1
|
Lyu W, Thung KH, Huynh KM, Wang L, Lin W, Ahmad S, Yap PT. The Growing Little Brain: Cerebellar Functional Development from Cradle to School. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.617938. [PMID: 39416101 PMCID: PMC11482888 DOI: 10.1101/2024.10.12.617938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Despite the cerebellum's crucial role in brain functions, its early development, particularly in relation to the cerebrum, remains poorly understood. Here, we examine cerebellocortical connectivity using over 1,000 high-quality resting-state functional MRI scans of children from birth to 60 months. By mapping cerebellar topography with fine temporal detail for the first time, we show the hierarchical and contralateral organization of cerebellocortical connectivity from birth. We observe dynamic shifts in cerebellar network gradients, which become more focal with age while maintaining stable anchor points similar to adults, highlighting the cerebellum's evolving yet stable role in functional integration during early development. Our findings provide the first evidence of cerebellar connections to higher-order networks at birth, which generally strengthen with age, emphasizing the cerebellum's early role in cognitive processing beyond sensory and motor functions. Our study provides insights into early cerebellocortical interactions, reveals functional asymmetry and sexual dimorphism in cerebellar development, and lays the groundwork for future research on cerebellum-related disorders in children.
Collapse
|
2
|
Chen X, Pang Y, Yap PT, Lian J. Multi-scale anatomical regularization for domain-adaptive segmentation of pelvic CBCT images. Med Phys 2024. [PMID: 39225652 DOI: 10.1002/mp.17378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/22/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Cone beam computed tomography (CBCT) image segmentation is crucial in prostate cancer radiotherapy, enabling precise delineation of the prostate gland for accurate treatment planning and delivery. However, the poor quality of CBCT images poses challenges in clinical practice, making annotation difficult due to factors such as image noise, low contrast, and organ deformation. PURPOSE The objective of this study is to create a segmentation model for the label-free target domain (CBCT), leveraging valuable insights derived from the label-rich source domain (CT). This goal is achieved by addressing the domain gap across diverse domains through the implementation of a cross-modality medical image segmentation framework. METHODS Our approach introduces a multi-scale domain adaptive segmentation method, performing domain adaptation simultaneously at both the image and feature levels. The primary innovation lies in a novel multi-scale anatomical regularization approach, which (i) aligns the target domain feature space with the source domain feature space at multiple spatial scales simultaneously, and (ii) exchanges information across different scales to fuse knowledge from multi-scale perspectives. RESULTS Quantitative and qualitative experiments were conducted on pelvic CBCT segmentation tasks. The training dataset comprises 40 unpaired CBCT-CT images with only CT images annotated. The validation and testing datasets consist of 5 and 10 CT images, respectively, all with annotations. The experimental results demonstrate the superior performance of our method compared to other state-of-the-art cross-modality medical image segmentation methods. The Dice similarity coefficients (DSC) for CBCT image segmentation results is74.6 ± 9.3 $74.6 \pm 9.3$ %, and the average symmetric surface distance (ASSD) is3.9 ± 1.8 mm $3.9\pm 1.8\;\mathrm{mm}$ . Statistical analysis confirms the statistical significance of the improvements achieved by our method. CONCLUSIONS Our method exhibits superiority in pelvic CBCT image segmentation compared to its counterparts.
Collapse
|
3
|
Yang CC, Yap PT, Wu Y, Zidan N, Fefer G, Nelson NC, Gruen ME, Olby NJ. Voxelwise analysis of the central hearing pathway in senior dogs reveals changes associated with fractional lifespan. Sci Rep 2024; 14:18121. [PMID: 39103441 PMCID: PMC11300839 DOI: 10.1038/s41598-024-68828-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Presbycusis, or age-related hearing loss, affects both elderly humans and dogs, significantly impairing their social interactions and cognition. In humans, presbycusis involves changes in peripheral and central auditory systems, with central changes potentially occurring independently. While peripheral presbycusis in dogs is well-documented, research on central changes remains limited. Diffusion tensor imaging (DTI) is a useful tool for detecting and quantifying cerebral white matter abnormalities. This study used DTI to explore the central auditory pathway of senior dogs, aiming to enhance our understanding of canine presbycusis. Dogs beyond 75% of their expected lifespan were recruited and screened with brainstem auditory evoked response testing to select dogs without severe peripheral hearing loss. Sixteen dogs meeting the criteria were scanned using a 3 T magnetic resonance scanner. Tract-based spatial statistics was used to analyze the central auditory pathways. A significant negative correlation between fractional lifespan and fractional anisotropy was found in the acoustic radiation, suggesting age-related white matter changes in the central auditory system. These changes, observed in dogs without severe peripheral hearing loss, may contribute to central presbycusis development.
