1
|
Du JS, Cherqui C, Ueltschi TW, Wahl CB, Bourgeois M, Van Duyne RP, Schatz GC, Dravid VP, Mirkin CA. Discovering polyelemental nanostructures with redistributed plasmonic modes through combinatorial synthesis. SCIENCE ADVANCES 2023; 9:eadj6129. [PMID: 38134271 PMCID: PMC10745681 DOI: 10.1126/sciadv.adj6129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Coupling plasmonic and functional materials provides a promising way to generate multifunctional structures. However, finding plasmonic nanomaterials and elucidating the roles of various geometric and dielectric configurations are tedious. This work describes a combinatorial approach to rapidly exploring and identifying plasmonic heteronanomaterials. Symmetry-broken noble/non-noble metal particle heterojunctions (~100 nanometers) were synthesized on multiwindow silicon chips with silicon nitride membranes. The metal types and the interface locations were controlled to establish a nanoparticle library, where the particle morphology and scattering color can be rapidly screened. By correlating structural data with near- and far-field single-particle spectroscopy data, we found that certain low-energy plasmonic modes could be supported across the heterointerface, while others are localized. Furthermore, we found a series of triangular heteronanoplates stabilized by epitaxial Moiré superlattices, which show strong plasmonic responses despite largely comprising a lossy metal (~70 atomic %). These architectures can become the basis for multifunctional and cost-effective plasmonic devices.
Collapse
|
2
|
Brasiliense V, Park JE, Berns EJ, Van Duyne RP, Mrksich M. Surface potential modulation as a tool for mitigating challenges in SERS-based microneedle sensors. Sci Rep 2022; 12:15929. [PMID: 36151248 PMCID: PMC9508330 DOI: 10.1038/s41598-022-19942-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/06/2022] [Indexed: 11/08/2022] Open
Abstract
Raman spectroscopic-based biosensing strategies are often complicated by low signal and the presence of multiple chemical species. While surface-enhanced Raman spectroscopy (SERS) nanostructured platforms are able to deliver high quality signals by focusing the electromagnetic field into a tight plasmonic hot-spot, it is not a generally applicable strategy as it often depends on the specific adsorption of the analyte of interest onto the SERS platform. This paper describes a strategy to address this challenge by using surface potential as a physical binding agent in the context of microneedle sensors. We show that the potential-dependent adsorption of different chemical species allows scrutinization of the contributions of different chemical species to the final spectrum, and that the ability to cyclically adsorb and desorb molecules from the surface enables efficient application of multivariate analysis methods. We demonstrate how the strategy can be used to mitigate potentially confounding phenomena, such as surface reactions, competitive adsorption and the presence of molecules with similar structures. In addition, this decomposition helps evaluate criteria to maximize the signal of one molecule with respect to others, offering new opportunities to enhance the measurement of analytes in the presence of interferants.
Collapse
|
3
|
Franklin D, Ueltschi T, Carlini A, Yao S, Reeder J, Richards B, Van Duyne RP, Rogers JA. Bioresorbable Microdroplet Lasers as Injectable Systems for Transient Thermal Sensing and Modulation. ACS NANO 2021; 15:2327-2339. [PMID: 33439017 DOI: 10.1021/acsnano.0c10234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Minimally invasive methods for temperature sensing and thermal modulation in living tissues have extensive applications in biological research and clinical care. As alternatives to bioelectronic devices for this purpose, functional nanomaterials that self-assemble into optically active microstructures offer important features in remote sensing, injectability, and compact size. This paper introduces a transient, or bioresorbable, system based on injectable slurries of well-defined microparticles that serve as photopumped lasers with temperature-sensitive emission wavelengths (>4-300 nm °C-1). The resulting platforms can act as tissue-embedded thermal sensors and, simultaneously, as distributed vehicles for thermal modulation. Each particle consists of a spherical resonator formed by self-organized cholesteric liquid crystal molecules doped with fluorophores as gain media, encapsulated in thin shells of soft hydrogels that offer adjustable rates of bioresorption through chemical modification. Detailed studies highlight fundamental aspects of these systems including particle sensitivity, lasing threshold, and size. Additional experiments explore functionality as photothermal agents with active temperature feedback (ΔT = 1 °C) and potential routes in remote evaluation of thermal transport properties. Cytotoxicity evaluations support their biocompatibility, and ex vivo demonstrations in Casper fish illustrate their ability to measure temperature within biological tissues with resolution of 0.01 °C. This collective set of results demonstrates a range of multifunctional capabilities in thermal sensing and modulation.
