1
|
Pareja F, Dopeso H, Wang YK, Gazzo AM, Brown DN, Banerjee M, Selenica P, Bernhard JH, Derakhshan F, da Silva EM, Colon-Cartagena L, Basili T, Marra A, Sue J, Ye Q, Da Cruz Paula A, Yildirim SY, Pei X, Safonov A, Green H, Gill KY, Zhu Y, Lee MCH, Godrich RA, Casson A, Weigelt B, Riaz N, Wen HY, Brogi E, Mandelker DL, Hanna MG, Kunz JD, Rothrock B, Chandarlapaty S, Kanan C, Oakley J, Klimstra DS, Fuchs TJ, Reis-Filho JS. A Genomics-Driven Artificial Intelligence-Based Model Classifies Breast Invasive Lobular Carcinoma and Discovers CDH1 Inactivating Mechanisms. Cancer Res 2024; 84:3478-3489. [PMID: 39106449 PMCID: PMC11479818 DOI: 10.1158/0008-5472.can-24-1322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Artificial intelligence (AI) systems can improve cancer diagnosis, yet their development often relies on subjective histologic features as ground truth for training. Herein, we developed an AI model applied to histologic whole-slide images using CDH1 biallelic mutations, pathognomonic for invasive lobular carcinoma (ILC) in breast neoplasms, as ground truth. The model accurately predicted CDH1 biallelic mutations (accuracy = 0.95) and diagnosed ILC (accuracy = 0.96). A total of 74% of samples classified by the AI model as having CDH1 biallelic mutations but lacking these alterations displayed alternative CDH1 inactivating mechanisms, including a deleterious CDH1 fusion gene and noncoding CDH1 genetic alterations. Analysis of internal and external validation cohorts demonstrated 0.95 and 0.89 accuracy for ILC diagnosis, respectively. The latent features of the AI model correlated with human-explainable histopathologic features. Taken together, this study reports the construction of an AI algorithm trained using a genetic rather than histologic ground truth that can robustly classify ILCs and uncover CDH1 inactivating mechanisms, providing the basis for orthogonal ground truth utilization for development of diagnostic AI models applied to whole-slide image. Significance: Genetic alterations linked to strong genotypic-phenotypic correlations can be utilized to develop AI systems applied to pathology that facilitate cancer diagnosis and biologic discoveries.
Collapse
|
2
|
Loeffler CML, El Nahhas OSM, Muti HS, Carrero ZI, Seibel T, van Treeck M, Cifci D, Gustav M, Bretz K, Gaisa NT, Lehmann KV, Leary A, Selenica P, Reis-Filho JS, Ortiz-Bruechle N, Kather JN. Prediction of homologous recombination deficiency from routine histology with attention-based multiple instance learning in nine different tumor types. BMC Biol 2024; 22:225. [PMID: 39379982 PMCID: PMC11462727 DOI: 10.1186/s12915-024-02022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Homologous recombination deficiency (HRD) is recognized as a pan-cancer predictive biomarker that potentially indicates who could benefit from treatment with PARP inhibitors (PARPi). Despite its clinical significance, HRD testing is highly complex. Here, we investigated in a proof-of-concept study whether Deep Learning (DL) can predict HRD status solely based on routine hematoxylin & eosin (H&E) histology images across nine different cancer types. METHODS We developed a deep learning pipeline with attention-weighted multiple instance learning (attMIL) to predict HRD status from histology images. As part of our approach, we calculated a genomic scar HRD score by combining loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale state transitions (LST) from whole genome sequencing (WGS) data of n = 5209 patients across two independent cohorts. The model's effectiveness was evaluated using the area under the receiver operating characteristic curve (AUROC), focusing on its accuracy in predicting genomic HRD against a clinically recognized cutoff value. RESULTS Our study demonstrated the predictability of genomic HRD status in endometrial, pancreatic, and lung cancers reaching cross-validated AUROCs of 0.79, 0.58, and 0.66, respectively. These predictions generalized well to an external cohort, with AUROCs of 0.93, 0.81, and 0.73. Moreover, a breast cancer-trained image-based HRD classifier yielded an AUROC of 0.78 in the internal validation cohort and was able to predict HRD in endometrial, prostate, and pancreatic cancer with AUROCs of 0.87, 0.84, and 0.67, indicating that a shared HRD-like phenotype occurs across these tumor entities. CONCLUSIONS This study establishes that HRD can be directly predicted from H&E slides using attMIL, demonstrating its applicability across nine different tumor types.
Collapse
|
3
|
Brodeur MN, Selenica P, Ma W, Moufarrij S, Dagher C, Basili T, Abu‐Rustum NR, Aghajanian C, Zhou Q, Iasonos A, Ellenson LH, Weigelt B, Chui MH. ERBB2 mutations define a subgroup of endometrial carcinomas associated with high tumor mutational burden and the microsatellite instability-high (MSI-H) molecular subtype. Mol Oncol 2024; 18:2356-2368. [PMID: 39031567 PMCID: PMC11459037 DOI: 10.1002/1878-0261.13698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/23/2024] [Accepted: 06/25/2024] [Indexed: 07/22/2024] Open
Abstract
Anti-HER2 therapy is indicated for erb-b2 receptor tyrosine kinase 2 (ERBB2)-amplified/overexpressing endometrial carcinoma (EC). Mutations constitute another mode of ERBB2 activation, but only rare ERBB2-mutated ECs have been reported. We sought to characterize the clinicopathologic and genetic features of ERBB2-mutated EC. From an institutional cohort of 2638 ECs subjected to clinical tumor-normal panel sequencing, 69 (2.6%) with pathogenic ERBB2 mutation(s) were identified, of which 11 were also ERBB2-amplified. The most frequent ERBB2 hotspot mutations were V842I (38%) and R678Q (25%). ERBB2 mutations were clonal in 87% of evaluable cases. Immunohistochemistry revealed low HER2 protein expression in most ERBB2-mutated ECs (0/1+ in 66%, 2+ in 27%); all 3+ tumors (7.3%) were also ERBB2-amplified. Compared to ERBB2-wildtype ECs (with or without ERBB2 amplification), ERBB2-mutated/non-amplified ECs were enriched for the microsatellite instability-high (MSI-H) and, to a lesser extent, DNA polymerase epsilon, catalytic subunit (POLE) molecular subtypes, and associated with high tumor mutational burden and low chromosomal instability. Survival outcomes were similar between patients with ERBB2-mutated/non-amplified versus wildtype EC, whereas ERBB2 amplification was associated with worse prognosis on univariate, but not multivariate, analyses. In conclusion, ERBB2 mutation defines a rare subgroup of ECs that is pathogenically distinct from ERBB2-wildtype and ERBB2-amplified ECs.
