1
|
Gay ACA, Banchero M, Carpaij O, Kole TM, Apperloo L, van Gosliga D, Fajar PA, Koppelman GH, Bont L, Hendriks RW, van den Berge M, Nawijn MC. Airway epithelial cell response to RSV is mostly impaired in goblet and multiciliated cells in asthma. Thorax 2024; 79:811-821. [PMID: 38373824 PMCID: PMC11347251 DOI: 10.1136/thorax-2023-220230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/27/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND In patients with asthma, respiratory syncytial virus (RSV) infections can cause disease exacerbation by infecting the epithelial layer of the airways, inducing subsequent immune response. The type I interferon antiviral response of epithelial cells upon RSV infection is found to be reduced in asthma in most-but not all-studies. Moreover, the molecular mechanisms causing the differences in the asthmatic bronchial epithelium in response to viral infection are poorly understood. METHODS Here, we investigated the transcriptional response to RSV infection of primary bronchial epithelial cells (pBECs) from patients with asthma (n=8) and healthy donors (n=8). The pBECs obtained from bronchial brushes were differentiated in air-liquid interface conditions and infected with RSV. After 3 days, cells were processed for single-cell RNA sequencing. RESULTS A strong antiviral response to RSV was observed for all cell types, for all samples (p<1e-48). Most (1045) differentially regulated genes following RSV infection were found in cells transitioning to secretory cells. Goblet cells from patients with asthma showed lower expression of genes involved in the interferon response (false discovery rate <0.05), including OASL, ICAM1 and TNFAIP3. In multiciliated cells, an impairment of the signalling pathways involved in the response to RSV in asthma was observed. CONCLUSION Our results highlight that the response to RSV infection of the bronchial epithelium in asthma and healthy airways was largely similar. However, in asthma, the response of goblet and multiciliated cells is impaired, highlighting the need for studying airway epithelial cells at high resolution in the context of asthma exacerbation.
Collapse
|
2
|
Stikker B, Trap L, Sedaghati-Khayat B, de Bruijn MJW, van Ijcken WFJ, de Roos E, Ikram A, Hendriks RW, Brusselle G, van Rooij J, Stadhouders R. Epigenomic partitioning of a polygenic risk score for asthma reveals distinct genetically driven disease pathways. Eur Respir J 2024; 64:2302059. [PMID: 38901884 PMCID: PMC11358516 DOI: 10.1183/13993003.02059-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Individual differences in susceptibility to developing asthma, a heterogeneous chronic inflammatory lung disease, are poorly understood. Whether genetics can predict asthma risk and how genetic variants modulate the complex pathophysiology of asthma are still debated. AIM To build polygenic risk scores for asthma risk prediction and epigenomically link predictive genetic variants to pathophysiological mechanisms. METHODS Restricted polygenic risk scores were constructed using single nucleotide variants derived from genome-wide association studies and validated using data generated in the Rotterdam Study, a Dutch prospective cohort of 14 926 individuals. Outcomes used were asthma, childhood-onset asthma, adulthood-onset asthma, eosinophilic asthma and asthma exacerbations. Genome-wide chromatin analysis data from 19 disease-relevant cell types were used for epigenomic polygenic risk score partitioning. RESULTS The polygenic risk scores obtained predicted asthma and related outcomes, with the strongest associations observed for childhood-onset asthma (2.55 odds ratios per polygenic risk score standard deviation, area under the curve of 0.760). Polygenic risk scores allowed for the classification of individuals into high-risk and low-risk groups. Polygenic risk score partitioning using epigenomic profiles identified five clusters of variants within putative gene regulatory regions linked to specific asthma-relevant cells, genes and biological pathways. CONCLUSIONS Polygenic risk scores were associated with asthma(-related traits) in a Dutch prospective cohort, with substantially higher predictive power observed for childhood-onset than adult-onset asthma. Importantly, polygenic risk score variants could be epigenomically partitioned into clusters of regulatory variants with different pathophysiological association patterns and effect estimates, which likely represent distinct genetically driven disease pathways. Our findings have potential implications for personalised risk mitigation and treatment strategies.
