1
|
Liu WT, Ji XN, Feng S, Gao YY, Xie LN, Li SP, Chen JX, Wu HH, Chen Q. [Developmental delay and seizures with or without movement abnormalities associated with DHDDS gene variant in 3 children]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2024; 62:1108-1109. [PMID: 39429085 DOI: 10.3760/cma.j.cn112140-20240522-00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
|
2
|
Liu HW, Huang Y, Feng S, You SQ, Hong Y, Shen LD. Experimental study of methane oxidation efficiency in three configurations of earthen landfill cover through soil column test. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:370-381. [PMID: 39393307 DOI: 10.1016/j.wasman.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/13/2024]
Abstract
Soil column tests were conducted to investigate methane oxidation efficiency in three configurations of earthen landfill cover under two drying stages separated by an applied rainfall, including the monolithic evapotranspiration (ET) cover, the cover with capillary barrier effect (CCBE) and the three-layer cover. Comprehensive measurements were also documented for water-gas response in soil for analyzing the experimental outcomes. The maximum methane oxidation efficiency of three-layer cover, monolithic ET cover, and CCBE were about 71 %, 62 % and 58 %, respectively. This was because the three-layer cover had the largest oxygen (O2) concentration in soil above depth of 400 mm, where methane oxidation mainly occurred. This was due to the good airtightness of the bottom hydraulic barrier layer, which led to the lowest air pressure above depth of 400 mm, thereby promoting the entry of atmospheric O2 into the soil. The monolithic ET cover generally had a larger methane oxidation efficiency than CCBE during the first drying stage by up to 12 %, while the trend reversed overall during the second drying stage, likely due to the enhanced air-tightness of CCBE caused by higher soil water content after rainfall induced by the capillary barrier effects. The methane oxidation efficiency for each landfill cover became lower by up to 30 % during the second drying stage than that during the first drying stage, owing to the higher water content during the second drying stage after rainfall, leading to a larger gas pressure and hence a lower O2 concentration at shallow soil.
Collapse
|
3
|
Wanders K, Chen G, Feng S, Székely T, Urrutia AO. Role-reversed polyandry is associated with faster fast-Z in shorebirds. Proc Biol Sci 2024; 291:20240397. [PMID: 38864333 DOI: 10.1098/rspb.2024.0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
In birds, males are homogametic and carry two copies of the Z chromosome ('ZZ'), while females are heterogametic and exhibit a 'ZW' genotype. The Z chromosome evolves at a faster rate than similarly sized autosomes, a phenomenon termed 'fast-Z evolution'. This is thought to be caused by two independent processes-greater Z chromosome genetic drift owing to a reduced effective population size, and stronger Z chromosome positive selection owing to the exposure of partially recessive alleles to selection. Here, we investigate the relative contributions of these processes by considering the effect of role-reversed polyandry on fast-Z in shorebirds, a paraphyletic group of wading birds that exhibit unusually diverse mating systems. We find stronger fast-Z effects under role-reversed polyandry, which is consistent with particularly strong selection on polyandrous females driving the fixation of recessive beneficial alleles. This result contrasts with previous research in birds, which has tended to implicate a primary role of genetic drift in driving fast-Z variation. We suggest that this discrepancy can be interpreted in two ways-stronger sexual selection acting on polyandrous females overwhelms an otherwise central role of genetic drift, and/or sexual antagonism is also contributing significantly to fast-Z and is exacerbated in sexually dimorphic species.
Collapse
|
4
|
Stiller J, Feng S, Chowdhury AA, Rivas-González I, Duchêne DA, Fang Q, Deng Y, Kozlov A, Stamatakis A, Claramunt S, Nguyen JMT, Ho SYW, Faircloth BC, Haag J, Houde P, Cracraft J, Balaban M, Mai U, Chen G, Gao R, Zhou C, Xie Y, Huang Z, Cao Z, Yan Z, Ogilvie HA, Nakhleh L, Lindow B, Morel B, Fjeldså J, Hosner PA, da Fonseca RR, Petersen B, Tobias JA, Székely T, Kennedy JD, Reeve AH, Liker A, Stervander M, Antunes A, Tietze DT, Bertelsen MF, Lei F, Rahbek C, Graves GR, Schierup MH, Warnow T, Braun EL, Gilbert MTP, Jarvis ED, Mirarab S, Zhang G. Complexity of avian evolution revealed by family-level genomes. Nature 2024; 629:851-860. [PMID: 38560995 PMCID: PMC11111414 DOI: 10.1038/s41586-024-07323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method and the choice of genomic regions1-3. Here we address these issues by analysing the genomes of 363 bird species4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a marked degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Palaeogene boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that are a challenge to model due to either extreme DNA composition, variable substitution rates, incomplete lineage sorting or complex evolutionary events such as ancient hybridization. Assessment of the effects of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates and relative brain size following the Cretaceous-Palaeogene extinction event, supporting the hypothesis that emerging ecological opportunities catalysed the diversification of modern birds. The resulting phylogenetic estimate offers fresh insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.