Collapse
|
4
|
Wang Q, Wang W, Fang Y, Yap PT, Zhu H, Li HJ, Qiao L, Liu M. Leveraging Brain Modularity Prior for Interpretable Representation Learning of fMRI. IEEE Trans Biomed Eng 2024; 71:2391-2401. [PMID: 38412079 PMCID: PMC11257815 DOI: 10.1109/tbme.2024.3370415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) can reflect spontaneous neural activities in the brain and is widely used for brain disorder analysis. Previous studies focus on extracting fMRI representations using machine/deep learning methods, but these features typically lack biological interpretability. The human brain exhibits a remarkable modular structure in spontaneous brain functional networks, with each module comprised of functionally interconnected brain regions-of-interest (ROIs). However, existing learning-based methods cannot adequately utilize such brain modularity prior. In this paper, we propose a brain modularity-constrained dynamic representation learning framework for interpretable fMRI analysis, consisting of dynamic graph construction, dynamic graph learning via a novel modularity-constrained graph neural network (MGNN), and prediction and biomarker detection. The designed MGNN is constrained by three core neurocognitive modules (i.e., salience network, central executive network, and default mode network), encouraging ROIs within the same module to share similar representations. To further enhance discriminative ability of learned features, we encourage the MGNN to preserve network topology of input graphs via a graph topology reconstruction constraint. Experimental results on 534 subjects with rs-fMRI scans from two datasets validate the effectiveness of the proposed method. The identified discriminative brain ROIs and functional connectivities can be regarded as potential fMRI biomarkers to aid in clinical diagnosis.
Collapse
|
5
|
Chen X, Liu Q, Deng HH, Kuang T, Lin HHY, Xiao D, Gateno J, Xia JJ, Yap PT. Improving Image Segmentation with Contextual and Structural Similarity. PATTERN RECOGNITION 2024; 152:110489. [PMID: 38645435 PMCID: PMC11027435 DOI: 10.1016/j.patcog.2024.110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Deep learning models for medical image segmentation are usually trained with voxel-wise losses, e.g., cross-entropy loss, focusing on unary supervision without considering inter-voxel relationships. This oversight potentially leads to semantically inconsistent predictions. Here, we propose a contextual similarity loss (CSL) and a structural similarity loss (SSL) to explicitly and efficiently incorporate inter-voxel relationships for improved performance. The CSL promotes consistency in predicted object categories for each image sub-region compared to ground truth. The SSL enforces compatibility between the predictions of voxel pairs by computing pair-wise distances between them, ensuring that voxels of the same class are close together whereas those from different classes are separated by a wide margin in the distribution space. The effectiveness of the CSL and SSL is evaluated using a clinical cone-beam computed tomography (CBCT) dataset of patients with various craniomaxillofacial (CMF) deformities and a public pancreas dataset. Experimental results show that the CSL and SSL outperform state-of-the-art regional loss functions in preserving segmentation semantics.
Collapse
|
6
|
Bernardo D, Xie X, Verma P, Kim J, Liu V, Numis AL, Wu Y, Glass HC, Yap PT, Nagarajan SS, Raj A. Simulation-based Inference of Developmental EEG Maturation with the Spectral Graph Model. ARXIV 2024:arXiv:2405.02524v3. [PMID: 39040639 PMCID: PMC11261974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The spectral content of macroscopic neural activity evolves throughout development, yet how this maturation relates to underlying brain network formation and dynamics remains unknown. Here, we assess the developmental maturation of electroencephalogram spectra via Bayesian model inversion of the spectral graph model, a parsimonious whole-brain model of spatiospectral neural activity derived from linearized neural field models coupled by the structural connectome. Simulation-based inference was used to estimate age-varying spectral graph model parameter posterior distributions from electroencephalogram spectra spanning the developmental period. This model-fitting approach accurately captures observed developmental electroencephalogram spectral maturation via a neurobiologically consistent progression of key neural parameters: long-range coupling, axonal conduction speed, and excitatory:inhibitory balance. These results suggest that the spectral maturation of macroscopic neural activity observed during typical development is supported by age-dependent functional adaptations in localized neural dynamics and their long-range coupling across the macroscopic structural network.