Collapse
|
3
|
Miedema JR, de Jong LJ, Kahlmann V, Bergen IM, Broos CE, Wijsenbeek MS, Hendriks RW, Corneth OBJ. Increased proportions of circulating PD-1 + CD4 + memory T cells and PD-1 + regulatory T cells associate with good response to prednisone in pulmonary sarcoidosis. Respir Res 2024; 25:196. [PMID: 38715030 PMCID: PMC11075187 DOI: 10.1186/s12931-024-02833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The treatment response to corticosteroids in patients with sarcoidosis is highly variable. CD4+ T cells are central in sarcoid pathogenesis and their phenotype in peripheral blood (PB) associates with disease course. We hypothesized that the phenotype of circulating T cells in patients with sarcoidosis may correlate with the response to prednisone treatment. Therefore, we aimed to correlate frequencies and phenotypes of circulating T cells at baseline with the pulmonary function response at 3 and 12 months during prednisone treatment in patients with pulmonary sarcoidosis. METHODS We used multi-color flow cytometry to quantify activation marker expression on PB T cell populations in 22 treatment-naïve patients and 21 healthy controls (HCs). Pulmonary function tests at baseline, 3 and 12 months were used to measure treatment effect. RESULTS Patients with sarcoidosis showed an absolute forced vital capacity (FVC) increase of 14.2% predicted (± 10.6, p < 0.0001) between baseline and 3 months. Good response to prednisone (defined as absolute FVC increase of ≥ 10% predicted) was observed in 12 patients. CD4+ memory T cells and regulatory T cells from patients with sarcoidosis displayed an aberrant phenotype at baseline, compared to HCs. Good responders at 3 months had significantly increased baseline proportions of PD-1+CD4+ memory T cells and PD-1+ regulatory T cells, compared to poor responders and HCs. Moreover, decreased fractions of CD25+ cells and increased fractions of PD-1+ cells within the CD4+ memory T cell population correlated with ≥ 10% FVC increase at 12 months. During treatment, the aberrantly activated phenotype of memory and regulatory T cells reversed. CONCLUSIONS Increased proportions of circulating PD-1+CD4+ memory T cells and PD-1+ regulatory T cells and decreased proportions of CD25+CD4+ memory T cells associate with good FVC response to prednisone in pulmonary sarcoidosis, representing promising new blood biomarkers for prednisone efficacy. TRIAL REGISTRATION NL44805.078.13.
Collapse
|
4
|
Cuperus LJA, van Zelst CM, Kerstjens HAM, Hendriks RW, Rutten-van Molken MPMH, Muilwijk-Kroes JB, Braunstahl GJ, In 't Veen JCCM. Measuring burden of disease in both asthma and COPD by merging the ACQ and CCQ: less is more? NPJ Prim Care Respir Med 2024; 34:8. [PMID: 38702303 PMCID: PMC11068875 DOI: 10.1038/s41533-024-00364-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
Symptoms of asthma and COPD often overlap, and both diseases can co-exist in one patient. The asthma control questionnaire (ACQ) and clinical COPD questionnaire (CCQ) were developed to assess disease burden in respectively asthma or COPD. This study explores the possibility of creating a new questionnaire to assess disease burden in all obstructive lung diseases by integrating and reducing questions of the ACQ and CCQ. Data of patients with asthma, COPD and asthma-COPD overlap (ACO) were collected from a primary and secondary care center. Patients completed ACQ and CCQ on the same day. Linear regression tested correlations. Principal Component Analysis (PCA) was used for item reduction. The secondary cohort with asthma and COPD patients was used for initial question selection (development cohort). These results were reproduced in the primary care cohort and secondary cohort of patients with ACO. The development cohort comprised 252 patients with asthma and 96 with COPD. Correlation between ACQ and CCQ in asthma was R = 0.82, and in COPD R = 0.83. PCA determined a selection of 9 questions. Reproduction in primary care data (asthma n = 1110, COPD n = 1041, ACO = 355) and secondary care data of ACO patients (n = 53) resulted in similar correlations and PCA-derived selection of questions. In conclusion, PCA determined a selection of nine questions of the ACQ and CCQ: working title 'the Obstructive Lung Disease Questionnaire'. These results suggest that this pragmatic set of questions might be sufficient to assess disease burden in obstructive lung disease in both primary as secondary care.
Collapse
|
5
|
Neys SFH, Heutz JW, van Hulst JAC, Vink M, Bergen IM, de Jong PHP, Lubberts E, Hendriks RW, Corneth OBJ. Aberrant B cell receptor signaling in circulating naïve and IgA + memory B cells from newly-diagnosed autoantibody-positive rheumatoid arthritis patients. J Autoimmun 2024; 143:103168. [PMID: 38350168 DOI: 10.1016/j.jaut.2024.103168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
OBJECTIVE Altered B cell receptor (BCR) signaling has been implicated in the pathogenesis of rheumatoid arthritis (RA). Here we aimed to identify signaling aberrations in autoantibody-positive and autoantibody-negative RA patients by performing a comprehensive analysis of the BCR signaling cascade in different B cell subsets. METHODS We first optimized phosphoflow cytometry for an in-depth analysis of BCR signaling across immunoglobulin isotypes in healthy donors. Subsequently, we compared BCR signaling in circulating B cell subsets from treatment-naïve, newly-diagnosed autoantibody-positive RA and autoantibody-negative RA patients and healthy controls (HCs). RESULTS We observed subset-specific phosphorylation patterns of the BCR signalosome in circulating B cells from healthy donors. Compared with HCs, autoantibody-positive RA patients displayed enhanced responses to BCR stimulation for multiple signaling proteins, specifically in naïve and IgA+ memory B cells. Whereas in unstimulated healthy donor B cells, the phosphorylation status of individual signaling proteins showed only limited correlation, BCR stimulation enhanced the interconnectivity in phosphorylation within the BCR signalosome. However, this strong interconnectivity within the BCR signalosome in stimulated B cells from HCs was lost in RA, especially in autoantibody-positive RA patients. Finally, we observed strong correlations between SYK and BTK protein expression, and IgA and IgG anti-citrullinated protein antibody concentrations in serum from autoantibody-positive RA patients. CONCLUSION Collectively, the isotype-specific analysis of multiple key components of the BCR signalosome identified aberrant BCR signaling responses in treatment-naïve autoantibody-positive RA patients, particularly in naïve B cells and IgA+ memory B cells. Our findings support differential involvement of dysregulated BCR signaling in the pathogenesis of autoantibody-positive and autoantibody-negative RA.