Collapse
|
5
|
Chen G, Yu D, Yang Y, Li X, Wang X, Sun D, Lu Y, Ke R, Zhang G, Cui J, Feng S. Adaptive expansion of ERVK solo-LTRs is associated with Passeriformes speciation events. Nat Commun 2024; 15:3151. [PMID: 38605055 PMCID: PMC11009239 DOI: 10.1038/s41467-024-47501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Endogenous retroviruses (ERVs) are ancient retroviral remnants integrated in host genomes, and commonly deleted through unequal homologous recombination, leaving solitary long terminal repeats (solo-LTRs). This study, analysing the genomes of 362 bird species and their reptilian and mammalian outgroups, reveals an unusually higher level of solo-LTRs formation in birds, indicating evolutionary forces might have purged ERVs during evolution. Strikingly in the order Passeriformes, and especially the parvorder Passerida, endogenous retrovirus K (ERVK) solo-LTRs showed bursts of formation and recurrent accumulations coinciding with speciation events over past 22 million years. Moreover, our results indicate that the ongoing expansion of ERVK solo-LTRs in these bird species, marked by high transcriptional activity of ERVK retroviral genes in reproductive organs, caused variation of solo-LTRs between individual zebra finches. We experimentally demonstrated that cis-regulatory activity of recently evolved ERVK solo-LTRs may significantly increase the expression level of ITGA2 in the brain of zebra finches compared to chickens. These findings suggest that ERVK solo-LTRs expansion may introduce novel genomic sequences acting as cis-regulatory elements and contribute to adaptive evolution. Overall, our results underscore that the residual sequences of ancient retroviruses could influence the adaptive diversification of species by regulating host gene expression.
Collapse
|
6
|
Mirarab S, Rivas-González I, Feng S, Stiller J, Fang Q, Mai U, Hickey G, Chen G, Brajuka N, Fedrigo O, Formenti G, Wolf JBW, Howe K, Antunes A, Schierup MH, Paten B, Jarvis ED, Zhang G, Braun EL. A region of suppressed recombination misleads neoavian phylogenomics. Proc Natl Acad Sci U S A 2024; 121:e2319506121. [PMID: 38557186 PMCID: PMC11009670 DOI: 10.1073/pnas.2319506121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/07/2024] [Indexed: 04/04/2024] Open
Abstract
Genomes are typically mosaics of regions with different evolutionary histories. When speciation events are closely spaced in time, recombination makes the regions sharing the same history small, and the evolutionary history changes rapidly as we move along the genome. When examining rapid radiations such as the early diversification of Neoaves 66 Mya, typically no consistent history is observed across segments exceeding kilobases of the genome. Here, we report an exception. We found that a 21-Mb region in avian genomes, mapped to chicken chromosome 4, shows an extremely strong and discordance-free signal for a history different from that of the inferred species tree. Such a strong discordance-free signal, indicative of suppressed recombination across many millions of base pairs, is not observed elsewhere in the genome for any deep avian relationships. Although long regions with suppressed recombination have been documented in recently diverged species, our results pertain to relationships dating circa 65 Mya. We provide evidence that this strong signal may be due to an ancient rearrangement that blocked recombination and remained polymorphic for several million years prior to fixation. We show that the presence of this region has misled previous phylogenomic efforts with lower taxon sampling, showing the interplay between taxon and locus sampling. We predict that similar ancient rearrangements may confound phylogenetic analyses in other clades, pointing to a need for new analytical models that incorporate the possibility of such events.