Collapse
|
4
|
Qi Y, Brasiliense V, Ueltschi TW, Park JE, Wasielewski MR, Schatz GC, Van Duyne RP. Plasmon-Driven Chemistry in Ferri-/Ferrocyanide Gold Nanoparticle Oligomers: A SERS Study. J Am Chem Soc 2020; 142:13120-13129. [DOI: 10.1021/jacs.0c05031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Zhu J, Lin H, Kim Y, Yang M, Skakuj K, Du JS, Lee B, Schatz GC, Van Duyne RP, Mirkin CA. Light-Responsive Colloidal Crystals Engineered with DNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906600. [PMID: 31944429 PMCID: PMC7061716 DOI: 10.1002/adma.201906600] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/10/2019] [Indexed: 05/29/2023]
Abstract
A novel method for synthesizing and photopatterning colloidal crystals via light-responsive DNA is developed. These crystals are composed of 10-30 nm gold nanoparticles interconnected with azobenzene-modified DNA strands. The photoisomerization of the azobenzene molecules leads to reversible assembly and disassembly of the base-centered cubic (bcc) and face-centered cubic (fcc) crystalline nanoparticle lattices. In addition, UV light is used as a trigger to selectively remove nanoparticles on centimeter-scale thin films of colloidal crystals, allowing them to be photopatterned into preconceived shapes. The design of the azobenzene-modified linking DNA is critical and involves complementary strands, with azobenzene moieties deliberately staggered between the bases that define the complementary code. This results in a tunable wavelength-dependent melting temperature (Tm ) window (4.5-15 °C) and one suitable for affecting the desired transformations. In addition to the isomeric state of the azobenzene groups, the size of the particles can be used to modulate the Tm window over which these structures are light-responsive.
Collapse
|
6
|
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM. Present and Future of Surface-Enhanced Raman Scattering. ACS NANO 2020; 14:28-117. [PMID: 31478375 PMCID: PMC6990571 DOI: 10.1021/acsnano.9b04224] [Citation(s) in RCA: 1441] [Impact Index Per Article: 360.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/03/2019] [Indexed: 04/14/2023]
Abstract
The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.
Collapse
|
7
|
Yang M, Mattei MS, Cherqui CR, Chen X, Van Duyne RP, Schatz GC. Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon. NANO LETTERS 2019; 19:7309-7316. [PMID: 31518135 DOI: 10.1021/acs.nanolett.9b02925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The plasmonic properties of tip-substrate composite systems are of vital importance to near-field optical spectroscopy, in particular tip-enhanced Raman spectroscopy (TERS), which enables operando studies of nanoscale chemistry at a single molecule level. The nanocavities formed in the tip-substrate junction also offer a highly tunable platform for studying field-matter interactions at the nanoscale. While the coupled nanoparticle dimer model offers a correct qualitative description of gap-mode plasmon effects, it ignores the full spectrum of multipolar tip plasmon modes and their interaction with surface plasmon polariton (SPP) excitation in the substrate. Herein, we perform the first tip-enhanced Raman excitation spectroscopy (TERES) experiment and use the results, both in ambient and aqueous media, in combination with electrodynamics simulations, to explore the plasmonic response of a Au tip-Au substrate composite system. The gap-mode plasmon features a wide spectral window corresponding to a host of tip plasmon modes interacting with the plasmonic substrate. Simulations of the electric field confinement demonstrate that optimal spatial resolution is achieved when a hybrid plasmon mode that combines a multipolar tip plasmon and a substrate SPP is excited. Nevertheless, a wide spectral window over 1000 nm is available for exciting the tip plasmon with high spatial resolution, which enables the simultaneous resonant detection of different molecular species. This window is robust as a function of tip-substrate distance and tip radius of curvature, indicating that many choices of tips will work, but it is restricted to wavelengths longer than ∼600 nm for the Au tip-Au substrate combination. Other combinations, such as Ag tip-Ag substrate, can access wavelengths as low as 350 nm.