Collapse
|
6
|
van Zelst CM, in ’t Veen JC, Krabbendam L, de Boer GM, de Bruijn MJ, van Nimwegen M, van der Ploeg EK, van Uden D, Stadhouders R, Tramper-Stranders GA, Hendriks RW, Braunstahl GJ. Aberrant characteristics of peripheral blood innate lymphoid cells in COPD, independent of smoking history. ERJ Open Res 2024; 10:00652-2023. [PMID: 38375427 PMCID: PMC10875467 DOI: 10.1183/23120541.00652-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024] Open
Abstract
Background Distinguishing asthma and COPD can pose challenges in clinical practice. Increased group 1 innate lymphoid cells (ILC1s) have been found in the lungs and peripheral blood of COPD patients, while asthma is associated with elevated levels of ILC2s. However, it is unclear whether the inflammatory characteristics of ILC1s and ILC2s differ between COPD and asthma. This study aims to compare peripheral blood ILC subsets and their expression of inflammatory markers in COPD patients, asthma patients and controls. Methods The study utilised multi-colour flow cytometry to analyse peripheral blood ILC populations in clinically stable COPD patients (n=38), asthma patients (n=37), and smoking (n=19) and non-smoking (n=16) controls. Results Proportions of peripheral blood inflammatory CD4+ ILC1s were significantly higher in COPD patients than in asthma. Proportions of CD4- ILC1s were increased in COPD patients compared to asthma patients and smoking controls. Frequencies of CD117- ILC2s were significantly reduced in COPD patients compared with asthma patients. In contrast, the fraction of inflammatory CD45RO+ cells within the CD117- ILC2 population was significantly increased. Principal component analyses showed that combined features of the circulating ILC compartment separated COPD patients from asthma patients and both control groups. Conclusion Our in-depth characterisation of ILC1 and ILC2 populations in peripheral blood revealed significant differences in their phenotypes between COPD and asthma patients and smoking or non-smoking controls. These findings suggest a role for both ILC subsets in COPD disease pathology, independent of smoking history, and may have implications for patient stratification and therapy development.
Collapse
|
7
|
Belderbos RA, Corneth OBJ, Dumoulin D, Hendriks RW, Aerts JGJV, Willemsen M. Atypical B cells (CD21-CD27-IgD-) correlate with lack of response to checkpoint inhibitor therapy in NSCLC. Eur J Cancer 2024; 196:113428. [PMID: 38039777 DOI: 10.1016/j.ejca.2023.113428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 12/03/2023]
Abstract
INTRODUCTION Checkpoint inhibitor (CI) therapy has revolutionized treatment for non-small cell lung cancer (NSCLC). However, a proportion of patients do not respond to CI therapy for unknown reasons. Although the current paradigm in anti-tumor immunity evolves around T cells, the presence of tertiary lymphoid structures and memory B cells has been positively correlated with response to CI therapy in NSCLC. In addition, double negative (DN) (CD27- IgD-) B cells have been shown to be abundant in NSCLC compared to healthy lung tissue and inversely correlate with the intratumoral presence of memory B cells. Nonetheless, no study has correlated DN B cells to survival in NSCLC. METHODS In this study, we evaluated the presence and phenotype of B cells in peripheral blood with flow cytometry of patients with NSCLC and mesothelioma before receiving CI therapy and correlated these with clinical outcome. RESULTS Non-responding patients showed decreased frequencies of B cells, yet increased frequencies of antigen-experienced CD21- DN (Atypical) B cells compared to responding patients and HC, which was confirmed in patients with mesothelioma treated with CI therapy. CONCLUSIONS These data show that the frequency of CD21- DN B cells correlates with lack of response to CI therapy in thoracic malignancies. The mechanism by which CD21- DN B cells hamper CI therapy remains unknown. Our findings support the hypothesis that CD21- DN B cells resemble phenotypically identical exhausted B cells that are seen in chronic infection or function as antigen presenting cells that induce regulatory T cells.
