Put synthesis. Activity assays with the purified enzymes showed that ODC2 (SMc02983) decarboxylates both ornithine and lysine. ODC1 (SMa0680) decarboxylates only ornithine. An odc1 mutant was similar to the wild-type in ODC activity, PA production and growth. In comparison to the wild-type, an odc2 mutant had 45 % as much ODC activity and its growth rates were reduced by 42, 14 and 44 % under non-stress, salt stress or acid stress conditions, respectively. The odc2 mutant produced only trace levels of Put, Spd and HSpd. Wild-type phenotypes were restored when the mutant was grown in cultures supplemented with 1 mM Put or Spd or when the odc2 gene was introduced in trans. odc2 gene expression was increased under acid stress and reduced under salt stress and with exogenous Put or Spd. An odc1 odc2 double mutant had phenotypes similar to the odc2 mutant. These results indicate that ODC2 is the major enzyme for Put synthesis in S. meliloti and that PAs are required for normal growth in vitro.
Collapse
|
16
|
Taboada H, Dunn MF, Meneses N, Vargas-Lagunas C, Buchs N, Andrade-Domínguez A, Encarnación S. Qualitative changes in proteins contained in outer membrane vesicles produced by Rhizobium etli grown in the presence of the nod gene inducer naringenin. Arch Microbiol 2019; 201:1173-1194. [DOI: 10.1007/s00203-019-01682-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/22/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
|
17
|
Becerra-Rivera VA, Dunn MF. Polyamine biosynthesis and biological roles in rhizobia. FEMS Microbiol Lett 2019; 366:5476500. [DOI: 10.1093/femsle/fnz084] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022] Open
Abstract
ABSTRACTPolyamines are ubiquitous molecules containing two or more amino groups that fulfill varied and often essential physiological and regulatory roles in all organisms. In the symbiotic nitrogen-fixing bacteria known as rhizobia, putrescine and homospermidine are invariably produced while spermidine and norspermidine synthesis appears to be restricted to the alfalfa microsymbiont Sinorhizobium meliloti. Studies with rhizobial mutants deficient in the synthesis of one or more polyamines have shown that these compounds are important for growth, stress resistance, motility, exopolysaccharide production and biofilm formation. In this review, we describe these studies and examine how polyamines are synthesized and regulated in rhizobia.
Collapse
|
18
|
Taboada H, Meneses N, Dunn MF, Vargas-Lagunas C, Buchs N, Castro-Mondragón JA, Heller M, Encarnación S. Proteins in the periplasmic space and outer membrane vesicles of Rhizobium etli CE3 grown in minimal medium are largely distinct and change with growth phase. MICROBIOLOGY-SGM 2018; 165:638-650. [PMID: 30358529 DOI: 10.1099/mic.0.000720] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rhizobium etli CE3 grown in succinate-ammonium minimal medium (MM) excreted outer membrane vesicles (OMVs) with diameters of 40 to 100 nm. Proteins from the OMVs and the periplasmic space were isolated from 6 and 24 h cultures and identified by proteome analysis. A total of 770 proteins were identified: 73.8 and 21.3 % of these occurred only in the periplasm and OMVs, respectively, and only 4.9 % were found in both locations. The majority of proteins found in either location were present only at 6 or 24 h: in the periplasm and OMVs, only 24 and 9 % of proteins, respectively, were present at both sampling times, indicating a time-dependent differential sorting of proteins into the two compartments. The OMVs contained proteins with physiologically varied roles, including Rhizobium adhering proteins (Rap), polysaccharidases, polysaccharide export proteins, auto-aggregation and adherence proteins, glycosyl transferases, peptidoglycan binding and cross-linking enzymes, potential cell wall-modifying enzymes, porins, multidrug efflux RND family proteins, ABC transporter proteins and heat shock proteins. As expected, proteins with known periplasmic localizations (phosphatases, phosphodiesterases, pyrophosphatases) were found only in the periplasm, along with numerous proteins involved in amino acid and carbohydrate metabolism and transport. Nearly one-quarter of the proteins present in the OMVs were also found in our previous analysis of the R. etli total exproteome of MM-grown cells, indicating that these nanoparticles are an important mechanism for protein excretion in this species.