Collapse
|
4
|
Moufarrij S, Gazzo A, Rana S, Selenica P, Abu-Rustum NR, Ellenson LH, Liu YL, Weigelt B, Momeni-Boroujeni A. Concurrent POLE hotspot mutations and mismatch repair deficiency/microsatellite instability in endometrial cancer: A challenge in molecular classification. Gynecol Oncol 2024; 191:1-9. [PMID: 39276497 DOI: 10.1016/j.ygyno.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVE Endometrial carcinoma (EC) has different molecular subtypes associated with varied prognosis. We sought to characterize the molecular features of ECs with POLE hotspot mutations and concurrent mismatch repair (MMR) deficiency/high microsatellite instability (MSI). METHODS We identified POLE-mutated (POLEmut), MMR-deficient (MMRd)/MSI-high (MSI-H), or combined POLEmut/MMRd ECs subjected to clinical tumor-normal panel sequencing between 2014 and 2023. Clonality of somatic mutations, MSI scoring, tumor mutational burden (TMB), proportion of somatic insertions and deletions (indels), and single base substitution (SBS) mutational signatures were extracted. RESULTS We identified 41 ECs harboring POLE exonuclease domain hotspot mutations, 138 MMRd and/or MSI-H ECs, and 14 POLEmut/MMRd ECs. Among the 14 POLEmut/MMRd ECs, 11 (79 %) exhibited clonal POLE hotspot mutations; 4 (29 %) had a dominant POLE-related mutational signature, 4 (29 %) displayed dominant MMRd-related signatures, and 6 (43 %) had mixtures of POLE, aging/clock, MMRd, and POLEmut/MMRd-related SBS mutational signatures. The number of single nucleotide variants was higher in POLEmut/MMR-proficient (MMRp) and in POLEmut/MMRd ECs compared to POLE wild-type (wt)/MMRd EC (both p < 0.001). Small indels were enriched in POLEwt/MMRd ECs (p < 0.001). TMB was highest in POLEmut/MMRd EC compared to POLEmut/MMRp and POLEwt/MMRd ECs (both p < 0.001). Of 14 patients with POLEmut/MMRd EC, 21 % had a recurrence, versus 10 % of those with POLEmut/MMRp EC. Similar findings were noted in 3 POLEmut ECs in patients with Lynch syndrome; akin to somatic POLEmut ECs, these tumors had high TMB. CONCLUSION POLEmut/MMRd ECs may be genetically distinct. Further studies are needed to assess the impact on outcomes and treatment response within this population.
Collapse
|
5
|
Jalan M, Sharma A, Pei X, Weinhold N, Buechelmaier ES, Zhu Y, Ahmed-Seghir S, Ratnakumar A, Di Bona M, McDermott N, Gomez-Aguilar J, Anderson KS, Ng CKY, Selenica P, Bakhoum SF, Reis-Filho JS, Riaz N, Powell SN. RAD52 resolves transcription-replication conflicts to mitigate R-loop induced genome instability. Nat Commun 2024; 15:7776. [PMID: 39237529 PMCID: PMC11377823 DOI: 10.1038/s41467-024-51784-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/15/2024] [Indexed: 09/07/2024] Open
Abstract
Collisions of the transcription and replication machineries on the same DNA strand can pose a significant threat to genomic stability. These collisions occur in part due to the formation of RNA-DNA hybrids termed R-loops, in which a newly transcribed RNA molecule hybridizes with the DNA template strand. This study investigated the role of RAD52, a known DNA repair factor, in preventing collisions by directing R-loop formation and resolution. We show that RAD52 deficiency increases R-loop accumulation, exacerbating collisions and resulting in elevated DNA damage. Furthermore, RAD52's ability to interact with the transcription machinery, coupled with its capacity to facilitate R-loop dissolution, highlights its role in preventing collisions. Lastly, we provide evidence of an increased mutational burden from double-strand breaks at conserved R-loop sites in human tumor samples, which is increased in tumors with low RAD52 expression. In summary, this study underscores the importance of RAD52 in orchestrating the balance between replication and transcription processes to prevent collisions and maintain genome stability.
Collapse
|
6
|
Manning-Geist BL, Sullivan MW, Zhou Q, Iasonos A, Selenica P, Stallworth C, Liu YL, Long Roche K, Gordhandas S, Aghajanian C, Chi D, O'Cearbhaill R, Grisham RN, Chui MH. Folate receptor alpha expression in low-grade serous ovarian cancer: Exploring new therapeutic possibilities. Gynecol Oncol 2024; 188:52-57. [PMID: 38941962 PMCID: PMC11368654 DOI: 10.1016/j.ygyno.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVE Mirvetuximab soravtansine may be a potentially effective therapeutic option for ovarian low-grade serous carcinoma (LGSC), but the prevalence of folate receptor alpha (FRα) overexpression in this tumor type is unknown. We sought to characterize FRα expression in LGSC and its association with clinical and molecular features. METHODS FRα immunohistochemistry was performed on a tissue microarray comprised of 89 LGSCs and 42 ovarian serous borderline tumors (SBTs). Clinical tumor-normal panel-based sequencing was performed on 78 LGSCs. Associations between FRα-high status and clinicopathologic characteristics and survival outcomes were examined. RESULTS Of 89 LGSCs, 36 (40%) were FRα-high (≥75% of viable tumor cells exhibiting moderate-to-strong membranous expression). Of 9 patients with LGSC and samples from different timepoints, 4 (44%) had discordant results, with conversion from FRα-negative to FRα-high in 3 (33%) cases. There was no association between FRα-high status with age, race, or progression-free/overall survival. A MAPK pathway genetic alteration, most commonly involving KRAS (n = 23), was present in 45 (58%) LGSCs. Those lacking MAPK pathway alterations were more likely to be FRα-high compared to MAPK-altered LGSCs (61% vs 20%, p < 0.001). In SBTs, FRα-high expression was associated with high-risk (micropapillary) histology and/or subsequent LGSC recurrence compared to conventional SBTs without malignant recurrence (53% vs 9%, p = 0.008). CONCLUSIONS Future studies of FRα-directed therapy in patients with LGSC are warranted. Discordant FRα status at recurrence suggests potential benefit for retesting. A biomarker-driven approach to direct treatment selection in LGSC is recommended. As high FRα expression is more common amongst tumors lacking MAPK pathway genetic alterations, FRα testing to determine eligibility for mirvetuximab soravtansine therapy is particularly recommended for this subgroup.