Collapse
|
8
|
Hendriks RW. Interleukin-10 multitasking in allergic airway inflammation. Cell Mol Immunol 2023; 20:1530-1532. [PMID: 37990033 PMCID: PMC10686977 DOI: 10.1038/s41423-023-01101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023] Open
|
9
|
van Spriel AB, Hendriks RW. The European B cell network. Immunol Lett 2023; 264:1-3. [PMID: 37925058 DOI: 10.1016/j.imlet.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
|
10
|
Berg M, Petoukhov I, van den Ende I, Meyer KB, Guryev V, Vonk JM, Carpaij O, Banchero M, Hendriks RW, van den Berge M, Nawijn MC. FastCAR: fast correction for ambient RNA to facilitate differential gene expression analysis in single-cell RNA-sequencing datasets. BMC Genomics 2023; 24:722. [PMID: 38030970 PMCID: PMC10687889 DOI: 10.1186/s12864-023-09822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Cell type-specific differential gene expression analyses based on single-cell transcriptome datasets are sensitive to the presence of cell-free mRNA in the droplets containing single cells. This so-called ambient RNA contamination may differ between samples obtained from patients and healthy controls. Current ambient RNA correction methods were not developed specifically for single-cell differential gene expression (sc-DGE) analyses and might therefore not sufficiently correct for ambient RNA-derived signals. Here, we show that ambient RNA levels are highly sample-specific. We found that without ambient RNA correction, sc-DGE analyses erroneously identify transcripts originating from ambient RNA as cell type-specific disease-associated genes. We therefore developed a computationally lean and intuitive correction method, Fast Correction for Ambient RNA (FastCAR), optimized for sc-DGE analysis of scRNA-Seq datasets generated by droplet-based methods including the 10XGenomics Chromium platform. FastCAR uses the profile of transcripts observed in libraries that likely represent empty droplets to determine the level of ambient RNA in each individual sample, and then corrects for these ambient RNA gene expression values. FastCAR can be applied as part of the data pre-processing and QC in sc-DGE workflows comparing scRNA-Seq data in a health versus disease experimental design. We compared FastCAR with two methods previously developed to remove ambient RNA, SoupX and CellBender. All three methods identified additional genes in sc-DGE analyses that were not identified in the absence of ambient RNA correction. However, we show that FastCAR performs better at correcting gene expression values attributed to ambient RNA, resulting in a lower frequency of false-positive observations. Moreover, the use of FastCAR in a sc-DGE workflow increases the cell-type specificity of sc-DGE analyses across disease conditions.
Collapse
|
11
|
Zemlin M, Hendriks RW, Schroeder HW. Editorial: Emerging talents in B cell biology: 2022. Front Immunol 2023; 14:1335263. [PMID: 38094293 PMCID: PMC10716695 DOI: 10.3389/fimmu.2023.1335263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
|
12
|
Miedema JR, de Jong LJ, van Uden D, Bergen IM, Kool M, Broos CE, Kahlmann V, Wijsenbeek MS, Hendriks RW, Corneth OBJ. Circulating T cells in sarcoidosis have an aberrantly activated phenotype that correlates with disease outcome. J Autoimmun 2023:103120. [PMID: 37863732 DOI: 10.1016/j.jaut.2023.103120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/22/2023]
Abstract
RATIONALE Disease course in sarcoidosis is highly variable. Bronchoalveolar lavage fluid and mediastinal lymph nodes show accumulation of activated T cells with a T-helper (Th)17.1 signature, which correlates with non-resolving sarcoidosis. We hypothesize that the peripheral blood (PB) T cell phenotype may correlate with outcome. OBJECTIVES To compare frequencies, phenotypes and function of circulating T cell populations in sarcoidosis patients with healthy controls (HCs) and correlate these parameters with outcome. METHODS We used multi-color flow cytometry to quantify activation marker expression on PB T cell subsets in treatment-naïve patients and HCs. The disease course was determined after 2-year follow-up. Cytokine production was measured after T cell stimulation in vitro. MEASUREMENTS AND MAIN RESULTS We observed significant differences between patients and HCs in several T cell populations, including CD8+ and CD4+ T cells, Th1/Th17 subsets, CD4+ T memory stem cells, regulatory T cells (Tregs) and γδ T cells. Decreased frequencies of CD4+ T cells and increased frequencies of Tregs and CD8+ γδ T cells correlated with worse outcome. Naïve CD4+ T cells displayed an activated phenotype with increased CD25 expression in patients with active chronic disease at 2-year follow-up. A distinctive Treg phenotype with increased expression of CD25, CTLA4, CD69, PD-1 and CD95 correlated with chronic sarcoidosis. Upon stimulation, both naïve and memory T cells displayed a different cytokine profile in sarcoidosis compared to HCs. CONCLUSIONS Circulating T cell subpopulations of sarcoidosis patients display phenotypic abnormalities that correlate with disease outcome, supporting a critical role of aberrant T cell activation in sarcoidosis pathogenesis.