Collapse
|
7
|
Guan H, Yap PT, Bozoki A, Liu M. Federated learning for medical image analysis: A survey. PATTERN RECOGNITION 2024; 151:110424. [PMID: 38559674 PMCID: PMC10976951 DOI: 10.1016/j.patcog.2024.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Machine learning in medical imaging often faces a fundamental dilemma, namely, the small sample size problem. Many recent studies suggest using multi-domain data pooled from different acquisition sites/centers to improve statistical power. However, medical images from different sites cannot be easily shared to build large datasets for model training due to privacy protection reasons. As a promising solution, federated learning, which enables collaborative training of machine learning models based on data from different sites without cross-site data sharing, has attracted considerable attention recently. In this paper, we conduct a comprehensive survey of the recent development of federated learning methods in medical image analysis. We have systematically gathered research papers on federated learning and its applications in medical image analysis published between 2017 and 2023. Our search and compilation were conducted using databases from IEEE Xplore, ACM Digital Library, Science Direct, Springer Link, Web of Science, Google Scholar, and PubMed. In this survey, we first introduce the background of federated learning for dealing with privacy protection and collaborative learning issues. We then present a comprehensive review of recent advances in federated learning methods for medical image analysis. Specifically, existing methods are categorized based on three critical aspects of a federated learning system, including client end, server end, and communication techniques. In each category, we summarize the existing federated learning methods according to specific research problems in medical image analysis and also provide insights into the motivations of different approaches. In addition, we provide a review of existing benchmark medical imaging datasets and software platforms for current federated learning research. We also conduct an experimental study to empirically evaluate typical federated learning methods for medical image analysis. This survey can help to better understand the current research status, challenges, and potential research opportunities in this promising research field.
Collapse
|
8
|
Taylor HP, Thung KH, Huynh KM, Lin W, Ahmad S, Yap PT. Functional Hierarchy of the Human Neocortex from Cradle to Grave. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599109. [PMID: 38915694 PMCID: PMC11195193 DOI: 10.1101/2024.06.14.599109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Recent evidence indicates that the organization of the human neocortex is underpinned by smooth spatial gradients of functional connectivity (FC). These gradients provide crucial insight into the relationship between the brain's topographic organization and the texture of human cognition. However, no studies to date have charted how intrinsic FC gradient architecture develops across the entire human lifespan. In this work, we model developmental trajectories of the three primary gradients of FC using a large, high-quality, and temporally-dense functional MRI dataset spanning from birth to 100 years of age. The gradient axes, denoted as sensorimotor-association (SA), visual-somatosensory (VS), and modulation-representation (MR), encode crucial hierarchical organizing principles of the brain in development and aging. By tracking their evolution throughout the human lifespan, we provide the first ever comprehensive low-dimensional normative reference of global FC hierarchical architecture. We observe significant age-related changes in global network features, with global markers of hierarchical organization increasing from birth to early adulthood and decreasing thereafter. During infancy and early childhood, FC organization is shaped by primary sensory processing, dense short-range connectivity, and immature association and control hierarchies. Functional differentiation of transmodal systems supported by long-range coupling drives a convergence toward adult-like FC organization during late childhood, while adolescence and early adulthood are marked by the expansion and refinement of SA and MR hierarchies. While gradient topographies remain stable during late adulthood and aging, we observe decreases in global gradient measures of FC differentiation and complexity from 30 to 100 years. Examining cortical microstructure gradients alongside our functional gradients, we observed that structure-function gradient coupling undergoes differential lifespan trajectories across multiple gradient axes.
Collapse
|
9
|
Fang Y, Yap PT, Lin W, Zhu H, Liu M. Source-free unsupervised domain adaptation: A survey. Neural Netw 2024; 174:106230. [PMID: 38490115 PMCID: PMC11015964 DOI: 10.1016/j.neunet.2024.106230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/14/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention for tackling domain-shift problems caused by distribution discrepancy across different domains. Existing UDA approaches highly depend on the accessibility of source domain data, which is usually limited in practical scenarios due to privacy protection, data storage and transmission cost, and computation burden. To tackle this issue, many source-free unsupervised domain adaptation (SFUDA) methods have been proposed recently, which perform knowledge transfer from a pre-trained source model to the unlabeled target domain with source data inaccessible. A comprehensive review of these works on SFUDA is of great significance. In this paper, we provide a timely and systematic literature review of existing SFUDA approaches from a technical perspective. Specifically, we categorize current SFUDA studies into two groups, i.e., white-box SFUDA and black-box SFUDA, and further divide them into finer subcategories based on different learning strategies they use. We also investigate the challenges of methods in each subcategory, discuss the advantages/disadvantages of white-box and black-box SFUDA methods, conclude the commonly used benchmark datasets, and summarize the popular techniques for improved generalizability of models learned without using source data. We finally discuss several promising future directions in this field.