Collapse
|
19
|
Brader ML, Baker EN, Dunn MF, Laue TM, Carpenter JF. Using X-Ray Crystallography to Simplify and Accelerate Biologics Drug Development. J Pharm Sci 2017; 106:477-494. [DOI: 10.1016/j.xphs.2016.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 02/08/2023]
|
20
|
Caulkins BG, Young RP, Kudla RA, Yang C, Bittbauer T, Bastin B, Hilario E, Fan L, Marsella MJ, Dunn MF, Mueller LJ. NMR Crystallography of a Carbanionic Intermediate in Tryptophan Synthase: Chemical Structure, Tautomerization, and Reaction Specificity. J Am Chem Soc 2016; 138:15214-15226. [PMID: 27779384 PMCID: PMC5129030 DOI: 10.1021/jacs.6b08937] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Indexed: 12/22/2022]
Abstract
Carbanionic intermediates play a central role in the catalytic transformations of amino acids performed by pyridoxal-5'-phosphate (PLP)-dependent enzymes. Here, we make use of NMR crystallography-the synergistic combination of solid-state nuclear magnetic resonance, X-ray crystallography, and computational chemistry-to interrogate a carbanionic/quinonoid intermediate analogue in the β-subunit active site of the PLP-requiring enzyme tryptophan synthase. The solid-state NMR chemical shifts of the PLP pyridine ring nitrogen and additional sites, coupled with first-principles computational models, allow a detailed model of protonation states for ionizable groups on the cofactor, substrates, and nearby catalytic residues to be established. Most significantly, we find that a deprotonated pyridine nitrogen on PLP precludes formation of a true quinonoid species and that there is an equilibrium between the phenolic and protonated Schiff base tautomeric forms of this intermediate. Natural bond orbital analysis indicates that the latter builds up negative charge at the substrate Cα and positive charge at C4' of the cofactor, consistent with its role as the catalytic tautomer. These findings support the hypothesis that the specificity for β-elimination/replacement versus transamination is dictated in part by the protonation states of ionizable groups on PLP and the reacting substrates and underscore the essential role that NMR crystallography can play in characterizing both chemical structure and dynamics within functioning enzyme active sites.
Collapse
|
21
|
Ramírez-Trujillo JA, Dunn MF, Suárez-Rodríguez R, Hernández-Lucas I. The Sinorhizobium meliloti glyoxylate cycle enzyme isocitrate lyase (AceA) is required for the utilization of poly-β-hydroxybutyrate during carbon starvation. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-015-1131-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
22
|
Hernández VM, Girard L, Hernández-Lucas I, Vázquez A, Ortíz-Ortíz C, Díaz R, Dunn MF. Genetic and biochemical characterization of arginine biosynthesis in Sinorhizobium meliloti 1021. MICROBIOLOGY-SGM 2016; 162:725. [PMID: 27077644 DOI: 10.1099/mic.0.000272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Hilario E, Caulkins BG, Huang YMM, You W, Chang CEA, Mueller LJ, Dunn MF, Fan L. Visualizing the tunnel in tryptophan synthase with crystallography: Insights into a selective filter for accommodating indole and rejecting water. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1864:268-279. [PMID: 26708480 PMCID: PMC4732270 DOI: 10.1016/j.bbapap.2015.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/20/2015] [Accepted: 12/01/2015] [Indexed: 02/02/2023]
Abstract
Four new X-ray structures of tryptophan synthase (TS) crystallized with varying numbers of the amphipathic N-(4'-trifluoromethoxybenzoyl)-2-aminoethyl phosphate (F6) molecule are presented. These structures show one of the F6 ligands threaded into the tunnel from the β-site and reveal a distinct hydrophobic region. Over this expanse, the interactions between F6 and the tunnel are primarily nonpolar, while the F6 phosphoryl group fits into a polar pocket of the β-subunit active site. Further examination of TS structures reveals that one portion of the tunnel (T1) binds clusters of water molecules, whereas waters are not observed in the nonpolar F6 binding region of the tunnel (T2). MD simulation of another TS structure with an unobstructed tunnel also indicates the T2 region of the tunnel excludes water, consistent with a dewetted state that presents a significant barrier to the transfer of water into the closed β-site. We conclude that hydrophobic molecules can freely diffuse between the α- and β-sites via the tunnel, while water does not. We propose that exclusion of water serves to inhibit reaction of water with the α-aminoacrylate intermediate to form ammonium ion and pyruvate, a deleterious side reaction in the αβ-catalytic cycle. Finally, while most TS structures show βPhe280 partially blocking the tunnel between the α- and β-sites, new structures show an open tunnel, suggesting the flexibility of the βPhe280 side chain. Flexible docking studies and MD simulations confirm that the dynamic behavior of βPhe280 allows unhindered transfer of indole through the tunnel, therefore excluding a gating role for this residue.
Collapse
|
24
|
Young RP, Caulkins BG, Borchardt D, Bulloch DN, Larive CK, Dunn MF, Mueller LJ. Solution-State (17)O Quadrupole Central-Transition NMR Spectroscopy in the Active Site of Tryptophan Synthase. Angew Chem Int Ed Engl 2015; 55:1350-4. [PMID: 26661504 DOI: 10.1002/anie.201508898] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 11/09/2022]
Abstract
Oxygen is an essential participant in the acid-base chemistry that takes place within many enzyme active sites, yet has remained virtually silent as a probe in NMR spectroscopy. Here, we demonstrate the first use of solution-state (17)O quadrupole central-transition NMR spectroscopy to characterize enzymatic intermediates under conditions of active catalysis. In the 143 kDa pyridoxal-5'-phosphate-dependent enzyme tryptophan synthase, reactions of the α-aminoacrylate intermediate with the nucleophiles indoline and 2-aminophenol correlate with an upfield shift of the substrate carboxylate oxygen resonances. First principles calculations suggest that the increased shieldings for these quinonoid intermediates result from the net increase in the charge density of the substrate-cofactor π-bonding network, particularly at the adjacent α-carbon site.
Collapse
|
25
|
Young RP, Caulkins BG, Borchardt D, Bulloch DN, Larive CK, Dunn MF, Mueller LJ. Solution‐State
17
O Quadrupole Central‐Transition NMR Spectroscopy in the Active Site of Tryptophan Synthase. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|