Collapse
|
7
|
Liu W, Zhao TT, Feng S, Ma H, Sun JC, Wei MH. [Follicular dendritic cell sarcoma of the tonsil: a case report]. ZHONGHUA ER BI YAN HOU TOU JING WAI KE ZA ZHI = CHINESE JOURNAL OF OTORHINOLARYNGOLOGY HEAD AND NECK SURGERY 2024; 59:260-262. [PMID: 38561267 DOI: 10.3760/cma.j.cn115330-20230921-00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
|
8
|
Jiang Z, Zang W, Ericson PGP, Song G, Wu S, Feng S, Drovetski SV, Liu G, Zhang D, Saitoh T, Alström P, Edwards SV, Lei F, Qu Y. Gene flow and an anomaly zone complicate phylogenomic inference in a rapidly radiated avian family (Prunellidae). BMC Biol 2024; 22:49. [PMID: 38413944 PMCID: PMC10900574 DOI: 10.1186/s12915-024-01848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Resolving the phylogeny of rapidly radiating lineages presents a challenge when building the Tree of Life. An Old World avian family Prunellidae (Accentors) comprises twelve species that rapidly diversified at the Pliocene-Pleistocene boundary. RESULTS Here we investigate the phylogenetic relationships of all species of Prunellidae using a chromosome-level de novo assembly of Prunella strophiata and 36 high-coverage resequenced genomes. We use homologous alignments of thousands of exonic and intronic loci to build the coalescent and concatenated phylogenies and recover four different species trees. Topology tests show a large degree of gene tree-species tree discordance but only 40-54% of intronic gene trees and 36-75% of exonic genic trees can be explained by incomplete lineage sorting and gene tree estimation errors. Estimated branch lengths for three successive internal branches in the inferred species trees suggest the existence of an empirical anomaly zone. The most common topology recovered for species in this anomaly zone was not similar to any coalescent or concatenated inference phylogenies, suggesting presence of anomalous gene trees. However, this interpretation is complicated by the presence of gene flow because extensive introgression was detected among these species. When exploring tree topology distributions, introgression, and regional variation in recombination rate, we find that many autosomal regions contain signatures of introgression and thus may mislead phylogenetic inference. Conversely, the phylogenetic signal is concentrated to regions with low-recombination rate, such as the Z chromosome, which are also more resistant to interspecific introgression. CONCLUSIONS Collectively, our results suggest that phylogenomic inference should consider the underlying genomic architecture to maximize the consistency of phylogenomic signal.
Collapse
|
9
|
He ZK, Wang Z, Kao QJ, Cheng S, Feng S, Zhao TT, Tao YY, Yu XF, Sun Z. [Epidemiological characteristics of a local cluster epidemic caused by the BA.2 evolutionary branch of Omicron variant]. ZHONGHUA YU FANG YI XUE ZA ZHI [CHINESE JOURNAL OF PREVENTIVE MEDICINE] 2024; 58:65-70. [PMID: 38228551 DOI: 10.3760/cma.j.cn112150-20230828-00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Descriptive epidemiological methods were used to analyze the epidemiological characteristics of the local cluster of COVID-19 in the logistic park of Yuhang District in Hangzhou in March 2022. The cluster epidemic was detected by a case who actively visited the fever clinic. The epidemic lasted for 8 days, and a total of 58 cases (53 workers, 2 students, 1 farmer, 1 teacher and 1 unemployed) were found, including 40 males and 18 females. The age was (33.29±12.22) years. There cases were mainly in Yuhang District (48 cases, 82.77%) and Shangcheng District (7 cases, 12.07%) of Hangzhou. The real-time regeneration number peaked at 2.31 on March 10th and decreased to 0.37 on March 15th. The sequencing result of the indicated case was 100% homologous with the sequence uploaded from South Korea on March 4th, 2022.
Collapse
|
10
|
Wu F, Ji XN, Shen MX, Feng S, Xie LN, Gao YY, Li SP, Yang AY, Wang JH, Chen Q, Zhang X. [Clinical characteristics of epileptic seizure in neurofibromatosis type 1 in 15 cases]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2023; 61:1124-1128. [PMID: 38018050 DOI: 10.3760/cma.j.cn112140-20230829-00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Objective: To summarize the clinical characteristics of epileptic seizure associated with neurofibromatosis type 1 (NF1). Methods: From January 2017 to July 2023 at Children's Hospital Capital Institute of Pediatrics, medical records of patients with both NF1 and epileptic seizure were reviewed in this case series study. The clinical characteristics, treatment and prognosis were analyzed retrospectively. Results: A total of 15 patients(12 boys and 3 girls) were collected. Café-au-lait macules were observed in all 15 patients. There were 6 patients with neurodevelopmental disorders and the main manifestations were intellectual disability or developmental delay. The age at the first epileptic seizure was 2.5 (1.2, 5.5) years. There were various seizure types, including generalized tonic-clonic seizures in 8 patients, focal motor seizures in 6 patients, epileptic spasm in 4 patients, tonic seizures in 1 patient, absence in 1 patient, generalized myoclonic seizure in 1 patient and focal to bilateral tonic-clonic seizure in 1 patient. Among 14 patients whose brain magnetic resonance imaging results were available, there were abnormal signals in corpus callosum, basal ganglia, thalamus or cerebellum in 6 patients, dilated ventricles of different degrees in 3 patients, blurred gray and white matter boundary in 2 patients, agenesis of corpus callosum in 1 patient and no obvious abnormalities in the other patients. Among 13 epilepsy patients, 8 were seizure-free with 1 or 2 antiseizure medications(ASM), 1 with drug resistant epilepsy was seizure-free after left temporal lobectomy, and the other 4 patients who have received 2 to 9 ASM had persistent seizures. One patient with complex febrile convulsion achieved seizure freedom after oral administration of diazepam on demand. One patient had only 1 unprovoked epileptic seizure and did not have another seizure without taking any ASM. Conclusions: The first epileptic seizure in NF1 patients usually occurs in infancy and early childhood, with the main seizure type of generalized tonic-clonic seizure and focal motor seizure. Some patients have intellectual disability or developmental delay. Most epilepsy patients achieve seizure freedom with ASM.