Collapse
|
13
|
Berentschot JC, Drexhage HA, Aynekulu Mersha DG, Wijkhuijs AJM, GeurtsvanKessel CH, Koopmans MPG, Voermans JJC, Hendriks RW, Nagtzaam NMA, de Bie M, Heijenbrok-Kal MH, Bek LM, Ribbers GM, van den Berg-Emons RJG, Aerts JGJV, Dik WA, Hellemons ME. Immunological profiling in long COVID: overall low grade inflammation and T-lymphocyte senescence and increased monocyte activation correlating with increasing fatigue severity. Front Immunol 2023; 14:1254899. [PMID: 37881427 PMCID: PMC10597688 DOI: 10.3389/fimmu.2023.1254899] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023] Open
Abstract
Background Many patients with SARS-CoV-2 infection develop long COVID with fatigue as one of the most disabling symptoms. We performed clinical and immune profiling of fatigued and non-fatigued long COVID patients and age- and sex-matched healthy controls (HCs). Methods Long COVID symptoms were assessed using patient-reported outcome measures, including the fatigue assessment scale (FAS, scores ≥22 denote fatigue), and followed up to one year after hospital discharge. We assessed inflammation-related genes in circulating monocytes, serum levels of inflammation-regulating cytokines, and leukocyte and lymphocyte subsets, including major monocyte subsets and senescent T-lymphocytes, at 3-6 months post-discharge. Results We included 37 fatigued and 36 non-fatigued long COVID patients and 42 HCs. Fatigued long COVID patients represented a more severe clinical profile than non-fatigued patients, with many concurrent symptoms (median 9 [IQR 5.0-10.0] vs 3 [1.0-5.0] symptoms, p<0.001), and signs of cognitive failure (41%) and depression (>24%). Immune abnormalities that were found in the entire group of long COVID patients were low grade inflammation (increased inflammatory gene expression in monocytes, increased serum pro-inflammatory cytokines) and signs of T-lymphocyte senescence (increased exhausted CD8+ TEMRA-lymphocytes). Immune profiles did not significantly differ between fatigued and non-fatigued long COVID groups. However, the severity of fatigue (total FAS score) significantly correlated with increases of intermediate and non-classical monocytes, upregulated gene levels of CCL2, CCL7, and SERPINB2 in monocytes, increases in serum Galectin-9, and higher CD8+ T-lymphocyte counts. Conclusion Long COVID with fatigue is associated with many concurrent and persistent symptoms lasting up to one year after hospitalization. Increased fatigue severity associated with stronger signs of monocyte activation in long COVID patients and potentially point in the direction of monocyte-endothelial interaction. These abnormalities were present against a background of immune abnormalities common to the entire group of long COVID patients.
Collapse
|
14
|
Zhao M, Li L, Kiernan CH, Castro Eiro MD, Dammeijer F, van Meurs M, Brouwers-Haspels I, Wilmsen MEP, Grashof DGB, van de Werken HJG, Hendriks RW, Aerts JG, Mueller YM, Katsikis PD. Overcoming immune checkpoint blockade resistance in solid tumors with intermittent ITK inhibition. Sci Rep 2023; 13:15678. [PMID: 37735204 PMCID: PMC10514027 DOI: 10.1038/s41598-023-42871-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
Cytotoxic CD8 + T cell (CTL) exhaustion is driven by chronic antigen stimulation. Reversing CTL exhaustion with immune checkpoint blockade (ICB) has provided clinical benefits in different types of cancer. We, therefore, investigated whether modulating chronic antigen stimulation and T-cell receptor (TCR) signaling with an IL2-inducible T-cell kinase (ITK) inhibitor, could confer ICB responsiveness to ICB resistant solid tumors. In vivo intermittent treatment of 3 ICB-resistant solid tumor (melanoma, mesothelioma or pancreatic cancer) with ITK inhibitor significantly improved ICB therapy. ITK inhibition directly reinvigorate exhausted CTL in vitro as it enhanced cytokine production, decreased inhibitory receptor expression, and downregulated the transcription factor TOX. Our study demonstrates that intermittent ITK inhibition can be used to directly ameliorate CTL exhaustion and enhance immunotherapies even in solid tumors that are ICB resistant.
Collapse
|
15
|
Li L, Zhao M, Kiernan CH, Castro Eiro MD, van Meurs M, Brouwers-Haspels I, Wilmsen MEP, Grashof DGB, van de Werken HJG, Hendriks RW, Mueller YM, Katsikis PD. Ibrutinib directly reduces CD8+T cell exhaustion independent of BTK. Front Immunol 2023; 14:1201415. [PMID: 37771591 PMCID: PMC10523025 DOI: 10.3389/fimmu.2023.1201415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction Cytotoxic CD8+ T cell (CTL) exhaustion is a dysfunctional state of T cells triggered by persistent antigen stimulation, with the characteristics of increased inhibitory receptors, impaired cytokine production and a distinct transcriptional profile. Evidence from immune checkpoint blockade therapy supports that reversing T cell exhaustion is a promising strategy in cancer treatment. Ibrutinib, is a potent inhibitor of BTK, which has been approved for the treatment of chronic lymphocytic leukemia. Previous studies have reported improved function of T cells in ibrutinib long-term treated patients but the mechanism remains unclear. We investigated whether ibrutinib directly acts on CD8+ T cells and reinvigorates exhausted CTLs. Methods We used an established in vitro CTL exhaustion system to examine whether ibrutinib can directly ameliorate T cell exhaustion. Changes in inhibitory receptors, transcription factors, cytokine production and killing capacity of ibrutinib-treated exhausted CTLs were detected by flow cytometry. RNA-seq was performed to study transcriptional changes in these cells. Btk deficient mice were used to confirm that the effect of ibrutinib was independent of BTK expression. Results We found that ibrutinib reduced exhaustion-related features of CTLs in an in vitro CTL exhaustion system. These changes included decreased inhibitory receptor expression, enhanced cytokine production, and downregulation of the transcription factor TOX with upregulation of TCF1. RNA-seq further confirmed that ibrutinib directly reduced the exhaustion-related transcriptional profile of these cells. Importantly, using btk deficient mice we showed the effect of ibrutinib was independent of BTK expression, and therefore mediated by one of its other targets. Discussion Our study demonstrates that ibrutinib directly ameliorates CTL exhaustion, and provides evidence for its synergistic use with cancer immunotherapy.