Collapse
|
8
|
Park JE, Yonet-Tanyeri N, Vander Ende E, Henry AI, Perez White BE, Mrksich M, Van Duyne RP. Plasmonic Microneedle Arrays for in Situ Sensing with Surface-Enhanced Raman Spectroscopy (SERS). NANO LETTERS 2019; 19:6862-6868. [PMID: 31545611 PMCID: PMC7398609 DOI: 10.1021/acs.nanolett.9b02070] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a sensitive, chemically specific, and short-time response probing method with significant potential in biomedical sensing. This paper reports the integration of SERS with microneedle arrays as a minimally invasive platform for chemical sensing, with a particular view toward sensing in interstitial fluid (ISF). Microneedle arrays were fabricated from a commercial polymeric adhesive and coated with plasmonically active gold nanorods that were functionalized with the pH-sensitive molecule 4-mercaptobenzoic acid. This sensor can quantitate pH over a range of 5 to 9 and can detect pH levels in an agar gel skin phantom and in human skin in situ. The sensor array is stable and mechanically robust in that it exhibits no loss in SERS activity after multiple punches through an agar gel skin phantom and human skin or after a month-long incubation in phosphate-buffered saline. This work is the first to integrate SERS-active nanoparticles with polymeric microneedle arrays and to demonstrate in situ sensing with this platform.
Collapse
|
9
|
Chen Z, Jiang S, Kang G, Nguyen D, Schatz GC, Van Duyne RP. Operando Characterization of Iron Phthalocyanine Deactivation during Oxygen Reduction Reaction Using Electrochemical Tip-Enhanced Raman Spectroscopy. J Am Chem Soc 2019; 141:15684-15692. [DOI: 10.1021/jacs.9b07979] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Bae YJ, Christensen JA, Kang G, Zhou J, Young RM, Wu YL, Van Duyne RP, Schatz GC, Wasielewski MR. Substituent effects on energetics and crystal morphology modulate singlet fission in 9,10-bis(phenylethynyl)anthracenes. J Chem Phys 2019; 151:044501. [PMID: 31370542 DOI: 10.1063/1.5110411] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Singlet fission (SF) converts a singlet exciton into two triplet excitons in two or more electronically coupled organic chromophores, which may then be used to increase solar cell efficiency. Many known SF chromophores are unsuitable for device applications due to chemical instability or low triplet state energies. The results described here show that efficient SF occurs in derivatives of 9,10-bis(phenylethynyl)anthracene (BPEA), which is a highly robust and tunable chromophore. Fluoro and methoxy substituents at the 4- and 4'-positions of the BPEA phenyl groups control the intermolecular packing in the crystal structure, which alters the interchromophore electronic coupling, while also changing the SF energetics. The lowest excited singlet state (S1) energy of 4,4'-difluoro-BPEA is higher than that of BPEA so that the increased thermodynamic favorability of SF results in a (16 ± 2 ps)-1 SF rate and a 180% ± 16% triplet yield, which is about an order of magnitude faster than BPEA with a comparable triplet yield. By contrast, 4-fluoro-4'-methoxy-BPEA and 4,4'-dimethoxy-BPEA have slower SF rates, (90 ± 20 ps)-1 and (120 ± 10 ps)-1, and lower triplet yields, (110 ± 4)% and (168 ± 7)%, respectively, than 4,4'-difluoro-BPEA. These differences are attributed to changes in the crystal structure controlling interchromophore electronic coupling as well as SF energetics in these polycrystalline solids.
Collapse
|
11
|
Nguyen D, Kang G, Hersam MC, Schatz GC, Van Duyne RP. Molecular-Scale Mechanistic Investigation of Oxygen Dissociation and Adsorption on Metal Surface-Supported Cobalt Phthalocyanine. J Phys Chem Lett 2019; 10:3966-3971. [PMID: 31251623 DOI: 10.1021/acs.jpclett.9b00926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ultrahigh vacuum scanning tunneling microscopy and density functional theory are used to investigate adsorption of oxygen on cobalt phthalocyanine (CoPc), a promising nonprecious metal oxygen reduction catalyst, supported on Ag(111), Cu(111), and Au(111) surfaces at the molecular scale. Four distinct molecular and atomic oxygen adsorption configurations are observed for CoPc supported on Ag(111) surfaces, which are assigned as O2/CoPc/Ag(111), O/CoPc/Ag(111), CoPc/(O)2/Ag(111), and (O)2/CoPc/Ag(111). In contrast, no oxygen adsorption is observed for CoPc supported on Cu(111) and Au(111) surfaces. The results show that for Ag(111), atomic O that is predominantly catalytically produced from the dissociation of molecular O2 at metal surface step edges is responsible for the observed adsorption configurations. However, Cu(111) binds atomic O too strongly, and Au(111) does not produce atomic O. These results show the active role of the supporting metal surface in facilitating oxygen adsorption on CoPc.