Collapse
|
11
|
Femerling G, van Oosterhout C, Feng S, Bristol RM, Zhang G, Groombridge J, P Gilbert MT, Morales HE. Genetic Load and Adaptive Potential of a Recovered Avian Species that Narrowly Avoided Extinction. Mol Biol Evol 2023; 40:msad256. [PMID: 37995319 DOI: 10.1093/molbev/msad256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 10/26/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
High genetic diversity is a good predictor of long-term population viability, yet some species persevere despite having low genetic diversity. Here we study the genomic erosion of the Seychelles paradise flycatcher (Terpsiphone corvina), a species that narrowly avoided extinction after having declined to 28 individuals in the 1960s. The species recovered unassisted to over 250 individuals in the 1990s and was downlisted from Critically Endangered to Vulnerable in the International Union for the Conservation of Nature Red List in 2020. By comparing historical, prebottleneck (130+ years old) and modern genomes, we uncovered a 10-fold loss of genetic diversity. Highly deleterious mutations were partly purged during the bottleneck, but mildly deleterious mutations accumulated. The genome shows signs of historical inbreeding during the bottleneck in the 1960s, but low levels of recent inbreeding after demographic recovery. Computer simulations suggest that the species long-term small Ne reduced the masked genetic load and made the species more resilient to inbreeding and extinction. However, the reduction in genetic diversity due to the chronically small Ne and the severe bottleneck is likely to have reduced the species adaptive potential to face environmental change, which together with a higher load, compromises its long-term population viability. Thus, small ancestral Ne offers short-term bottleneck resilience but hampers long-term adaptability to environmental shifts. In light of rapid global rates of population decline, our work shows that species can continue to suffer the effect of their decline even after recovery, highlighting the importance of considering genomic erosion and computer modeling in conservation assessments.
Collapse
|
12
|
Liu Z, Wang Q, Ma A, Feng S, Chung D, Zhao J, Ma Q, Liu B. Inference of disease-associated microbial gene modules based on metagenomic and metatranscriptomic data. Comput Biol Med 2023; 165:107458. [PMID: 37703713 DOI: 10.1016/j.compbiomed.2023.107458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
The identification of microbial characteristics associated with diseases is crucial for disease diagnosis and therapy. However, the presence of heterogeneity, high dimensionality, and large amounts of microbial data presents tremendous challenges in discovering key microbial features. In this paper, we present IDAM, a novel computational method for inferring disease-associated gene modules from metagenomic and metatranscriptomic data. This method integrates gene context conservation (uber-operons) and regulatory mechanisms (gene co-expression patterns) within a mathematical graph model to explore gene modules associated with specific diseases. It alleviates reliance on prior meta-data. We applied IDAM to publicly available datasets from inflammatory bowel disease, melanoma, type 1 diabetes mellitus, and irritable bowel syndrome. The results demonstrated the superior performance of IDAM in inferring disease-associated characteristics compared to existing popular tools. Furthermore, we showcased the high reproducibility of the gene modules inferred by IDAM using independent cohorts with inflammatory bowel disease. We believe that IDAM can be a highly advantageous method for exploring disease-associated microbial characteristics. The source code of IDAM is freely available at https://github.com/OSU-BMBL/IDAM, and the web server can be accessed at https://bmblx.bmi.osumc.edu/idam/.