Collapse
|
10
|
Huynh K, Chang WT, Wu Y, Yap PT. Optimal shrinkage denoising breaks the noise floor in high-resolution diffusion MRI. PATTERNS (NEW YORK, N.Y.) 2024; 5:100954. [PMID: 38645765 PMCID: PMC11026978 DOI: 10.1016/j.patter.2024.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/23/2024]
Abstract
The spatial resolution attainable in diffusion magnetic resonance (MR) imaging is inherently limited by noise. The weaker signal associated with a smaller voxel size, especially at a high level of diffusion sensitization, is often buried under the noise floor owing to the non-Gaussian nature of the MR magnitude signal. Here, we show how the noise floor can be suppressed remarkably via optimal shrinkage of singular values associated with noise in complex-valued k-space data from multiple receiver channels. We explore and compare different low-rank signal matrix recovery strategies to utilize the inherently redundant information from multiple channels. In combination with background phase removal, the optimal strategy reduces the noise floor by 11 times. Our framework enables imaging with substantially improved resolution for precise characterization of tissue microstructure and white matter pathways without relying on expensive hardware upgrades and time-consuming acquisition repetitions, outperforming other related denoising methods.
Collapse
|
11
|
Lyu W, Wu Y, Huynh KM, Ahmad S, Yap PT. A multimodal submillimeter MRI atlas of the human cerebellum. Sci Rep 2024; 14:5622. [PMID: 38453991 PMCID: PMC10920891 DOI: 10.1038/s41598-024-55412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
The human cerebellum is engaged in a broad array of tasks related to motor coordination, cognition, language, attention, memory, and emotional regulation. A detailed cerebellar atlas can facilitate the investigation of the structural and functional organization of the cerebellum. However, existing cerebellar atlases are typically limited to a single imaging modality with insufficient characterization of tissue properties. Here, we introduce a multifaceted cerebellar atlas based on high-resolution multimodal MRI, facilitating the understanding of the neurodevelopment and neurodegeneration of the cerebellum based on cortical morphology, tissue microstructure, and intra-cerebellar and cerebello-cerebral connectivity.
Collapse
|
12
|
Liu S, Yap PT. Learning multi-site harmonization of magnetic resonance images without traveling human phantoms. COMMUNICATIONS ENGINEERING 2024; 3:6. [PMID: 38420332 PMCID: PMC10898625 DOI: 10.1038/s44172-023-00140-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 11/20/2023] [Indexed: 03/02/2024]
Abstract
Harmonization improves Magn. Reson. Imaging (MRI) data consistency and is central to effective integration of diverse imaging data acquired across multiple sites. Recent deep learning techniques for harmonization are predominantly supervised in nature and hence require imaging data of the same human subjects to be acquired at multiple sites. Data collection as such requires the human subjects to travel across sites and is hence challenging, costly, and impractical, more so when sufficient sample size is needed for reliable network training. Here we show how harmonization can be achieved with a deep neural network that does not rely on traveling human phantom data. Our method disentangles site-specific appearance information and site-invariant anatomical information from images acquired at multiple sites and then employs the disentangled information to generate the image of each subject for any target site. We demonstrate with more than 6,000 multi-site T1- and T2-weighted images that our method is remarkably effective in generating images with realistic site-specific appearances without altering anatomical details. Our method allows retrospective harmonization of data in a wide range of existing modern large-scale imaging studies, conducted via different scanners and protocols, without additional data collection.
Collapse
|
13
|
Lyu W, Wu Y, Huang H, Chen Y, Tan X, Liang Y, Ma X, Feng Y, Wu J, Kang S, Qiu S, Yap PT. Aberrant dynamic functional network connectivity in type 2 diabetes mellitus individuals. Cogn Neurodyn 2023; 17:1525-1539. [PMID: 37969945 PMCID: PMC10640562 DOI: 10.1007/s11571-022-09899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/11/2022] [Accepted: 10/09/2022] [Indexed: 11/24/2022] Open
Abstract
An increasing number of recent brain imaging studies are dedicated to understanding the neuro mechanism of cognitive impairment in type 2 diabetes mellitus (T2DM) individuals. In contrast to efforts to date that are limited to static functional connectivity, here we investigate abnormal connectivity in T2DM individuals by characterizing the time-varying properties of brain functional networks. Using group independent component analysis (GICA), sliding-window analysis, and k-means clustering, we extracted thirty-one intrinsic connectivity networks (ICNs) and estimated four recurring brain states. We observed significant group differences in fraction time (FT) and mean dwell time (MDT), and significant negative correlation between the Montreal Cognitive Assessment (MoCA) scores and FT/MDT. We found that in the T2DM group the inter- and intra-network connectivity decreases and increases respectively for the default mode network (DMN) and task-positive network (TPN). We also found alteration in the precuneus network (PCUN) and enhanced connectivity between the salience network (SN) and the TPN. Our study provides evidence of alterations of large-scale resting networks in T2DM individuals and shed light on the fundamental mechanisms of neurocognitive deficits in T2DM.