Collapse
|
16
|
Voskamp AL, Tak T, Gerdes ML, Menafra R, Duijster E, Jochems SP, Kielbasa SM, Kormelink TG, Stam KA, van Hengel OR, de Jong NW, Hendriks RW, Kloet SL, Yazdanbakhsh M, de Jong EC, Gerth van Wijk R, Smits HH. Inflammatory and tolerogenic myeloid cells determine outcome following human allergen challenge. J Exp Med 2023; 220:e20221111. [PMID: 37428185 PMCID: PMC10333709 DOI: 10.1084/jem.20221111] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/08/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
Innate mononuclear phagocytic system (MPS) cells preserve mucosal immune homeostasis. We investigated their role at nasal mucosa following allergen challenge with house dust mite. We combined single-cell proteome and transcriptome profiling on nasal immune cells from nasal biopsies cells from 30 allergic rhinitis and 27 non-allergic subjects before and after repeated nasal allergen challenge. Biopsies of patients showed infiltrating inflammatory HLA-DRhi/CD14+ and CD16+ monocytes and proallergic transcriptional changes in resident CD1C+/CD1A+ conventional dendritic cells (cDC)2 following challenge. In contrast, non-allergic individuals displayed distinct innate MPS responses to allergen challenge: predominant infiltration of myeloid-derived suppressor cells (MDSC: HLA-DRlow/CD14+ monocytes) and cDC2 expressing inhibitory/tolerogenic transcripts. These divergent patterns were confirmed in ex vivo stimulated MPS nasal biopsy cells. Thus, we identified not only MPS cell clusters involved in airway allergic inflammation but also highlight novel roles for non-inflammatory innate MPS responses by MDSC to allergens in non-allergic individuals. Future therapies should address MDSC activity as treatment for inflammatory airway diseases.
Collapse
|
17
|
Voskamp AL, Tak T, Gerdes ML, Menafra R, Duijster E, Jochems SP, Kielbasa SM, Kormelink TG, Stam KA, van Hengel ORJ, de Jong NW, Hendriks RW, Kloet SL, Yazdanbakhsh M, de Jong EC, Gerth van Wijk R, Smits HH. Correction: Inflammatory and tolerogenic myeloid cells determine outcome following human allergen challenge. J Exp Med 2023; 220:e2022111108162023c. [PMID: 37594459 PMCID: PMC10439738 DOI: 10.1084/jem.2022111108162023c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
|
18
|
van der Ploeg EK, Krabbendam L, Vroman H, van Nimwegen M, de Bruijn MJW, de Boer GM, Bergen IM, Kool M, Tramper-Standers GA, Braunstahl GJ, Huylebroeck D, Hendriks RW, Stadhouders R. Type-2 CD8 + T-cell formation relies on interleukin-33 and is linked to asthma exacerbations. Nat Commun 2023; 14:5137. [PMID: 37612281 PMCID: PMC10447424 DOI: 10.1038/s41467-023-40820-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
CD4+ T helper 2 (Th2) cells and group 2 innate lymphoid cells are considered the main producers of type-2 cytokines that fuel chronic airway inflammation in allergic asthma. However, CD8+ cytotoxic T (Tc) cells - critical for anti-viral defense - can also produce type-2 cytokines (referred to as 'Tc2' cells). The role of Tc cells in asthma and virus-induced disease exacerbations remains poorly understood, including which micro-environmental signals and cell types promote Tc2 cell formation. Here we show increased circulating Tc2 cell abundance in severe asthma patients, reaching peak levels during exacerbations and likely emerging from canonical IFNγ+ Tc cells through plasticity. Tc2 cell abundance is associated with increased disease burden, higher exacerbations rates and steroid insensitivity. Mouse models of asthma recapitulate the human disease by showing extensive type-2 skewing of lung Tc cells, which is controlled by conventional type-1 dendritic cells and IFNγ. Importantly, we demonstrate that the alarmin interleukin-33 (IL-33) critically promotes type-2 cytokine production by lung Tc cells in experimental allergic airway inflammation. Our data identify Tc cells as major producers of type-2 cytokines in severe asthma and during exacerbations that are remarkably sensitive to alterations in their inflammatory tissue micro-environment, with IL-33 emerging as an important regulator of Tc2 formation.