Collapse
|
13
|
Shen MX, Ji XN, Wu F, Gao YY, Feng S, Xie LN, Zheng P, Mao YY, Chen Q. [A case of combined oxidative phosphorylation deficiency 32 caused by MRPS34 gene variation and literature review]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2023; 61:642-647. [PMID: 37385809 DOI: 10.3760/cma.j.cn112140-20230307-00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Objective: To investigate the clinical features and genetic features of combined oxidative phosphorylation deficiency 32 (COXPD32) caused by MRPS34 gene variation. Methods: The clinical data and genetic test of a child with COXPD32 hospitalized in the Department of Neurology, Children's Hospital, Capital Institute of Pediatrics in March 2021 were extracted and analyzed. A literature search was implemented using Wanfang, China biology medicine disc, China national knowledge infrastructure, ClinVar, human gene mutation database (HGMD) and Pubmed databases with the key words "MRPS34" "MRPS34 gene" and "combined oxidative phosphorylation deficiency 32" (up to February 2023). Clinical and genetic features of COXPD32 were summarized. Results: A boy aged 1 year and 9 months was admitted due to developmental delay. He showed mental and motor retardation, and was below the 3rd percentile for height, weight, and head circumference of children of the same age and gender. He had poor eye contact, esotropia, flat nasal bridge, limbs hypotonia, holding instability and tremors. In addition, Grade Ⅲ/6 systolic murmur were heard at left sternal border. Arterial blood gases suggested that severe metabolic acidosis with lactic acidosis. Brain magnetic resonance imaging (MRI) showed multiple symmetrical abnormal signals in the bilateral thalamus, midbrain, pons and medulla oblongata. Echocardiography showed atrial septal defect. Genetic testing identified the patient as a compound heterozygous variation of MRPS34 gene, c.580C>T (p.Gln194Ter) and c.94C>T (p.Gln32Ter), with c.580C>T being the first report and a diagnosis of COXPD32. His parents carried a heterozygous variant, respectively. The child improved after treatment with energy support, acidosis correction, and "cocktail" therapy (vitaminB1, vitaminB2, vitaminB6, vitaminC and coenzyme Q10). A total of 8 cases with COXPD32 were collected through 2 English literature reviews and this study. Among the 8 patients, 7 cases had onset during infancy and 1 was unknown, all had developmental delay or regression, 7 cases had feeding difficulty or dysphagia, followed by dystonia, lactic acidosis, ocular symptoms, microcephaly, constipation and dysmorphic facies(mild coarsening of facial features, small forehead, anterior hairline extending onto forehead,high and narrow palate, thick gums, short columella, and synophrys), 2 cases died of respiratory and circulatory failure, and 6 were still alive at the time of reporting, with an age range of 2 to 34 years. Blood and (or) cerebrospinal fluid lactate were elevated in all 8 patients. MRI in 7 cases manifested symmetrical abnormal signals in the brainstem, thalamus, and (or) basal ganglia. Urine organic acid test were all normal but 1 patient had alanine elevation. Five patients underwent respiratory chain enzyme activity testing, and all had varying degrees of enzyme activity reduction. Six variants were identified, 6 patients were homozygous variants, with c.322-10G>A was present in 4 patients from 2 families and 2 compound heterozygous variants. Conclusions: The clinical phenotype of COXPD32 is highly heterogenous and the severity of the disease varies from development delay, feeding difficulty, dystonia, high lactic acid, ocular symptoms and reduced mitochondrial respiratory chain enzyme activity in mild cases, which may survive into adulthood, to rapid death due to respiratory and circulatory failure in severe cases. COXPD32 needs to be considered in cases of unexplained acidosis, hyperlactatemia, feeding difficulties, development delay or regression, ocular symptoms, respiratory and circulatory failure, and symmetrical abnormal signals in the brainstem, thalamus, and (or) basal ganglia, and genetic testing can clarify the diagnosis.
Collapse
|
14
|
Bi X, Zhou L, Zhang JJ, Feng S, Hu M, Cooper DN, Lin J, Li J, Wu DD, Zhang G. Lineage-specific accelerated sequences underlying primate evolution. SCIENCE ADVANCES 2023; 9:eadc9507. [PMID: 37262186 PMCID: PMC10413682 DOI: 10.1126/sciadv.adc9507] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/05/2023] [Indexed: 06/03/2023]
Abstract
Understanding the mechanisms underlying phenotypic innovation is a key goal of comparative genomic studies. Here, we investigated the evolutionary landscape of lineage-specific accelerated regions (LinARs) across 49 primate species. Genomic comparison with dense taxa sampling of primate species significantly improved LinAR detection accuracy and revealed many novel human LinARs associated with brain development or disease. Our study also yielded detailed maps of LinARs in other primate lineages that may have influenced lineage-specific phenotypic innovation and adaptation. Functional experimentation identified gibbon LinARs, which could have participated in the developmental regulation of their unique limb structures, whereas some LinARs in the Colobinae were associated with metabolite detoxification which may have been adaptive in relation to their leaf-eating diet. Overall, our study broadens knowledge of the functional roles of LinARs in primate evolution.