Collapse
|
14
|
Huang Y, Ahmad S, Han L, Wang S, Wu Z, Lin W, Li G, Wang L, Yap PT. Longitudinal Prediction of Postnatal Brain Magnetic Resonance Images via a Metamorphic Generative Adversarial Network. PATTERN RECOGNITION 2023; 143:109715. [PMID: 37425426 PMCID: PMC10327994 DOI: 10.1016/j.patcog.2023.109715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Missing scans are inevitable in longitudinal studies due to either subject dropouts or failed scans. In this paper, we propose a deep learning framework to predict missing scans from acquired scans, catering to longitudinal infant studies. Prediction of infant brain MRI is challenging owing to the rapid contrast and structural changes particularly during the first year of life. We introduce a trustworthy metamorphic generative adversarial network (MGAN) for translating infant brain MRI from one time-point to another. MGAN has three key features: (i) Image translation leveraging spatial and frequency information for detail-preserving mapping; (ii) Quality-guided learning strategy that focuses attention on challenging regions. (iii) Multi-scale hybrid loss function that improves translation of image contents. Experimental results indicate that MGAN outperforms existing GANs by accurately predicting both tissue contrasts and anatomical details.
Collapse
|
15
|
Chen X, Pang Y, Ahmad S, Royce T, Wang A, Lian J, Yap PT. Organ-aware CBCT enhancement via dual path learning for prostate cancer treatment. Med Phys 2023; 50:6931-6942. [PMID: 37751497 PMCID: PMC11132970 DOI: 10.1002/mp.16752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Cone-beam computed tomography (CBCT) plays a crucial role in the intensity modulated radiotherapy (IMRT) of prostate cancer. However, poor image contrast and fuzzy organ boundaries pose challenges to precise targeting for dose delivery and plan reoptimization for adaptive therapy. PURPOSE In this work, we aim to enhance pelvic CBCT images by translating them to high-quality CT images with a particular focus on the anatomical structures important for radiotherapy. METHODS We develop a novel dual-path learning framework, covering both global and local information, for organ-aware enhancement of the prostate, bladder and rectum. The global path learns coarse inter-modality translation at the image level. The local path learns organ-aware translation at the regional level. This dual-path learning architecture can serve as a plug-and-play module adaptable to other medical image-to-image translation frameworks. RESULTS We evaluated the performance of the proposed method both quantitatively and qualitatively. The training dataset consists of unpaired 40 CBCT and 40 CT scans, the validation dataset consists of 5 paired CBCT-CT scans, and the testing dataset consists of 10 paired CBCT-CT scans. The peak signal-to-noise ratio (PSNR) between enhanced CBCT and reference CT images is 27.22 ± 1.79, and the structural similarity (SSIM) between enhanced CBCT and the reference CT images is 0.71 ± 0.03. We also compared our method with state-of-the-art image-to-image translation methods, where our method achieves the best performance. Moreover, the statistical analysis confirms that the improvements achieved by our method are statistically significant. CONCLUSIONS The proposed method demonstrates its superiority in enhancing pelvic CBCT images, especially at the organ level, compared to relevant methods.
Collapse
|
16
|
Tsai CC, Chen X, Ahmad S, Yap PT. Robust Unsupervised Super-Resolution of Infant MRI via Dual-Modal Deep Image Prior. MACHINE LEARNING IN MEDICAL IMAGING. MLMI (WORKSHOP) 2023; 14348:42-51. [PMID: 39149721 PMCID: PMC11323077 DOI: 10.1007/978-3-031-45673-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Magnetic resonance imaging (MRI) is commonly used for studying infant brain development. However, due to the lengthy image acquisition time and limited subject compliance, high-quality infant MRI can be challenging. Without imposing additional burden on image acquisition, image super-resolution (SR) can be used to enhance image quality post-acquisition. Most SR techniques are supervised and trained on multiple aligned low-resolution (LR) and high-resolution (HR) image pairs, which in practice are not usually available. Unlike supervised approaches, Deep Image Prior (DIP) can be employed for unsupervised single-image SR, utilizing solely the input LR image for de novo optimization to produce an HR image. However, determining when to stop early in DIP training is non-trivial and presents a challenge to fully automating the SR process. To address this issue, we constrain the low-frequency k-space of the SR image to be similar to that of the LR image. We further improve performance by designing a dual-modal framework that leverages shared anatomical information between T1-weighted and T2-weighted images. We evaluated our model, dual-modal DIP (dmDIP), on infant MRI data acquired from birth to one year of age, demonstrating that enhanced image quality can be obtained with substantially reduced sensitivity to early stopping.