Collapse
|
12
|
Vander Ende E, Bourgeois MR, Henry AI, Chávez JL, Krabacher R, Schatz GC, Van Duyne RP. Physicochemical Trapping of Neurotransmitters in Polymer-Mediated Gold Nanoparticle Aggregates for Surface-Enhanced Raman Spectroscopy. Anal Chem 2019; 91:9554-9562. [DOI: 10.1021/acs.analchem.9b00773] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Kang G, Yang M, Mattei MS, Schatz GC, Van Duyne RP. In Situ Nanoscale Redox Mapping Using Tip-Enhanced Raman Spectroscopy. NANO LETTERS 2019; 19:2106-2113. [PMID: 30763517 DOI: 10.1021/acs.nanolett.9b00313] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Electrochemical atomic force microscopy tip-enhanced Raman spectroscopy (EC-AFM-TERS) was used for the first time to spatially resolve local heterogeneity in redox behavior on an electrode surface in situ and at the nanoscale. A structurally well-defined Au(111) nanoplate located on a polycrystalline ITO substrate was studied to examine nanoscale redox contrast across the two electrode materials. By monitoring the TERS intensity of adsorbed Nile Blue (NB) molecules on the electrode surface, TERS maps were acquired with different applied potentials. The EC-TERS maps showed a spatial contrast in TERS intensity between Au and ITO. TERS line scans near the edge of a 20 nm-thick Au nanoplate demonstrated a spatial resolution of 81 nm under an applied potential of -0.1 V vs Ag/AgCl. The intensities from the TERS maps at various applied potentials followed Nernstian behavior, and a formal potential ( E0') map was constructed by fitting the TERS intensity at each pixel to the Nernst equation. Clear nanoscale spatial contrast between the Au and ITO regions was observed in the E0' map. In addition, statistical analysis of the E0' map identified a statistically significant 4 mV difference in E0' on Au vs ITO. Electrochemical heterogeneity was also evident in the E0' distribution, as a bimodal distribution was observed in E0' on polycrystalline ITO, but not on gold. A direct comparison between an AFM friction image and the E0' map resolved the electrochemical behavior of individual ITO grains with a spatial resolution of ∼40 nm. The variation in E0' was attributed to different local surface charges on the ITO grains. Such site-specific electrochemical information with nanoscale spatial and few mV voltage resolutions is not available using ensemble spectroelectrochemical methods. We expect that in situ redox mapping at the nanoscale using EC-AFM-TERS will have a crucial impact on understanding the role of nanoscale surface features in applications such as electrocatalysis.
Collapse
|
14
|
Henry AI, Ueltschi TW, McAnally MO, Van Duyne RP. Spiers Memorial Lecture. Surface-enhanced Raman spectroscopy: from single particle/molecule spectroscopy to ångstrom-scale spatial resolution and femtosecond time resolution. Faraday Discuss 2019; 205:9-30. [PMID: 28906524 DOI: 10.1039/c7fd00181a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Four decades on, surface-enhanced Raman spectroscopy (SERS) continues to be a vibrant field of research that is growing (approximately) exponentially in scope and applicability while pushing at the ultimate limits of sensitivity, spatial resolution, and time resolution. This introductory paper discusses some aspects related to all four of the themes for this Faraday Discussion. First, the wavelength-scanned SERS excitation spectroscopy (WS-SERES) of single nanosphere oligomers (viz., dimers, trimers, etc.), the distance dependence of SERS, the magnitude of the chemical enhancement mechanism, and the progress toward developing surface-enhanced femtosecond stimulated Raman spectroscopy (SE-FSRS) are discussed. Second, our efforts to develop a continuous, minimally invasive, in vivo glucose sensor based on SERS are highlighted. Third, some aspects of our recent work in single molecule SERS and the translation of that effort to ångstrom-scale spatial resolution in ultrahigh vacuum tip-enhanced Raman spectroscopy (UHV-TERS) and single molecule electrochemistry using electrochemical (EC)-TERS will be presented. Finally, we provide an overview of analytical SERS with our viewpoints on SERS substrates, approaches to address the analyte generality problem (i.e. target molecules that do not spontaneously adsorb and/or have Raman cross sections <10-29 cm2 sr-1), SERS for catalysis, and deep UV-SERS.