Collapse
|
15
|
Germain RR, Feng S, Chen G, Graves GR, Tobias JA, Rahbek C, Lei F, Fjeldså J, Hosner PA, Gilbert MTP, Zhang G, Nogués-Bravo D. Species-specific traits mediate avian demographic responses under past climate change. Nat Ecol Evol 2023:10.1038/s41559-023-02055-3. [PMID: 37106156 DOI: 10.1038/s41559-023-02055-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/30/2023] [Indexed: 04/29/2023]
Abstract
Anticipating species' responses to environmental change is a pressing mission in biodiversity conservation. Despite decades of research investigating how climate change may affect population sizes, historical context is lacking, and the traits that mediate demographic sensitivity to changing climate remain elusive. We use whole-genome sequence data to reconstruct the demographic histories of 263 bird species over the past million years and identify networks of interacting morphological and life history traits associated with changes in effective population size (Ne) in response to climate warming and cooling. Our results identify direct and indirect effects of key traits representing dispersal, reproduction and survival on long-term demographic responses to climate change, thereby highlighting traits most likely to influence population responses to ongoing climate warming.
Collapse
|
16
|
Germain RR, Feng S, Buffan L, Carmona CP, Chen G, Graves GR, Tobias JA, Rahbek C, Lei F, Fjeldså J, Hosner PA, Gilbert MTP, Zhang G, Nogués-Bravo D. Changes in the functional diversity of modern bird species over the last million years. Proc Natl Acad Sci U S A 2023; 120:e2201945119. [PMID: 36745783 PMCID: PMC9963860 DOI: 10.1073/pnas.2201945119] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/28/2022] [Indexed: 02/08/2023] Open
Abstract
Despite evidence of declining biosphere integrity, we currently lack understanding of how the functional diversity associated with changes in abundance among ecological communities has varied over time and before widespread human disturbances. We combine morphological, ecological, and life-history trait data for >260 extant bird species with genomic-based estimates of changing effective population size (Ne) to quantify demographic-based shifts in avian functional diversity over the past million years and under pre-anthropogenic climate warming. We show that functional diversity was relatively stable over this period, but underwent significant changes in some key areas of trait space due to changing species abundances. Our results suggest that patterns of population decline over the Pleistocene have been concentrated in particular regions of trait space associated with extreme reproductive strategies and low dispersal ability, consistent with an overall erosion of functional diversity. Further, species most sensitive to climate warming occupied a relatively narrow region of functional space, indicating that the largest potential population increases and decreases under climate change will occur among species with relatively similar trait sets. Overall, our results identify fluctuations in functional space of extant species over evolutionary timescales and represent the demographic-based vulnerability of different regions of functional space among these taxa. The integration of paleodemographic dynamics with functional trait data enhances our ability to quantify losses of biosphere integrity before anthropogenic disturbances and attribute contemporary biodiversity loss to different drivers over time.
Collapse
|
17
|
Lin T, Peng S, Lu S, Fu S, Zeng D, Li J, Chen T, Fan T, Lang C, Feng S, Ma J, Zhao C, Antony B, Cicuttini F, Quan X, Zhu Z, Ding C. Prediction of knee pain improvement over two years for knee osteoarthritis using a dynamic nomogram based on MRI-derived radiomics: a proof-of-concept study. Osteoarthritis Cartilage 2023; 31:267-278. [PMID: 36334697 DOI: 10.1016/j.joca.2022.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/26/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVES To develop and validate a nomogram to detect improved knee pain in osteoarthritis (OA) by integrating magnetic resonance imaging (MRI) radiomics signature of subchondral bone and clinical characteristics. METHODS Participants were selected from the Vitamin D Effects on Osteoarthritis (VIDEO) study. The primary outcome was 20% improvement of knee pain score over 2 years in participants administrated either vitamin D or placebo. Radiomics features of subchondral bone and clinical characteristics from 216 participants were extracted and analyzed. The participants were randomly split into the training and validation cohorts at a ratio of 8:2. Least absolute shrinkage and selection operator (LASSO) regression was used to select features and generate radiomics signatures. The optimal radiomics signature and clinical indicators were fitted into a nomogram using multivariable logistic regression model. RESULTS The nomogram showed favorable discrimination performance [AUCtraining, 0.79 (95% CI: 0.72-0.79), AUCvalidation, 0.83 (95% CI: 0.70-0.96)] as well as a good calibration. Additional contributing value of fusion radiomics signature to the nomogram was statistically significant (NRI, 0.23; IDI, 0.14, P < 0.001 in training cohort and NRI, 0.29; IDI, 0.18, P < 0.05 in validating cohort). Decision curve analysis confirmed the clinical usefulness of nomogram. CONCLUSION The radiomics-based nomogram comprising the MR radiomics signature and clinical variables achieves a favorable predictive efficacy and accuracy in differentiating improvement in knee pain among OA patients. This proof-of-concept study provides a promising way to predict clinically meaningful outcomes.