Collapse
|
19
|
Onrust-van Schoonhoven A, de Bruijn MJW, Stikker B, Brouwer RWW, Braunstahl GJ, van IJcken WFJ, Graf T, Huylebroeck D, Hendriks RW, Stik G, Stadhouders R. 3D chromatin reprogramming primes human memory T H2 cells for rapid recall and pathogenic dysfunction. Sci Immunol 2023; 8:eadg3917. [PMID: 37418545 DOI: 10.1126/sciimmunol.adg3917] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
Memory T cells provide long-lasting defense responses through their ability to rapidly reactivate, but how they efficiently "recall" an inflammatory transcriptional program remains unclear. Here, we show that human CD4+ memory T helper 2 (TH2) cells carry a chromatin landscape synergistically reprogrammed at both one-dimensional (1D) and 3D levels to accommodate recall responses, which is absent in naive T cells. In memory TH2 cells, recall genes were epigenetically primed through the maintenance of transcription-permissive chromatin at distal (super)enhancers organized in long-range 3D chromatin hubs. Precise transcriptional control of key recall genes occurred inside dedicated topologically associating domains ("memory TADs"), in which activation-associated promoter-enhancer interactions were preformed and exploited by AP-1 transcription factors to promote rapid transcriptional induction. Resting memory TH2 cells from patients with asthma showed premature activation of primed recall circuits, linking aberrant transcriptional control of recall responses to chronic inflammation. Together, our results implicate stable multiscale reprogramming of chromatin organization as a key mechanism underlying immunological memory and dysfunction in T cells.
Collapse
|
20
|
Pelletier J, Balzano M, Destin J, Montersino C, Delahaye MC, Marchand T, Bailly AL, Bardin F, Coppin E, Goubard A, Castellano R, de Bruijn MJ, Rip J, Collette Y, Dubreuil P, Tarte K, Broccardo C, Hendriks RW, Schiff C, Vey N, Aurrand-Lions M, Mancini SJ. Niche-expressed Galectin-1 is involved in pre-B acute lymphoblastic leukemia relapse through pre-BCR activation. iScience 2023; 26:106385. [PMID: 37009219 PMCID: PMC10060685 DOI: 10.1016/j.isci.2023.106385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/15/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) reflects the malignant counterpart of developing B cells in the bone marrow (BM). Despite tremendous progress in B-ALL treatment, the overall survival of adults at diagnosis and patients at all ages after relapse remains poor. Galectin-1 (GAL1) expressed by BM supportive niches delivers proliferation signals to normal pre-B cells through interaction with the pre-B cell receptor (pre-BCR). Here, we asked whether GAL1 gives non-cell autonomous signals to pre-BCR+ pre-B ALL, in addition to cell-autonomous signals linked to genetic alterations. In syngeneic and patient-derived xenograft (PDX) murine models, murine and human pre-B ALL development is influenced by GAL1 produced by BM niches through pre-BCR-dependent signals, similarly to normal pre-B cells. Furthermore, targeting pre-BCR signaling together with cell-autonomous oncogenic pathways in pre-B ALL PDX improved treatment response. Our results show that non-cell autonomous signals transmitted by BM niches represent promising targets to improve B-ALL patient survival.
Collapse
|
21
|
Hendriks RW, Corneth OBJ. B Cell Signaling and Activation in Autoimmunity. Cells 2023; 12:cells12030499. [PMID: 36766841 PMCID: PMC9914404 DOI: 10.3390/cells12030499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Autoreactive B cells play a key role in the initiation or aggravation of many systemic and tissue-specific autoimmune disorders [...].
Collapse
|
22
|
Stikker BS, Hendriks RW, Stadhouders R. Decoding the genetic and epigenetic basis of asthma. Allergy 2023; 78:940-956. [PMID: 36727912 DOI: 10.1111/all.15666] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023]
Abstract
Asthma is a complex and heterogeneous chronic inflammatory disease of the airways. Alongside environmental factors, asthma susceptibility is strongly influenced by genetics. Given its high prevalence and our incomplete understanding of the mechanisms underlying disease susceptibility, asthma is frequently studied in genome-wide association studies (GWAS), which have identified thousands of genetic variants associated with asthma development. Virtually all these genetic variants reside in non-coding genomic regions, which has obscured the functional impact of asthma-associated variants and their translation into disease-relevant mechanisms. Recent advances in genomics technology and epigenetics now offer methods to link genetic variants to gene regulatory elements embedded within non-coding regions, which have started to unravel the molecular mechanisms underlying the complex (epi)genetics of asthma. Here, we provide an integrated overview of (epi)genetic variants associated with asthma, focusing on efforts to link these disease associations to biological insight into asthma pathophysiology using state-of-the-art genomics methodology. Finally, we provide a perspective as to how decoding the genetic and epigenetic basis of asthma has the potential to transform clinical management of asthma and to predict the risk of asthma development.