Collapse
|
7
|
Zhu Y, Pei X, Novaj A, Setton J, Bronder D, Derakhshan F, Selenica P, McDermott N, Orman M, Plum S, Subramanyan S, Braverman SH, McMillan B, Sinha S, Ma J, Gazzo A, Khan A, Bakhoum S, Powell SN, Reis-Filho JS, Riaz N. Large-scale copy number alterations are enriched for synthetic viability in BRCA1/BRCA2 tumors. Genome Med 2024; 16:108. [PMID: 39198848 PMCID: PMC11351199 DOI: 10.1186/s13073-024-01371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Pathogenic BRCA1 or BRCA2 germline mutations contribute to hereditary breast, ovarian, prostate, and pancreatic cancer. Paradoxically, bi-allelic inactivation of BRCA1 or BRCA2 (bBRCA1/2) is embryonically lethal and decreases cellular proliferation. The compensatory mechanisms that facilitate oncogenesis in bBRCA1/2 tumors remain unclear. METHODS We identified recurrent genetic alterations enriched in human bBRCA1/2 tumors and experimentally validated if these improved proliferation in cellular models. We analyzed mutations and copy number alterations (CNAs) in bBRCA1/2 breast and ovarian cancer from the TCGA and ICGC. We used Fisher's exact test to identify CNAs enriched in bBRCA1/2 tumors compared to control tumors that lacked evidence of homologous recombination deficiency. Genes located in CNA regions enriched in bBRCA1/2 tumors were further screened by gene expression and their effects on proliferation in genome-wide CRISPR/Cas9 screens. A set of candidate genes was functionally validated with in vitro clonogenic survival and functional assays to validate their influence on proliferation in the setting of bBRCA1/2 mutations. RESULTS We found that bBRCA1/2 tumors harbor recurrent large-scale genomic deletions significantly more frequently than histologically matched controls (n = 238 cytobands in breast and ovarian cancers). Within the deleted regions, we identified 277 BRCA1-related genes and 218 BRCA2-related genes that had reduced expression and increased proliferation in bBRCA1/2 but not in wild-type cells in genome-wide CRISPR screens. In vitro validation of 20 candidate genes with clonogenic proliferation assays validated 9 genes, including RIC8A and ATMIN (ATM-Interacting protein). We identified loss of RIC8A, which occurs frequently in both bBRCA1/2 tumors and is synthetically viable with loss of both BRCA1 and BRCA2. Furthermore, we found that metastatic homologous recombination deficient cancers acquire loss-of-function mutations in RIC8A. Lastly, we identified that RIC8A does not rescue homologous recombination deficiency but may influence mitosis in bBRCA1/2 tumors, potentially leading to increased micronuclei formation. CONCLUSIONS This study provides a means to solve the tumor suppressor paradox by identifying synthetic viability interactions and causal driver genes affected by large-scale CNAs in human cancers.
Collapse
|
8
|
Rekhtman N, Tischfield SE, Febres-Aldana CA, Lee JJK, Chang JC, Herzberg BO, Selenica P, Woo HJ, Vanderbilt CM, Yang SR, Xu F, Bowman AS, da Silva EM, Noronha AM, Mandelker DL, Mehine M, Mukherjee S, Blanco-Heredia J, Orgera JJ, Nanjangud GJ, Baine MK, Aly RG, Sauter JL, Travis WD, Savari O, Moreira AL, Falcon CJ, Bodd FM, Wilson CE, Sienty JV, Manoj P, Sridhar H, Wang L, Choudhury NJ, Offin M, Yu HA, Quintanal-Villalonga A, Berger MF, Ladanyi M, Donoghue MTA, Reis-Filho JS, Rudin CM. Chromothripsis-mediated small cell lung carcinoma. Cancer Discov 2024:747365. [PMID: 39185963 DOI: 10.1158/2159-8290.cd-24-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Small cell lung carcinoma (SCLC) is a highly aggressive malignancy that is typically associated with tobacco exposure and inactivation of RB1 and TP53 genes. Here we performed detailed clinicopathologic, genomic and transcriptomic profiling of an atypical subset of SCLC that lacked RB1 and TP53 co-inactivation and arose in never/light smokers. We found that most cases were associated with chromothripsis - massive, localized chromosome shattering - recurrently involving chromosomes 11 or 12, and resulting in extrachromosomal (ecDNA) amplification of CCND1 or co-amplification of CCND2/CDK4/MDM2, respectively. Uniquely, these clinically aggressive tumors exhibited genomic and pathologic links to pulmonary carcinoids, suggesting a previously uncharacterized mode of SCLC pathogenesis via transformation from lower-grade neuroendocrine tumors or their progenitors. Conversely, SCLC in never-smokers harboring inactivated RB1 and TP53 exhibited hallmarks of adenocarcinoma-to-SCLC derivation, supporting two distinct pathways of plasticity-mediated pathogenesis of SCLC in never-smokers.
Collapse
|
9
|
Schwartz CJ, Marra A, Selenica P, Gazzo A, Tan K, Ross D, Razavi P, Chandarlapaty S, Weigelt B, Reis-Filho JS, Brogi E, Pareja F, Wen HY. RB1 Genetic Alterations in Estrogen Receptor-Positive Breast Carcinomas: Correlation With Neuroendocrine Differentiation. Mod Pathol 2024; 37:100541. [PMID: 38897452 PMCID: PMC11344677 DOI: 10.1016/j.modpat.2024.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Genetic alterations in the retinoblastoma susceptibility gene (RB1) are present in up to 40% of triple-negative breast cancers (BCs) and frequent in tumors with neuroendocrine differentiation, including small cell neuroendocrine carcinoma. Data on RB1 genetic alterations in estrogen receptor (ER)-positive BCs are scarce. In this study, we sought to define the morphologic, immunohistochemical, and genetic features of ER-positive BCs harboring somatic alterations in RB1, with emphasis on neuroendocrine differentiation. ER-positive BCs with pathogenic RB1 genetic alterations were identified in <1% of cases (N = 55) from a cohort of 6026 BCs previously subjected to targeted next-generation sequencing, including 23 primary BCs (pBCs) and 32 recurrent/metastatic BCs (mBCs). In cases where loss of heterozygosity of the wild-type RB1 allele could be assessed (93%, 51/55), most pBCs (82%, 18/22) and mBCs (90%, 26/29) exhibited biallelic RB1 inactivation, primarily through loss-of-function mutation and loss of heterozygosity (98%, 43/44). Upon histologic review, a subset of RB1-altered tumors exhibited neuroendocrine morphology (13%, 7/55), which correlated with expression of neuroendocrine markers (39%, 9/23) in both pBCs (27%, 3/11) and mBCs (50%, 6/12). Loss of Rb protein expression was observed in BCs with biallelic RB1 loss only, with similar frequency in pBCs (82%, 9/11) and mBCs (75%, 9/12). All cases with neuroendocrine marker expression (n = 9) and/or neuroendocrine morphology (n = 7) harbored biallelic genetic inactivation of RB1 and exhibited Rb loss of expression. TP53 (53%, 29/55) and PIK3CA (45%, 25/55) were the most frequently comutated genes across the cohort. Overall, these findings suggest that ER-positive BCs with biallelic RB1 genetic alterations frequently exhibit Rb protein loss, which correlates with neuroendocrine differentiation in select BCs. This study provides insights into the molecular and phenotypic heterogeneity of BCs with RB1 genetic inactivation, underscoring the need for further research into the potential clinical implications associated with these tumors.
Collapse
|
10
|
Shah OS, Nasrazadani A, Foldi J, Atkinson JM, Kleer CG, McAuliffe PF, Johnston TJ, Stallaert W, da Silva EM, Selenica P, Dopeso H, Pareja F, Mandelker D, Weigelt B, Reis-Filho JS, Bhargava R, Lucas PC, Lee AV, Oesterreich S. Spatial molecular profiling of mixed invasive ductal and lobular breast cancers reveals heterogeneity in intrinsic molecular subtypes, oncogenic signatures, and mutations. Proc Natl Acad Sci U S A 2024; 121:e2322068121. [PMID: 39042692 PMCID: PMC11295029 DOI: 10.1073/pnas.2322068121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/13/2024] [Indexed: 07/25/2024] Open
Abstract
Mixed invasive ductal and lobular carcinoma (MDLC) is a rare histologic subtype of breast cancer displaying both E-cadherin positive ductal and E-cadherin negative lobular morphologies within the same tumor, posing challenges with regard to anticipated clinical management. It remains unclear whether these distinct morphologies also have distinct biology and risk of recurrence. Our spatially resolved transcriptomic, genomic, and single-cell profiling revealed clinically significant differences between ductal and lobular tumor regions including distinct intrinsic subtype heterogeneity - e.g., MDLC with triple-negative breast cancer (TNBC) or basal ductal and estrogen receptor positive (ER+) luminal lobular regions, distinct enrichment of cell cycle arrest/senescence and oncogenic (ER and MYC) signatures, genetic and epigenetic CDH1 inactivation in lobular but not ductal regions, and single-cell ductal and lobular subpopulations with unique oncogenic signatures further highlighting intraregional heterogeneity. Altogether, we demonstrated that the intratumoral morphological/histological heterogeneity within MDLC is underpinned by intrinsic subtype and oncogenic heterogeneity which may result in prognostic uncertainty and therapeutic dilemma.