Collapse
|
15
|
Osterrieth JWM, Wright D, Noh H, Kung CW, Vulpe D, Li A, Park JE, Van Duyne RP, Moghadam PZ, Baumberg JJ, Farha OK, Fairen-Jimenez D. Core–Shell Gold Nanorod@Zirconium-Based Metal–Organic Framework Composites as in Situ Size-Selective Raman Probes. J Am Chem Soc 2019; 141:3893-3900. [DOI: 10.1021/jacs.8b11300] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Hackler RA, Kang G, Schatz GC, Stair PC, Van Duyne RP. Analysis of TiO2 Atomic Layer Deposition Surface Chemistry and Evidence of Propene Oligomerization Using Surface-Enhanced Raman Spectroscopy. J Am Chem Soc 2018; 141:414-422. [DOI: 10.1021/jacs.8b10689] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Bae YJ, Kang G, Malliakas CD, Nelson JN, Zhou J, Young RM, Wu YL, Van Duyne RP, Schatz GC, Wasielewski MR. Singlet Fission in 9,10-Bis(phenylethynyl)anthracene Thin Films. J Am Chem Soc 2018; 140:15140-15144. [DOI: 10.1021/jacs.8b07498] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Klein RA, Walsh JPS, Clarke SM, Guo Y, Bi W, Fabbris G, Meng Y, Haskel D, Alp EE, Van Duyne RP, Jacobsen SD, Freedman DE. Impact of Pressure on Magnetic Order in Jarosite. J Am Chem Soc 2018; 140:12001-12009. [PMID: 30063832 DOI: 10.1021/jacs.8b05601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Jarosite, a mineral with a kagomé lattice, displays magnetic frustration yet orders magnetically below 65 K. As magnetic frustration can engender exotic physical properties, understanding the complex magnetism of jarosite comprises a multidecade interdisciplinary challenge. Unraveling the nature of the disparate magnetic coupling interactions that lead to magnetic order in jarosite remains an open question. Specifically, there is no observed trend in the interlayer spacing with magnetic order. Similarly, the relationship between metal-ligand bond distance and magnetic order remains uninvestigated. Here, we use applied pressure to smoothly vary jarosite's structure without manipulating the chemical composition, enabling a chemically invariant structure-function study. Using single-crystal and powder X-ray diffraction, we show that high applied pressures alter both the interlayer spacing and the metal-ligand bond distances. By harnessing a suite of magnetic techniques under pressure, including SQUID-based magnetometry, time-resolved synchrotron Mössbauer spectroscopy, and X-ray magnetic circular dichroism, we construct the magnetic phase diagram for jarosite up to 40 GPa. Notably, we demonstrate that the magnetic ordering temperature increases dramatically to 240 K at the highest pressures. Additionally, we conduct X-ray emission spectroscopy, Mössbauer spectroscopy, and UV-visible absorption spectroscopy experiments to comprehensively map the magnetic and electronic structures of jarosite at high pressure. We use these maps to construct chemically pure magnetostructural correlations which fully explain the nature and role of the disparate magnetic coupling interactions in jarosite.
Collapse
|
19
|
Sprague-Klein EA, Negru B, Madison LR, Coste SC, Rugg BK, Felts AM, McAnally MO, Banik M, Apkarian VA, Wasielewski MR, Ratner MA, Seideman T, Schatz GC, Van Duyne RP. Photoinduced Plasmon-Driven Chemistry in trans-1,2-Bis(4-pyridyl)ethylene Gold Nanosphere Oligomers. J Am Chem Soc 2018; 140:10583-10592. [DOI: 10.1021/jacs.8b06347] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Goubert G, Chen X, Jiang S, Van Duyne RP. In Situ Electrochemical Tip-Enhanced Raman Spectroscopy with a Chemically Modified Tip. J Phys Chem Lett 2018; 9:3825-3828. [PMID: 29945445 DOI: 10.1021/acs.jpclett.8b01635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chemically modified tips in scanning tunneling microscopy (STM) and atomic force microscopy (AFM) have been used to improve the imaging resolution or provide richer chemical information, mostly in ultrahigh vacuum (UHV) environments. Tip-enhanced Raman spectroscopy (TERS) is a nanoscale spectroscopic technique that already provides chemical information and can provide subnanometer spatial resolution. Chemical modification of TERS tips has mainly been focused on increasing their lifetimes for ambient and in situ experiments. Under UHV conditions, chemical functionalization has recently been carried out to increase the amount of chemical information provided by TERS. However, this strategy has not yet been extended to in situ electrochemical (EC)-TERS studies. The independent control of the tip and sample potentials offered by EC-STM allows us to prove the in situ functionalization of a tip in EC-STM-TERS. Additionally, the Raman response of chemically modified TERS tips can be switched on and off at will, which makes EC-STM-TERS an ideal platform for the development of in situ chemical probes on the nanoscale.