Collapse
|
23
|
Corneth OBJ, Neys SFH, Hendriks RW. Aberrant B Cell Signaling in Autoimmune Diseases. Cells 2022; 11:cells11213391. [PMID: 36359789 PMCID: PMC9654300 DOI: 10.3390/cells11213391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Aberrant B cell signaling plays a critical in role in various systemic and organ-specific autoimmune diseases. This is supported by genetic evidence by many functional studies in B cells from patients or specific animal models and by the observed efficacy of small-molecule inhibitors. In this review, we first discuss key signal transduction pathways downstream of the B cell receptor (BCR) that ensure that autoreactive B cells are removed from the repertoire or functionally silenced. We provide an overview of aberrant BCR signaling that is associated with inappropriate B cell repertoire selection and activation or survival of peripheral B cell populations and plasma cells, finally leading to autoantibody formation. Next to BCR signaling, abnormalities in other signal transduction pathways have been implicated in autoimmune disease. These include reduced activity of several phosphates that are downstream of co-inhibitory receptors on B cells and increased levels of BAFF and APRIL, which support survival of B cells and plasma cells. Importantly, pathogenic synergy of the BCR and Toll-like receptors (TLR), which can be activated by endogenous ligands, such as self-nucleic acids, has been shown to enhance autoimmunity. Finally, we will briefly discuss therapeutic strategies for autoimmune disease based on interfering with signal transduction in B cells.
Collapse
|
24
|
Rijvers L, van Langelaar J, Bogers L, Melief MJ, Koetzier SC, Blok KM, Wierenga-Wolf AF, de Vries HE, Rip J, Corneth OB, Hendriks RW, Grenningloh R, Boschert U, Smolders J, van Luijn MM. Human T-bet+ B cell development is associated with BTK activity and suppressed by evobrutinib. JCI Insight 2022; 7:160909. [PMID: 35852869 PMCID: PMC9462504 DOI: 10.1172/jci.insight.160909] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Recent clinical trials have shown promising results for the next-generation Bruton’s tyrosine kinase (BTK) inhibitor evobrutinib in the treatment of multiple sclerosis (MS). BTK has a central role in signaling pathways that govern the development of B cells. Whether and how BTK activity shapes B cells as key drivers of MS is currently unclear. Compared with levels of BTK protein, we found higher levels of phospho-BTK in ex vivo blood memory B cells from patients with relapsing-remitting MS and secondary progressive MS compared with controls. In these MS groups, BTK activity was induced to a lesser extent after anti-IgM stimulation. BTK positively correlated with CXCR3 expression, both of which were increased in blood B cells from clinical responders to natalizumab (anti–VLA-4 antibody) treatment. Under in vitro T follicular helper–like conditions, BTK phosphorylation was enhanced by T-bet–inducing stimuli, IFN-γ and CpG-ODN, while the expression of T-bet and T-bet–associated molecules CXCR3, CD21, and CD11c was affected by evobrutinib. Furthermore, evobrutinib interfered with in vitro class switching, as well as memory recall responses, and disturbed CXCL10-mediated migration of CXCR3+ switched B cells through human brain endothelial monolayers. These findings demonstrate a functional link between BTK activity and disease-relevant B cells and offer valuable insights into how next-generation BTK inhibitors could modulate the clinical course of patients with MS.
Collapse
|
25
|
Dammeijer F, van Gulijk M, Klaase L, van Nimwegen M, Bouzid R, Hoogenboom R, Joosse ME, Hendriks RW, van Hall T, Aerts JG. Low-dose JAK3-inhibition improves anti-tumor T-cell immunity and immunotherapy efficacy. Mol Cancer Ther 2022; 21:1393-1405. [PMID: 35732501 DOI: 10.1158/1535-7163.mct-21-0943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/20/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Terminal T-cell exhaustion poses a significant barrier to effective anti-cancer immunotherapy efficacy with current drugs aimed at reversing exhaustion being limited. Recent investigations into the molecular drivers of T-cell exhaustion have led to the identification of chronic IL-2 receptor (IL-2R) - STAT5 pathway signaling in mediating T-cell exhaustion. We targeted the key downstream IL-2R-intermediate Janus kinase (JAK) 3 using a clinically relevant highly specific JAK3-inhibitor (JAK3i; PF-06651600) which potently inhibited STAT5-phosphorylation in vitro. Whereas pulsed high-dose JAK3i administration inhibited anti-tumor T-cell effector function, low-dose chronic JAK3i significantly improved T-cell responses and decreased tumor load in mouse models of solid cancer. Low-dose JAK3i combined with cellular and peptide vaccine strategies further decreased tumor load compared to both monotherapies alone. Collectively, these results identify JAK3 as a novel and promising target for combination immunotherapy.
Collapse
|