Collapse
MESH Headings
- Humans
- Female
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/pathology
- Carcinoma, Lobular/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/metabolism
- Mutation
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/classification
- Cadherins/genetics
- Cadherins/metabolism
- Gene Expression Regulation, Neoplastic
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/pathology
- Triple Negative Breast Neoplasms/metabolism
- Transcriptome
- Gene Expression Profiling/methods
Collapse
|
11
|
Ma J, Shah R, Bell AC, McDermott N, Pei X, Selenica P, Haseltine J, Delsite R, Khan AJ, Lok BH, Ellis MJ, Aft RF, Setton J, Reis-Filho JS, Riaz N, Powell SN. Increased Synthetic Cytotoxicity of Combinatorial Chemoradiation Therapy in Homologous Recombination Deficient Tumors. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)02946-8. [PMID: 38997095 DOI: 10.1016/j.ijrobp.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
PURPOSE Homologous recombination deficient (HRD) tumors are exquisitely sensitive to platinum-based chemotherapy and when combined with radiation therapy (RT), leads to improved overall survival in multiple cancer types. Whether a subset of tumors with distinct molecular characteristics demonstrate increased benefit from cisplatin and RT (c-RT) is unclear. We hypothesized that HRD tumors, whether associated with BRCA mutations or genomic scars of HRD, exhibit exquisite sensitivity to c-RT, and that HRD may be a significant driver of c-RT benefit. METHODS AND MATERIALS Sensitivity to c-RT was examined using isogenic and sporadic breast cancer cell lines. HRD was assessed using 4 assays: RT-induced Rad51 foci, a DR-GFP reporter assay, a genomic scar score (large-scale state transitions [LST]), and clonogenic survival assays. Whole-genome sequencing of 4 breast tumors from a phase 2 clinical trial of neoadjuvant c-RT in triple-negative breast cancer was performed and HRD was defined using HRDetect. RESULTS BRCA1/2 deficient cell lines displayed functional HRD based on the Rad51 functional assay, with c-RT to RT or cisplatin interaction ratios (IR) of 1.11 and 26.84 for the BRCA1 isogenic pair at 2 μM cisplatin and 6 Gy, respectively. The highest LST lines demonstrated HRD and synthetic cytotoxicity to c-RT with IR at 2 Gy and cisplatin 20 μM of 7.50, and the lowest LST line with IR of 0.65. Of 4 evaluable patients in the phase 2 trial, one achieved a pathologic complete response with corresponding HRD based on multiple genomic scar scores including HRDetect and LST scores, compared with patients without a pathologic complete response. CONCLUSIONS HRD breast cancers, whether identified by BRCA1/2 mutation status, functional tests, or mutational signatures, appear to be significantly more sensitive to c-RT compared with isogenic controls or tumors without HRD mutational signatures. HRD tumors may be exquisitely sensitive to c-RT which warrants further clinical investigation to guide a precision oncology approach.
Collapse
|
12
|
Shah OS, Nasrazadani A, Foldi J, Atkinson JM, Kleer CG, McAuliffe PF, Johnston TJ, Stallaert W, da Silva EM, Selenica P, Dopeso H, Pareja F, Mandelker D, Weigelt B, Reis-Filho JS, Bhargava R, Lucas PC, Lee AV, Oesterreich S. Spatial molecular profiling of mixed invasive ductal-lobular breast cancers reveals heterogeneity in intrinsic molecular subtypes, oncogenic signatures, and mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.09.557013. [PMID: 38915645 PMCID: PMC11195088 DOI: 10.1101/2023.09.09.557013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Mixed invasive ductal and lobular carcinoma (MDLC) is a rare histologic subtype of breast cancer displaying both E-cadherin positive ductal and E-cadherin negative lobular morphologies within the same tumor, posing challenges with regard to anticipated clinical management. It remains unclear whether these distinct morphologies also have distinct biology and risk of recurrence. Our spatially-resolved transcriptomic, genomic, and single-cell profiling revealed clinically significant differences between ductal and lobular tumor regions including distinct intrinsic subtype heterogeneity (e.g., MDLC with TNBC/basal ductal and ER+/luminal lobular regions), distinct enrichment of senescence/dormancy and oncogenic (ER and MYC) signatures, genetic and epigenetic CDH1 inactivation in lobular, but not ductal regions, and single-cell ductal and lobular sub-populations with unique oncogenic signatures further highlighting intra-regional heterogeneity. Altogether, we demonstrated that the intra-tumoral morphological/histological heterogeneity within MDLC is underpinned by intrinsic subtype and oncogenic heterogeneity which may result in prognostic uncertainty and therapeutic dilemma. Significance MDLC displays both ductal and lobular tumor regions. Our multi-omic profiling approach revealed that these morphologically distinct tumor regions harbor distinct intrinsic subtypes and oncogenic features that may cause prognostic uncertainty and therapeutic dilemma. Thus histopathological/molecular profiling of individual tumor regions may guide clinical decision making and benefit patients with MDLC, particularly in the advanced setting where there is increased reliance on next generation sequencing.
Collapse
|
13
|
Feinberg J, Da Cruz Paula A, da Silva EM, Pareja F, Patel J, Zhu Y, Selenica P, Leitao MM, Abu-Rustum NR, Reis-Filho JS, Joehlin-Price A, Weigelt B. Adenoid cystic carcinoma of the Bartholin's gland is underpinned by MYB- and MYBL1- rearrangements. Gynecol Oncol 2024; 185:58-67. [PMID: 38368814 PMCID: PMC11179993 DOI: 10.1016/j.ygyno.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
OBJECTIVE Adenoid cystic carcinoma (AdCC) of the Bartholin's gland (AdCC-BG) is a very rare gynecologic vulvar malignancy. AdCC-BGs are slow-growing but locally aggressive and are associated with high recurrence rates. Here we sought to characterize the molecular underpinning of AdCC-BGs. METHODS AdCC-BGs (n = 6) were subjected to a combination of RNA-sequencing, targeted DNA-sequencing, reverse-transcription PCR, fluorescence in situ hybridization (FISH) and MYB immunohistochemistry (IHC). Clinicopathologic variables, somatic mutations, copy number alterations and chimeric transcripts were assessed. RESULTS All six AdCC-BGs were biphasic, composed of ductal and myoepithelial cells. Akin to salivary gland and breast AdCCs, three AdCC-BGs had the MYB::NFIB fusion gene with varying breakpoints, all of which were associated with MYB overexpression by IHC. Two AdCC-BGs were underpinned by MYBL1 fusion genes with different gene partners, including MYBL1::RAD51B and MYBL1::EWSR1 gene fusions, and showed MYB protein expression. Although the final AdCC-BG studied had MYB protein overexpression, no gene fusion was identified. AdCC-BGs harbored few additional somatic genetic alterations, and only few mutations in cancer-related genes were identified, including GNAQ, GNAS, KDM6A, AKT1 and BCL2, none of which were recurrent. Two AdCC-BGs, both with a MYB::NFIB fusion gene, developed metastatic disease. CONCLUSIONS AdCC-BGs constitute a convergent phenotype, whereby activation of MYB or MYBL1 can be driven by the MYB::NFIB fusion gene or MYBL1 rearrangements. Our observations further support the notion that AdCCs, irrespective of organ site, constitute a genotypic-phenotypic correlation. Assessment of MYB or MYBL1 rearrangements may be used as an ancillary marker for the diagnosis of AdCC-BGs.