Collapse
|
17
|
Yang J, Jiang H, Tassew T, Sun P, Ma J, Xia Y, Yap PT, Chen G. Towards Accurate Microstructure Estimation via 3D Hybrid Graph Transformer. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2023; 14227:25-34. [PMID: 39219989 PMCID: PMC11361334 DOI: 10.1007/978-3-031-43993-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Deep learning has drawn increasing attention in microstructure estimation with undersampled diffusion MRI (dMRI) data. A representative method is the hybrid graph transformer (HGT), which achieves promising performance by integrating q -space graph learning and x -space transformer learning into a unified framework. However, this method overlooks the 3D spatial information as it relies on training with 2D slices. To address this limitation, we propose 3D hybrid graph transformer (3D-HGT), an advanced microstructure estimation model capable of making full use of 3D spatial information and angular information. To tackle the large computation burden associated with 3D x -space learning, we propose an efficient q -space learning model based on simplified graph neural networks. Furthermore, we propose a 3D x -space learning module based on the transformer. Extensive experiments on data from the human connectome project show that our 3D-HGT outperforms state-of-the-art methods, including HGT, in both quantitative and qualitative evaluations.
Collapse
|
18
|
Wu Y, Liu X, Zhang X, Huynh KM, Ahmad S, Yap PT. Relaxation-Diffusion Spectrum Imaging for Probing Tissue Microarchitecture. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2023; 14227:152-162. [PMID: 39184022 PMCID: PMC11340880 DOI: 10.1007/978-3-031-43993-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Brain tissue microarchitecture is characterized by heterogeneous degrees of diffusivity and rates of transverse relaxation. Unlike standard diffusion MRI with a single echo time (TE), which provides information primarily on diffusivity, relaxation-diffusion MRI involves multiple TEs and multiple diffusion-weighting strengths for probing tissue-specific coupling between relaxation and diffusivity. Here, we introduce a relaxation-diffusion model that characterizes tissue apparent relaxation coefficients for a spectrum of diffusion length scales and at the same time factors out the effects of intra-voxel orientation heterogeneity. We examined the model with an in vivo dataset, acquired using a clinical scanner, involving different health conditions. Experimental results indicate that our model caters to heterogeneous tissue microstructure and can distinguish fiber bundles with similar diffusivities but different relaxation rates. Code with sample data is available at https://github.com/dryewu/RDSI.
Collapse
|
19
|
Huynh KM, Wu Y, Ahmad S, Yap PT. Microstructure Fingerprinting for Heterogeneously Oriented Tissue Microenvironments. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2023; 14227:131-141. [PMID: 39129859 PMCID: PMC11315459 DOI: 10.1007/978-3-031-43993-3_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Most diffusion biophysical models capture basic properties of tissue microstructure, such as diffusivity and anisotropy. More realistic models that relate the diffusion-weighted signal to cell size and membrane permeability often require simplifying assumptions such as short gradient pulse and Gaussian phase distribution, leading to tissue features that are not necessarily quantitative. Here, we propose a method to quantify tissue microstructure without jeopardizing accuracy owing to unrealistic assumptions. Our method utilizes realistic signals simulated from the geometries of cellular microenvironments as fingerprints, which are then employed in a spherical mean estimation framework to disentangle the effects of orientation dispersion from microscopic tissue properties. We demonstrate the efficacy of microstructure fingerprinting in estimating intra-cellular, extra-cellular, and intra-soma volume fractions as well as axon radius, soma radius, and membrane permeability.