Collapse
|
21
|
Nguyen D, Kang G, Chiang N, Chen X, Seideman T, Hersam MC, Schatz GC, Van Duyne RP. Probing Molecular-Scale Catalytic Interactions between Oxygen and Cobalt Phthalocyanine Using Tip-Enhanced Raman Spectroscopy. J Am Chem Soc 2018; 140:5948-5954. [DOI: 10.1021/jacs.8b01154] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Chen BR, Crosby LA, George C, Kennedy RM, Schweitzer NM, Wen J, Van Duyne RP, Stair PC, Poeppelmeier KR, Marks LD, Bedzyk MJ. Morphology and CO Oxidation Activity of Pd Nanoparticles on SrTiO3 Nanopolyhedra. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04173] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Chiang N, Jiang N, Madison LR, Pozzi EA, Wasielewski MR, Ratner MA, Hersam MC, Seideman T, Schatz GC, Van Duyne RP. Probing Intermolecular Vibrational Symmetry Breaking in Self-Assembled Monolayers with Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy. J Am Chem Soc 2017; 139:18664-18669. [PMID: 29198112 DOI: 10.1021/jacs.7b10645] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ultrahigh vacuum tip-enhanced Raman spectroscopy (UHV-TERS) combines the atomic-scale imaging capability of scanning probe microscopy with the single-molecule chemical sensitivity and structural specificity of surface-enhanced Raman spectroscopy. Here, we use these techniques in combination with theory to reveal insights into the influence of intermolecular interactions on the vibrational spectra of a N-N'-bis(2,6-diisopropylphenyl)-perylene-3,4:9,10-bis(dicarboximide) (PDI) self-assembled monolayer adsorbed on single-crystal Ag substrates at room temperature. In particular, we have revealed the lifting of a vibrational degeneracy of a mode of PDI on Ag(111) and Ag(100) surfaces, with the most strongly perturbed mode being that associated with the largest vibrational amplitude on the periphery of the molecule. This work demonstrates that UHV-TERS enables direct measurement of molecule-molecule interaction at nanoscale. We anticipate that this information will advance the fundamental understanding of the most important effect of intermolecular interactions on the vibrational modes of surface-bound molecules.
Collapse
|
24
|
Sprague-Klein EA, McAnally MO, Zhdanov DV, Zrimsek AB, Apkarian VA, Seideman T, Schatz GC, Van Duyne RP. Observation of Single Molecule Plasmon-Driven Electron Transfer in Isotopically Edited 4,4′-Bipyridine Gold Nanosphere Oligomers. J Am Chem Soc 2017; 139:15212-15221. [DOI: 10.1021/jacs.7b08868] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Skinner OS, McAnally MO, Van Duyne RP, Schatz GC, Breuker K, Compton PD, Kelleher NL. Native Electron Capture Dissociation Maps to Iron-Binding Channels in Horse Spleen Ferritin. Anal Chem 2017; 89:10711-10716. [PMID: 28938074 PMCID: PMC5647560 DOI: 10.1021/acs.analchem.7b01581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Native electron capture
dissociation (NECD) is a process during
which proteins undergo fragmentation similar to that from radical
dissociation methods, but without the addition of exogenous electrons.
However, after three initial reports of NECD from the cytochrome c dimer complex, no further evidence of the effect has been
published. Here, we report NECD behavior from horse spleen ferritin,
a ∼490 kDa protein complex ∼20-fold larger than the
previously studied cytochrome c dimer. Application
of front-end infrared excitation (FIRE) in conjunction with low- and
high-m/z quadrupole isolation and
collisionally activated dissociation (CAD) provides new insights into
the NECD mechanism. Additionally, activation of the intact complex
in either the electrospray droplet or the gas phase produced c-type fragment ions. Similar to the previously reported
results on cytochrome c, these fragment ions form
near residues known to interact with iron atoms in solution. By mapping
the location of backbone cleavages associated with c-type ions onto
the crystal structure, we are able to characterize two distinct iron
binding channels that facilitate iron ion transport into the core
of the complex. The resulting pathways are in good agreement with
previously reported results for iron binding sites in mammalian ferritin.
Collapse
|