Collapse
|
18
|
Wanders K, Chen G, Feng S, Zhang G, Székely T, Bruford M, Végvári Z, Eichhorn G, Urrutia A. Polygamy and purifying selection in birds. Evolution 2023; 77:276-288. [PMID: 36625454 DOI: 10.1093/evolut/qpac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/05/2022] [Accepted: 10/29/2022] [Indexed: 01/11/2023]
Abstract
Good genes theories of sexual selection predict that polygamy will be associated with more efficient removal of deleterious alleles (purifying selection), due to the alignment of sexual selection with natural selection. On the other hand, runaway selection theories expect no such alignment of natural and sexual selection, and may instead predict less efficient purifying selection in polygamous species due to higher reproductive variance. In an analysis of polymorphism data extracted from 150-bird genome assemblies, we show that polygamous species carry significantly fewer nonsynonymous polymorphisms, relative to synonymous polymorphisms, than monogamous bird species (p = .0005). We also show that this effect is independent of effective population size, consistent with the alignment of natural selection with sexual selection and "good genes" theories of sexual selection. Further analyses found no impact of polygamy on genetic diversity, while polygamy in females (polyandry) had a marginally significant impact (p = .045). We also recapitulate previous findings that smaller body mass and greater geographic range size are associated with more efficient purifying selection, more intense GC-biased gene conversion, and greater genetic diversity.
Collapse
|
19
|
Li X, Gao R, Chen G, Price AL, Øksnebjerg DB, Hosner PA, Zhou Y, Zhang G, Feng S. Draft genome assemblies of four manakins. Sci Data 2022; 9:564. [PMID: 36100590 PMCID: PMC9470731 DOI: 10.1038/s41597-022-01680-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022] Open
Abstract
Manakins are a family of small suboscine passerine birds characterized by their elaborate courtship displays, non-monogamous mating system, and sexual dimorphism. This family has served as a good model for the study of sexual selection. Here we present genome assemblies of four manakin species, including Cryptopipo holochlora, Dixiphia pipra (also known as Pseudopipra pipra), Machaeropterus deliciosus and Masius chrysopterus, generated by Single-tube Long Fragment Read (stLFR) technology. The assembled genome sizes ranged from 1.10 Gb to 1.19 Gb, with average scaffold N50 of 29 Mb and contig N50 of 169 Kb. On average, 12,055 protein-coding genes were annotated in the genomes, and 9.79% of the genomes were annotated as repetitive elements. We further identified 75 Mb of Z-linked sequences in manakins, containing 585 to 751 genes and an ~600 Kb pseudoautosomal region (PAR). One notable finding from these Z-linked sequences is that a possible Z-to-autosome/PAR reversal could have occurred in M. chrysopterus. These de novo genomes will contribute to a deeper understanding of evolutionary history and sexual selection in manakins.
Collapse
|
20
|
Ji Y, Feng S, Wu L, Fang Q, Brüniche-Olsen A, DeWoody JA, Cheng Y, Zhang D, Hao Y, Song G, Qu Y, Suh A, Zhang G, Hackett SJ, Lei F. Orthologous microsatellites, transposable elements, and DNA deletions correlate with generation time and body mass in neoavian birds. SCIENCE ADVANCES 2022; 8:eabo0099. [PMID: 36044583 PMCID: PMC9432842 DOI: 10.1126/sciadv.abo0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The rate of mutation accumulation in germline cells can be affected by cell replication and/or DNA damage, which are further related to life history traits such as generation time and body mass. Leveraging the existing datasets of 233 neoavian bird species, here, we investigated whether generation time and body mass contribute to the interspecific variation of orthologous microsatellite length, transposable element (TE) length, and deletion length and how these genomic attributes affect genome sizes. In nonpasserines, we found that generation time is correlated to both orthologous microsatellite length and TE length, and body mass is negatively correlated to DNA deletions. These patterns are less pronounced in passerines. In all species, we found that DNA deletions relate to genome size similarly as TE length, suggesting a role of body mass dynamics in genome evolution. Our results indicate that generation time and body mass shape the evolution of genomic attributes in neoavian birds.