Collapse
|
20
|
Jiang W, Zhou Z, Li G, Yin W, Wu Z, Wang L, Ghanbari M, Li G, Yap PT, Howell BR, Styner MA, Yacoub E, Hazlett H, Gilmore JH, Keith Smith J, Ugurbil K, Elison JT, Zhang H, Shen D, Lin W. Mapping the evolution of regional brain network efficiency and its association with cognitive abilities during the first twenty-eight months of life. Dev Cogn Neurosci 2023; 63:101284. [PMID: 37517139 PMCID: PMC10400876 DOI: 10.1016/j.dcn.2023.101284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023] Open
Abstract
Human brain undergoes rapid growth during the first few years of life. While previous research has employed graph theory to study early brain development, it has mostly focused on the topological attributes of the whole brain. However, examining regional graph-theory features may provide unique insights into the development of cognitive abilities. Utilizing a large and longitudinal rsfMRI dataset from the UNC/UMN Baby Connectome Project, we investigated the developmental trajectories of regional efficiency and evaluated the relationships between these changes and cognitive abilities using Mullen Scales of Early Learning during the first twenty-eight months of life. Our results revealed a complex and spatiotemporally heterogeneous development pattern of regional global and local efficiency during this age period. Furthermore, we found that the trajectories of the regional global efficiency at the left temporal occipital fusiform and bilateral occipital fusiform gyri were positively associated with cognitive abilities, including visual reception, expressive language, receptive language, and early learning composite scores (P < 0.05, FDR corrected). However, these associations were weakened with age. These findings offered new insights into the regional developmental features of brain topologies and their associations with cognition and provided evidence of ongoing optimization of brain networks at both whole-brain and regional levels.
Collapse
|
21
|
Taylor HP, Yap PT. Dynamic Functional Connectome Harmonics. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2023; 14227:268-276. [PMID: 39380671 PMCID: PMC11460769 DOI: 10.1007/978-3-031-43993-3_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Functional connectivity (FC) "gradients" enable investigation of connection topography in relation to cognitive hierarchy, and yield the primary axes along which FC is organized. In this work, we employ a variant of the "gradient" approach wherein we solve for the normal modes of FC, yielding functional connectome harmonics. Until now, research in this vein has only considered static FC, neglecting the possibility that the principal axes of FC may depend on the timescale at which they are computed. Recent work suggests that momentary activation patterns, or brain states, mediate the dominant components of functional connectivity, suggesting that the principal axes may be invariant to change in timescale. In light of this, we compute functional connectome harmonics using time windows of varying lengths and demonstrate that they are stable across timescales. Our connectome harmonics correspond to meaningful brain states. The activation strength of the brain states, as well as their inter-relationships, are found to be reproducible for individuals. Further, we utilize our time-varying functional connectome harmonics to formulate a simple and elegant method for computing cortical flexibility at vertex resolution and demonstrate qualitative similarity between flexibility maps from our method and a method standard in the literature.
Collapse
|
22
|
Chen X, Zhao J, Liu S, Ahmad S, Yap PT. SurfFlow: A Flow-Based Approach for Rapid and Accurate Cortical Surface Reconstruction from Infant Brain MRI. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2023; 14227:380-388. [PMID: 39380670 PMCID: PMC11460795 DOI: 10.1007/978-3-031-43993-3_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The infant brain undergoes rapid changes in volume, shape, and structural organization during the first postnatal year. Accurate cortical surface reconstruction (CSR) is essential for understanding rapid changes in cortical morphometry during early brain development. However, existing CSR methods, designed for adult brain MRI, fall short in reconstructing cortical surfaces from infant MRI, owing to the poor tissue contrasts, partial volume effects, and rapid changes in cortical folding patterns. Here, we introduce an infant-centric CSR method in light of these challenges. Our method, SurfFlow, utilizes three seamlessly connected deformation blocks to sequentially deform an initial template mesh to target cortical surfaces. Remarkably, our method can rapidly reconstruct a high-resolution cortical surface mesh with 360k vertices in approximately one second. Performance evaluation based on an MRI dataset of infants 0 to 12 months of age indicates that SurfFlow significantly reduces geometric errors and substantially improves mesh regularity compared with state-of-the-art deep learning approaches.