Collapse
|
14
|
Verschuur AVD, Hackeng WM, Westerbeke F, Benhamida JK, Basturk O, Selenica P, Raicu GM, Molenaar IQ, van Santvoort HC, Daamen LA, Klimstra DS, Yachida S, Luchini C, Singhi AD, Geisenberger C, Brosens LAA. DNA Methylation Profiling Enables Accurate Classification of Nonductal Primary Pancreatic Neoplasms. Clin Gastroenterol Hepatol 2024; 22:1245-1254.e10. [PMID: 38382726 DOI: 10.1016/j.cgh.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND & AIMS Cytologic and histopathologic diagnosis of non-ductal pancreatic neoplasms can be challenging in daily clinical practice, whereas it is crucial for therapy and prognosis. The cancer methylome is successfully used as a diagnostic tool in other cancer entities. Here, we investigate if methylation profiling can improve the diagnostic work-up of pancreatic neoplasms. METHODS DNA methylation data were obtained for 301 primary tumors spanning 6 primary pancreatic neoplasms and 20 normal pancreas controls. Neural Network, Random Forest, and extreme gradient boosting machine learning models were trained to distinguish between tumor types. Methylation data of 29 nonpancreatic neoplasms (n = 3708) were used to develop an algorithm capable of detecting neoplasms of non-pancreatic origin. RESULTS After benchmarking 3 state-of-the-art machine learning models, the random forest model emerged as the best classifier with 96.9% accuracy. All classifications received a probability score reflecting the confidence of the prediction. Increasing the score threshold improved the random forest classifier performance up to 100% with 87% of samples with scores surpassing the cutoff. Using a logistic regression model, detection of nonpancreatic neoplasms achieved an area under the curve of >0.99. Analysis of biopsy specimens showed concordant classification with their paired resection sample. CONCLUSIONS Pancreatic neoplasms can be classified with high accuracy based on DNA methylation signatures. Additionally, non-pancreatic neoplasms are identified with near perfect precision. In summary, methylation profiling can serve as a valuable adjunct in the diagnosis of pancreatic neoplasms with minimal risk for misdiagnosis, even in the pre-operative setting.
Collapse
|
15
|
Gupta A, Gazzo A, Selenica P, Safonov A, Pareja F, da Silva EM, Brown DN, Zhu Y, Patel J, Blanco-Heredia J, Stefanovska B, Carpenter MA, Pei X, Frosina D, Jungbluth AA, Ladanyi M, Curigliano G, Weigelt B, Riaz N, Powell SN, Razavi P, Harris RS, Reis-Filho JS, Marra A, Chandarlapaty S. APOBEC3 mutagenesis drives therapy resistance in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591453. [PMID: 38746158 PMCID: PMC11092499 DOI: 10.1101/2024.04.29.591453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Acquired genetic alterations commonly drive resistance to endocrine and targeted therapies in metastatic breast cancer 1-7 , however the underlying processes engendering these diverse alterations are largely uncharacterized. To identify the mutational processes operant in breast cancer and their impact on clinical outcomes, we utilized a well-annotated cohort of 3,880 patient samples with paired tumor-normal sequencing data. The mutational signatures associated with apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) enzymes were highly prevalent and enriched in post-treatment compared to treatment-naïve hormone receptor-positive (HR+) cancers. APOBEC3 mutational signatures were independently associated with shorter progression-free survival on antiestrogen plus CDK4/6 inhibitor combination therapy in patients with HR+ metastatic breast cancer. Whole genome sequencing (WGS) of breast cancer models and selected paired primary-metastatic samples demonstrated that active APOBEC3 mutagenesis promoted resistance to both endocrine and targeted therapies through characteristic alterations such as RB1 loss-of-function mutations. Evidence of APOBEC3 activity in pre-treatment samples illustrated a pervasive role for this mutational process in breast cancer evolution. The study reveals APOBEC3 mutagenesis to be a frequent mediator of therapy resistance in breast cancer and highlights its potential as a biomarker and target for overcoming resistance.
Collapse
|
16
|
Pelster MS, Silverman IM, Schonhoft JD, Johnson A, Selenica P, Ulanet D, Rimkunas V, Reis-Filho JS. Post-therapy emergence of an NBN reversion mutation in a patient with pancreatic acinar cell carcinoma. NPJ Precis Oncol 2024; 8:82. [PMID: 38561473 PMCID: PMC10985087 DOI: 10.1038/s41698-024-00497-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/21/2023] [Indexed: 04/04/2024] Open
Abstract
Pancreatic acinar cell carcinoma (PACC) is a rare form of pancreatic cancer that commonly harbors targetable alterations, including activating fusions in the MAPK pathway and loss-of-function (LOF) alterations in DNA damage response/homologous recombination DNA repair-related genes. Here, we describe a patient with PACC harboring both somatic biallelic LOF of NBN and an activating NTRK1 fusion. Upon disease progression following 13 months of treatment with folinic acid, fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX), genomic analysis of a metastatic liver biopsy revealed the emergence of a novel reversion mutation restoring the reading frame of NBN. To our knowledge, genomic reversion of NBN has not been previously reported as a resistance mechanism in any tumor type. The patient was treated with, but did not respond to, targeted treatment with a selective NTRK inhibitor. This case highlights the complex but highly actionable genomic landscape of PACC and underlines the value of genomic profiling of rare tumor types such as PACC.