Collapse
|
21
|
Jindal T, Han H, Deshmukh P, De Kouchkovsky I, Kwon D, Borno H, Koshkin V, Desai A, Bose R, Chou J, Friedlander T, Small E, Angelidakis A, Johnson M, Feng S, Patnaik A, Fong L, Alumkal J, Aggarwal R. 1404P A phase II study of ZEN-3694 (ZEN), enzalutamide (ENZ), and pembrolizumab (P) in metastatic castration resistant prostate cancer (mCRPC): Interim safety results. Ann Oncol 2022. [DOI: 10.1016/j.annonc.2022.07.1890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
22
|
Aggarwal R, Trihy L, Hernandez Romero E, Luch Sam S, Rastogi M, De Kouchkovsky I, Small E, Feng F, Kwon D, Friedlander T, Borno H, Bose R, Chou J, Koshkin V, Desai A, Feng S, Angelidakis A, Johnson M, Fong L, Hope T. 1379P A phase Ib study of a single priming dose of 177Lu-PSMA-617 coupled with pembrolizumab in metastatic castration resistant prostate cancer (mCRPC). Ann Oncol 2022. [DOI: 10.1016/j.annonc.2022.07.1511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Klotz S, Baptiste B, Hattori T, Feng S, Jin C, Béneut K, Guigner J, Estève I. High-pressure polymerisation of CS 2: 'Bridgman's black' revisited. ACTA CRYSTALLOGRAPHICA SECTION A FOUNDATIONS AND ADVANCES 2022. [DOI: 10.1107/s2053273322091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
24
|
Haeusler IL, Daniel O, Isitt C, Watts R, Cantrell L, Feng S, Cochet M, Salloum M, Ikram S, Hayter E, Lim S, Hall T, Athaide S, Cosgrove CA, Tregoning JS, Le Doare K. Group B Streptococcus (GBS) colonisation is dynamic over time, whilst GBS capsular polysaccharides-specific antibody remains stable. Clin Exp Immunol 2022; 209:188-200. [PMID: 35802786 PMCID: PMC9390841 DOI: 10.1093/cei/uxac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Group B Streptococcus (GBS) is a leading cause of adverse pregnancy outcomes due to invasive infection. This study investigated longitudinal variation in GBS rectovaginal colonization, serum and vaginal GBS capsular polysaccharide (CPS)-specific antibody levels. Non-pregnant women were recruited in the UK and were sampled every 2 weeks over a 12-week period. GBS isolates were taken from recto-vaginal swabs and serotyped by polymerase chain reaction. Serum and vaginal immunoglobulin G (IgG) and nasal immunoglobulin A (IgA) specific to CPS were measured by Luminex, and total IgG/A by ELISA. Seventy women were enrolled, of median age 26. Out of the 66 participants who completed at least three visits: 14/47 (29.8%) women that were GBS negative at screening became positive in follow-up visits and 16/19 (84.2%) women who were GBS positive at screening became negative. There was 50% probability of becoming negative 36 days after the first positive swab. The rate of detectable GBS carriage fluctuated over time, although serum, vaginal, and nasal CPS-specific antibody levels remained constant. Levels of CPS-specific antibodies were higher in the serum of individuals colonized with GBS than in non-colonized, but similar in the vaginal and nasal mucosa. We found correlations between antibody levels in serum and the vaginal and nasal mucosa. Our study demonstrates the feasibility of elution methods to retrieve vaginal and nasal antibodies, and the optimization of immunoassays to measure GBS-CPS-specific antibodies. The difference between the dynamics of colonization and antibody response is interesting and further investigation is required for vaccine development.
Collapse
|
25
|
Feng S, Bai M, Rivas-González I, Li C, Liu S, Tong Y, Yang H, Chen G, Xie D, Sears KE, Franco LM, Gaitan-Espitia JD, Nespolo RF, Johnson WE, Yang H, Brandies PA, Hogg CJ, Belov K, Renfree MB, Helgen KM, Boomsma JJ, Schierup MH, Zhang G. Incomplete lineage sorting and phenotypic evolution in marsupials. Cell 2022; 185:1646-1660.e18. [PMID: 35447073 PMCID: PMC9200472 DOI: 10.1016/j.cell.2022.03.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/22/2021] [Accepted: 03/21/2022] [Indexed: 12/19/2022]
Abstract
Incomplete lineage sorting (ILS) makes ancestral genetic polymorphisms persist during rapid speciation events, inducing incongruences between gene trees and species trees. ILS has complicated phylogenetic inference in many lineages, including hominids. However, we lack empirical evidence that ILS leads to incongruent phenotypic variation. Here, we performed phylogenomic analyses to show that the South American monito del monte is the sister lineage of all Australian marsupials, although over 31% of its genome is closer to the Diprotodontia than to other Australian groups due to ILS during ancient radiation. Pervasive conflicting phylogenetic signals across the whole genome are consistent with some of the morphological variation among extant marsupials. We detected hundreds of genes that experienced stochastic fixation during ILS, encoding the same amino acids in non-sister species. Using functional experiments, we confirm how ILS may have directly contributed to hemiplasy in morphological traits that were established during rapid marsupial speciation ca. 60 mya.
Collapse
|