Collapse
|
23
|
Wu M, Zhang L, Yap PT, Lin W, Zhu H, Liu M. Structural MRI Harmonization via Disentangled Latent Energy-Based Style Translation. MACHINE LEARNING IN MEDICAL IMAGING. MLMI (WORKSHOP) 2023; 14348:1-11. [PMID: 38389805 PMCID: PMC10883146 DOI: 10.1007/978-3-031-45673-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Multi-site brain magnetic resonance imaging (MRI) has been widely used in clinical and research domains, but usually is sensitive to non-biological variations caused by site effects (e.g., field strengths and scanning protocols). Several retrospective data harmonization methods have shown promising results in removing these non-biological variations at feature or whole-image level. Most existing image-level harmonization methods are implemented through generative adversarial networks, which are generally computationally expensive and generalize poorly on independent data. To this end, this paper proposes a disentangled latent energy-based style translation (DLEST) framework for image-level structural MRI harmonization. Specifically, DLEST disentangles site-invariant image generation and site-specific style translation via a latent autoencoder and an energy-based model. The autoencoder learns to encode images into low-dimensional latent space, and generates faithful images from latent codes. The energy-based model is placed in between the encoding and generation steps, facilitating style translation from a source domain to a target domain implicitly. This allows highly generalizable image generation and efficient style translation through the latent space. We train our model on 4,092 T1-weighted MRIs in 3 tasks: histogram comparison, acquisition site classification, and brain tissue segmentation. Qualitative and quantitative results demonstrate the superiority of our approach, which generally outperforms several state-of-the-art methods.
Collapse
|
24
|
Liu Y, Li J, Yunkui Pang, Nie D, Yap PT. The Devil is in the Upsampling: Architectural Decisions Made Simpler for Denoising with Deep Image Prior. PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION 2023; 2023:12374-12383. [PMID: 38726039 PMCID: PMC11078028 DOI: 10.1109/iccv51070.2023.01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Deep Image Prior (DIP) shows that some network architectures inherently tend towards generating smooth images while resisting noise, a phenomenon known as spectral bias. Image denoising is a natural application of this property. Although denoising with DIP mitigates the need for large training sets, two often intertwined practical challenges need to be overcome: architectural design and noise fitting. Existing methods either handcraft or search for suitable architectures from a vast design space, due to the limited understanding of how architectural choices affect the denoising outcome. In this study, we demonstrate from a frequency perspective that unlearnt upsampling is the main driving force behind the denoising phenomenon with DIP. This finding leads to straightforward strategies for identifying a suitable architecture for every image without laborious search. Extensive experiments show that the estimated architectures achieve superior denoising results than existing methods with up to 95% fewer parameters. Thanks to this under-parameterization, the resulting architectures are less prone to noise-fitting.
Collapse
|
25
|
Girard G, Rafael-Patiño J, Truffet R, Aydogan DB, Adluru N, Nair VA, Prabhakaran V, Bendlin BB, Alexander AL, Bosticardo S, Gabusi I, Ocampo-Pineda M, Battocchio M, Piskorova Z, Bontempi P, Schiavi S, Daducci A, Stafiej A, Ciupek D, Bogusz F, Pieciak T, Frigo M, Sedlar S, Deslauriers-Gauthier S, Kojčić I, Zucchelli M, Laghrissi H, Ji Y, Deriche R, Schilling KG, Landman BA, Cacciola A, Basile GA, Bertino S, Newlin N, Kanakaraj P, Rheault F, Filipiak P, Shepherd TM, Lin YC, Placantonakis DG, Boada FE, Baete SH, Hernández-Gutiérrez E, Ramírez-Manzanares A, Coronado-Leija R, Stack-Sánchez P, Concha L, Descoteaux M, Mansour L S, Seguin C, Zalesky A, Marshall K, Canales-Rodríguez EJ, Wu Y, Ahmad S, Yap PT, Théberge A, Gagnon F, Massi F, Fischi-Gomez E, Gardier R, Haro JLV, Pizzolato M, Caruyer E, Thiran JP. Tractography passes the test: Results from the diffusion-simulated connectivity (disco) challenge. Neuroimage 2023; 277:120231. [PMID: 37330025 PMCID: PMC10771037 DOI: 10.1016/j.neuroimage.2023.120231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/12/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
Estimating structural connectivity from diffusion-weighted magnetic resonance imaging is a challenging task, partly due to the presence of false-positive connections and the misestimation of connection weights. Building on previous efforts, the MICCAI-CDMRI Diffusion-Simulated Connectivity (DiSCo) challenge was carried out to evaluate state-of-the-art connectivity methods using novel large-scale numerical phantoms. The diffusion signal for the phantoms was obtained from Monte Carlo simulations. The results of the challenge suggest that methods selected by the 14 teams participating in the challenge can provide high correlations between estimated and ground-truth connectivity weights, in complex numerical environments. Additionally, the methods used by the participating teams were able to accurately identify the binary connectivity of the numerical dataset. However, specific false positive and false negative connections were consistently estimated across all methods. Although the challenge dataset doesn't capture the complexity of a real brain, it provided unique data with known macrostructure and microstructure ground-truth properties to facilitate the development of connectivity estimation methods.
Collapse
|