Collapse
|
17
|
Praiss AM, White C, Iasonos A, Selenica P, Zivanovic O, Chi DS, Abu-Rustum NR, Weigelt B, Aghajanian C, Girshman J, Park KJ, Grisham RN. Mesonephric and mesonephric-like adenocarcinomas of gynecologic origin: A single-center experience with molecular characterization, treatment, and oncologic outcomes. Gynecol Oncol 2024; 182:32-38. [PMID: 38246044 PMCID: PMC10960687 DOI: 10.1016/j.ygyno.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
OBJECTIVES Mesonephric (MA) and mesonephric-like (MLA) adenocarcinomas are rare cancers, and data on clinical behavior and response to therapy are limited. We sought to report molecular features, treatment, and outcomes of MA/MLA from a single institution. METHODS Patients with MA (cervix) or MLA (uterus, ovary, other) treated at Memorial Sloan Kettering Cancer Center (MSK) from 1/2008-12/2021 underwent pathologic re-review. For patients with initial treatment at MSK, progression-free survival (PFS1) was calculated as time from initial surgery to progression or death; second PFS (PFS2) was calculated as time from start of treatment for recurrence to subsequent progression or death. Overall survival (OS) was calculated for all patients. Images were retrospectively reviewed to determine treatment response. Somatic genetic alterations were assessed by clinical tumor-normal sequencing (MSK-Integrated Mutation Profiling of Actionable Cancer Targets [MSK-IMPACT]). RESULTS Of 81 patients with confirmed gynecologic MA/MLA, 36 received initial treatment at MSK. Sites of origin included cervix (n = 9, 11%), uterus (n = 42, 52%), ovary (n = 28, 35%), and other (n = 2, 2%). Of the 36 patients who received initial treatment at MSK, 20 (56%) recurred; median PFS1 was 33 months (95% CI: 17-not evaluable), median PFS2 was 8.3 months (95% CI: 6.9-14), and median OS was 87 months (95% CI: 58.2-not evaluable). Twenty-six of the 36 patients underwent MSK-IMPACT testing, and 25 (96%) harbored MAPK pathway alterations. CONCLUSION Most patients diagnosed with early-stage disease ultimately recurred. Somatic MAPK signaling pathway mutations appear to be highly prevalent in MA/MLA, and therapeutics that target this pathway are worthy of further study.
Collapse
|
18
|
Liu YL, Gordhandas S, Arora K, Rios-Doria E, Cadoo KA, Catchings A, Maio A, Kemel Y, Sheehan M, Salo-Mullen E, Zhou Q, Iasonos A, Carrot-Zhang J, Manning-Geist B, Sia TY, Selenica P, Vanderbilt C, Misyura M, Latham A, Bandlamudi C, Berger MF, Hamilton JG, Makker V, Abu-Rustum NR, Ellenson LH, Offit K, Mandelker DL, Stadler Z, Weigelt B, Aghajanian C, Brown C. Pathogenic germline variants in patients with endometrial cancer of diverse ancestry. Cancer 2024; 130:576-587. [PMID: 37886874 PMCID: PMC10922155 DOI: 10.1002/cncr.35071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Racial disparities in outcomes exist in endometrial cancer (EC). The contribution of ancestry-based variations in germline pathogenic variants (gPVs) is unknown. METHODS Germline assessment of ≥76 cancer predisposition genes was performed in patients with EC undergoing tumor-normal Memorial Sloan Kettering Cancer Center Integrated Mutation Profiling of Actionable Cancer Targets sequencing from January 1, 2015 through June 30, 2021. Self-reported race/ethnicity and Ashkenazi Jewish ancestry data classified patients into groups. Genetic ancestry was inferred from Memorial Sloan Kettering Cancer Center Integrated Mutation Profiling of Actionable Cancer Targets. Rates of gPV and genetic counseling were compared by ancestry. RESULTS Among 1625 patients with EC, 216 (13%) had gPVs; 15 had >1 gPV. Rates of gPV varied by self-reported ancestry (Ashkenazi Jewish, 40/202 [20%]; Asian, 15/124 [12%]; Black/African American (AA), 12/171 [7.0%]; Hispanic, 15/124 [12%]; non-Hispanic (NH) White, 129/927 [14%]; missing, 5/77 [6.5%]; p = .009], with similar findings by genetic ancestry (p < .001). We observed a lower likelihood of gPVs in patients of Black/AA (odds ratio [OR], 0.44; 95% CI, 0.22-0.81) and African (AFR) ancestry (OR, 0.42; 95% CI, 0.18-0.85) and a higher likelihood in patients of Ashkenazi Jewish genetic ancestry (OR, 1.62; 95% CI; 1.11-2.34) compared with patients of non-Hispanic White/European ancestry, even after adjustment for age and molecular subtype. Somatic landscape influenced gPVs with lower rates of microsatellite instability-high tumors in patients of Black/AA and AFR ancestry. Among those with newly identified gPVs (n = 114), 102 (89%) were seen for genetic counseling, with lowest rates among Black/AA (75%) and AFR patients (67%). CONCLUSIONS In those with EC, gPV and genetic counseling varied by ancestry, with lowest rates among Black/AA and AFR patients, potentially contributing to disparities in outcomes given implications for treatment and cancer prevention. PLAIN LANGUAGE SUMMARY Black women with endometrial cancer do worse than White women, and there are many reasons for this disparity. Certain genetic changes from birth (mutations) can increase the risk of cancer, and it is unknown if rates of these changes are different between different ancestry groups. Genetic mutations in 1625 diverse women with endometrial cancer were studied and the lowest rates of mutations and genetic counseling were found in Black and African ancestry women. This could affect their treatment options as well as their families and may make disparities worse.
Collapse
|
19
|
Dopeso H, Gazzo AM, Derakhshan F, Brown DN, Selenica P, Jalali S, Da Cruz Paula A, Marra A, da Silva EM, Basili T, Gusain L, Colon-Cartagena L, Bhaloo SI, Green H, Vanderbilt C, Oesterreich S, Grabenstetter A, Kuba MG, Ross D, Giri D, Wen HY, Zhang H, Brogi E, Weigelt B, Pareja F, Reis-Filho JS. Genomic and epigenomic basis of breast invasive lobular carcinomas lacking CDH1 genetic alterations. NPJ Precis Oncol 2024; 8:33. [PMID: 38347189 PMCID: PMC10861500 DOI: 10.1038/s41698-024-00508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/14/2023] [Indexed: 02/15/2024] Open
Abstract
CDH1 (E-cadherin) bi-allelic inactivation is the hallmark alteration of breast invasive lobular carcinoma (ILC), resulting in its discohesive phenotype. A subset of ILCs, however, lack CDH1 genetic/epigenetic inactivation, and their genetic underpinning is unknown. Through clinical targeted sequencing data reanalysis of 364 primary ILCs, we identified 25 ILCs lacking CDH1 bi-allelic genetic alterations. CDH1 promoter methylation was frequent (63%) in these cases. Targeted sequencing reanalysis revealed 3 ILCs harboring AXIN2 deleterious fusions (n = 2) or loss-of-function mutation (n = 1). Whole-genome sequencing of 3 cases lacking bi-allelic CDH1 genetic/epigenetic inactivation confirmed the AXIN2 mutation and no other cell-cell adhesion genetic alterations but revealed a new CTNND1 (p120) deleterious fusion. AXIN2 knock-out in MCF7 cells resulted in lobular-like features, including increased cellular migration and resistance to anoikis. Taken together, ILCs lacking CDH1 genetic/epigenetic alterations are driven by inactivating alterations in other cell adhesion genes (CTNND1 or AXIN2), endorsing a convergent phenotype in ILC.
Collapse
|
20
|
Sia TY, Yaari Z, Feiner R, Smith E, Da Cruz Paula A, Selenica P, Doddi S, Chi DS, Abu-Rustum NR, Levine DA, Weigelt B, Fleisher M, Ramanathan LV, Heller DA, Long Roche K. Uterine washings as a novel method for early detection of ovarian cancer: Trials and tribulations. Gynecol Oncol Rep 2024; 51:101330. [PMID: 38356691 PMCID: PMC10865230 DOI: 10.1016/j.gore.2024.101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Given the tubal origin of high-grade serous ovarian cancer (HGSC), we sought to investigate intrauterine lavage (IUL) as a novel method of biomarker detection. IUL and serum samples were collected from patients with HGSC or benign pathology. Although CA-125 and HE4 concentrations were significantly higher in IUL samples compared to serum, they were similar between IUL samples from patients with HGSC vs benign conditions. In contrast, CA-125 and HE4 serum concentrations differed between HGSC and benign pathology (P =.002 for both). IUL and tumor samples from patients with HGSC were subjected to targeted panel sequencing and droplet digital PCR (ddPCR). Tumor mutations were found in 75 % of matched IUL samples. Serum CA-125 and HE4 biomarker levels allowed for better differentiation of HGSC and benign pathology compared to IUL samples. We believe using IUL for early detection of HGSC requires optimization, and current strategies should focus on prevention until early detection strategies improve.
Collapse
|
21
|
Derakhshan F, Da Cruz Paula A, Selenica P, da Silva EM, Grabenstetter A, Jalali S, Gazzo AM, Dopeso H, Marra A, Brown DN, Ross DS, Mandelker D, Razavi P, Chandarlapaty S, Wen HY, Brogi E, Zhang H, Weigelt B, Pareja F, Reis-Filho JS. Nonlobular Invasive Breast Carcinomas with Biallelic Pathogenic CDH1 Somatic Alterations: A Histologic, Immunophenotypic, and Genomic Characterization. Mod Pathol 2024; 37:100375. [PMID: 37925055 DOI: 10.1016/j.modpat.2023.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/25/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
CDH1 encodes for E-cadherin, and its loss of function is the hallmark of invasive lobular carcinoma (ILC). Albeit vanishingly rare, biallelic CDH1 alterations may be found in nonlobular breast carcinomas (NL-BCs). We sought to determine the clinicopathologic characteristics and repertoire of genetic alterations of NL-BCs harboring CDH1 biallelic genetic alterations. Analysis of 5842 breast cancers (BCs) subjected to clinical tumor-normal sequencing with an FDA-cleared multigene panel was conducted to identify BCs with biallelic CDH1 pathogenic/likely pathogenic somatic mutations lacking lobular features. The genomic profiles of NL-BCs with CDH1 biallelic genetic alterations were compared with those of ILCs and invasive ductal carcinomas (IDCs), matched by clinicopathologic characteristics. Of the 896 CDH1-altered BCs, 889 samples were excluded based on the diagnosis of invasive mixed ductal/lobular carcinoma or ILC or the detection of monoallelic CDH1 alterations. Only 7 of the 5842 (0.11%) BCs harbored biallelic CDH1 alterations and lacked lobular features. Of these, 4/7 (57%) cases were ER-positive/HER2-negative, 1/7 (14%) was ER-positive/HER2-positive, and 2/7 (29%) were ER-negative/HER2-negative. In total, 5/7 (71%) were of Nottingham grade 2, and 2/7 (29%) were of grade 3. The NL-BCs with CDH1 biallelic genetic alterations included a mucinous carcinoma (n = 1), IDCs with focal nested growth (n = 2), IDC with solid papillary (n = 1) or apocrine (n = 2) features, and an IDC of no special type (NST; n = 1). E-cadherin expression, as detected by immunohistochemistry, was absent (3/5) or aberrant (discontinuous membranous/cytoplasmic/granular; 2/5). However, NL-BCs with CDH1 biallelic genetic alterations displayed recurrent genetic alterations, including TP53, PIK3CA (57%, 4/7; each), FGFR1, and NCOR1 (28%, 2/7, each) alterations. Compared with CDH1 wild-type IDC-NSTs, NL-BCs less frequently harbored GATA3 mutations (0% vs 47%, P = .03), but no significant differences were detected when compared with matched ILCs. Therefore, NL-BCs with CDH1 biallelic genetic alterations are vanishingly rare, predominantly comprise IDCs with special histologic features, and have genomic features akin to luminal B ER-positive BCs.
Collapse
|
22
|
Kahn RM, Selenica P, Boerner T, Roche KL, Xiao Y, Sia TY, Maio A, Kemel Y, Sheehan M, Salo-Mullen E, Breen KE, Zhou Q, Iasonos A, Grisham RN, O'Cearbhaill RE, Chi DS, Berger MF, Kundra R, Schultz N, Ellenson LH, Stadler ZK, Offit K, Mandelker D, Aghajanian C, Zamarin D, Sabbatini P, Weigelt B, Liu YL. Pathogenic germline variants in non-BRCA1/2 homologous recombination genes in ovarian cancer: Analysis of tumor phenotype and survival. Gynecol Oncol 2024; 180:35-43. [PMID: 38041901 PMCID: PMC10922242 DOI: 10.1016/j.ygyno.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVE To define molecular features of ovarian cancer (OC) with germline pathogenic variants (PVs) in non-BRCA homologous recombination (HR) genes and analyze survival compared to BRCA1/2 and wildtype (WT) OC. METHODS We included patients with OC undergoing tumor-normal sequencing (MSK-IMPACT) from 07/01/2015-12/31/2020, including germline assessment of BRCA1/2 and other HR genes ATM, BARD1, BRIP1, FANCA, FANCC, NBN, PALB2, RAD50, RAD51B, RAD51C, and RAD51D. Biallelic inactivation was assessed within tumors. Progression-free (PFS) and overall survival (OS) were calculated from pathologic diagnosis using the Kaplan-Meier method with left truncation. Whole-exome sequencing (WES) was performed in a subset. RESULTS Of 882 patients with OC, 56 (6.3%) had germline PVs in non-BRCA HR genes; 95 (11%) had BRCA1-associated OC (58 germline, 37 somatic); and 59 (6.7%) had BRCA2-associated OC (40 germline, 19 somatic). High rates of biallelic alterations were observed among germline PVs in BRIP1 (11/13), PALB2 (3/4), RAD51B (3/4), RAD51C (3/4), and RAD51D (8/10). In cases with WES (27/35), there was higher tumor mutational burden (TMB; median 2.5 [1.1-6.0] vs. 1.2 mut/Mb [0.6-2.6]) and enrichment of HR-deficient (HRD) mutational signatures in tumors associated with germline PALB2 and RAD51B/C/D compared with BRIP1 PVs (p < 0.01). Other features of HRD, including telomeric-allelic imbalance (TAI) and large-scale state transitions (LSTs), were similar. Although there was heterogeneity in PFS/OS by gene group, only BRCA1/2-associated OC had improved survival compared to WT OC (p < 0.01). CONCLUSIONS OCs associated with germline PVs in non-BRCA HR genes represent a heterogenous group, with PALB2 and RAD51B/C/D associated with an HRD phenotype.
Collapse
|
23
|
Caswell DR, Gui P, Mayekar MK, Law EK, Pich O, Bailey C, Boumelha J, Kerr DL, Blakely CM, Manabe T, Martinez-Ruiz C, Bakker B, De Dios Palomino Villcas J, I Vokes N, Dietzen M, Angelova M, Gini B, Tamaki W, Allegakoen P, Wu W, Humpton TJ, Hill W, Tomaschko M, Lu WT, Haderk F, Al Bakir M, Nagano A, Gimeno-Valiente F, de Carné Trécesson S, Vendramin R, Barbè V, Mugabo M, Weeden CE, Rowan A, McCoach CE, Almeida B, Green M, Gomez C, Nanjo S, Barbosa D, Moore C, Przewrocka J, Black JRM, Grönroos E, Suarez-Bonnet A, Priestnall SL, Zverev C, Lighterness S, Cormack J, Olivas V, Cech L, Andrews T, Rule B, Jiao Y, Zhang X, Ashford P, Durfee C, Venkatesan S, Temiz NA, Tan L, Larson LK, Argyris PP, Brown WL, Yu EA, Rotow JK, Guha U, Roper N, Yu J, Vogel RI, Thomas NJ, Marra A, Selenica P, Yu H, Bakhoum SF, Chew SK, Reis-Filho JS, Jamal-Hanjani M, Vousden KH, McGranahan N, Van Allen EM, Kanu N, Harris RS, Downward J, Bivona TG, Swanton C. The role of APOBEC3B in lung tumor evolution and targeted cancer therapy resistance. Nat Genet 2024; 56:60-73. [PMID: 38049664 PMCID: PMC10786726 DOI: 10.1038/s41588-023-01592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/25/2023] [Indexed: 12/06/2023]
Abstract
In this study, the impact of the apolipoprotein B mRNA-editing catalytic subunit-like (APOBEC) enzyme APOBEC3B (A3B) on epidermal growth factor receptor (EGFR)-driven lung cancer was assessed. A3B expression in EGFR mutant (EGFRmut) non-small-cell lung cancer (NSCLC) mouse models constrained tumorigenesis, while A3B expression in tumors treated with EGFR-targeted cancer therapy was associated with treatment resistance. Analyses of human NSCLC models treated with EGFR-targeted therapy showed upregulation of A3B and revealed therapy-induced activation of nuclear factor kappa B (NF-κB) as an inducer of A3B expression. Significantly reduced viability was observed with A3B deficiency, and A3B was required for the enrichment of APOBEC mutation signatures, in targeted therapy-treated human NSCLC preclinical models. Upregulation of A3B was confirmed in patients with NSCLC treated with EGFR-targeted therapy. This study uncovers the multifaceted roles of A3B in NSCLC and identifies A3B as a potential target for more durable responses to targeted cancer therapy.
Collapse
|
24
|
Vahdatinia M, Derakhshan F, Da Cruz Paula A, Dopeso H, Marra A, Gazzo AM, Brown D, Selenica P, Ross DS, Razavi P, Zhang H, Weigelt B, Wen HY, Brogi E, Reis-Filho JS, Pareja F. KIT genetic alterations in breast cancer. J Clin Pathol 2023; 77:40-45. [PMID: 36323507 PMCID: PMC10151428 DOI: 10.1136/jcp-2022-208611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 01/19/2023]
Abstract
AIMS Activating somatic mutations or gene amplification of KIT result in constitutive activation of its receptor tyrosine kinase, which is targetable in various solid tumours. Here, we sought to investigate the presence of KIT genetic alterations in breast cancer (BC) and characterise the histological and genomic features of these tumours. METHODS A retrospective analysis of 5,575 BCs previously subjected to targeted sequencing using the FDA-authorised Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Targets (MSK-IMPACT) assay was performed to identify BCs with KIT alterations. A histological assessment of KIT-altered BCs was conducted, and their repertoire of genetic alterations was compared with that of BCs lacking KIT genetic alterations, matched for age, histological type, oestrogen receptor/HER2 status and sample type. RESULTS We identified 18 BCs (0.32%), including 9 primary and 9 metastatic BCs, with oncogenic/likely oncogenic genetic alterations affecting KIT, including activating somatic mutations (n=4) or gene amplification (n=14). All KIT-altered BCs were of high histological grade, although no distinctive histological features were observed. When compared with BCs lacking KIT genetic alterations, no distinctive genetic features were identified. In two metastatic KIT-altered BCs in which the matched primary BC had also been analysed by MSK-IMPACT, the KIT mutations were found to be restricted to the metastatic samples, suggesting that they were late events in the evolution of these cancers. CONCLUSIONS KIT genetic alterations are vanishingly rare in BC. KIT-altered BCs are of high grade but lack distinctive histological features. Genetic alterations in KIT might be late events in the evolution and/or progression of BC.
Collapse
|
25
|
Praiss AM, Marra A, Zhou Q, Rios-Doria E, Momeni-Boroujeni A, Iasonos A, Selenica P, Brown DN, Aghajanian C, Abu-Rustum NR, Ellenson LH, Weigelt B. TERT promoter mutations and gene amplification in endometrial cancer. Gynecol Oncol 2023; 179:16-23. [PMID: 37890416 PMCID: PMC10841990 DOI: 10.1016/j.ygyno.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/06/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
OBJECTIVE To assess the clinicopathologic, molecular profiles, and survival outcomes of patients with endometrial carcinomas (ECs) harboring telomerase reverse transcriptase (TERT) hotspot mutations or gene amplification. METHODS ECs harboring somatic TERT promoter hotspot mutations or gene amplification (TERT-altered) were identified from 1944 ECs that underwent clinical tumor-normal sequencing from 08/2016-12/2021. Clinicopathologic variables, somatic mutation profiles, and survival outcomes of TERT-alt and TERT-wild-type EC were assessed. RESULTS We identified 66 TERT-altered ECs (43 TERT-mutated and 23 TERT-amplified), representing 3% of the unselected ECs across histologic subtypes. Most TERT-altered ECs were of copy number (CN)-high/TP53abn molecular subtype (n = 40, 60%), followed by microsatellite-unstable (MSI-H) or CN-low/no specific molecular profile (NSMP)(n = 13, 20% each). TERT-amplified and TERT-mutated ECs were molecularly distinct, with TERT-amplified ECs being more genomically instable and more frequently harboring TP53 and PPP2R1A alterations (q < 0.1). Compared to TERT-wild-type ECs, TERT-altered ECs were more commonly of CN-H/TP53abn molecular subtype (31% vs 57%, p = 0.001), serous histology (10% vs 26%, p = 0.004), and were significantly enriched for TP53, CDKN2A/B, and DROSHA somatic genetic alterations (q < 0.1). Median progression-free survival was 18.7 months (95% CI 11.8-not estimable [NE]) for patients with TERT-altered EC and 80.9 months (65.8-NE) for patients with TERT-wild-type EC (HR 0.33, 95% CI 0.21-0.51, p < 0.001). Similarly, median overall survival was 46.7 months (95% CI 30-NE) for TERT-altered EC patients and not reached for TERT-wild-type EC patients (HR 0.24, 95% CI 0.13-0.44, p < 0.001). CONCLUSION TERT-altered ECs, although rare, are enriched for CN-high/TP53abn tumors, TP53, CDKN2A/B and DROSHA somatic mutations, and independently predict worse survival outcomes.
Collapse
|