1
|
Lin Y, Xie C, Zhang Y, Luo F, Gao Q, Li Y, Su L, Xu R, Zhang X, Chen R, Zhou S, Li P, Liu J, Liang M, Nie S. Association of serum 25-hydroxyvitamin D with cardiovascular mortality and kidney outcome in patients with early stages of CKD. J Endocrinol Invest 2024; 47:2745-2755. [PMID: 38733429 DOI: 10.1007/s40618-024-02383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
PURPOSE While serum 25-hydroxyvitamin D (25[OH]D) deficiency is prevalent in chronic kidney disease (CKD), the effects of 25(OH)D deficiency on cardiovascular mortality and kidney outcomes in patients with early-stage CKD remain incompletely understood. METHODS This multicenter retrospective cohort study included adult patients with stages 1-3 CKD from 19 medical centers across China between January 2000 and May 2021. The primary outcome was cardiovascular mortality. The secondary study outcome included CKD progression (defined as a sustained > 40% eGFR decrease from baseline or progress to end-stage kidney disease), and annual percentage change of eGFR. RESULTS Of 9229 adults with stages 1-3 CKD, 27.0% and 38.9% had severe (< 10 ng/mL) and moderate (10 to < 20 ng/mL) serum 25(OH)D deficiency, respectively. Compared with patients having 25(OH)D ≥ 20 ng/mL, a significantly higher risk of cardiovascular mortality (hazard ratio [HR] 1.90, 95% CI 1.37-2.63), CKD progression (HR 2.20, 95% CI 1.68-2.88), and a steeper annual decline in eGFR (estimate - 7.87%; 95% CI - 10.24% to - 5.51% per year) was found in those with serum 25(OH)D < 10 ng/mL. Similar results were obtained in subgroups and by sensitivity analyses. CONCLUSIONS 25(OH)D deficiency is associated with increased risks of cardiovascular mortality and CKD progression in patients with early-stage CKD. Studies are needed to determine whether early intervention for 25(OH)D deficiency could improve the prognosis of patients with early-stage CKD.
Collapse
|
2
|
Wang X, Xin F, Zhou S. A systematic review and meta-analysis of effect of leucocyte- and platelet-rich fibrin on dental extraction. Med Oral Patol Oral Cir Bucal 2024; 29:e775-e781. [PMID: 39396147 DOI: 10.4317/medoral.26724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/29/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Dental extraction is the most common oral surgery, but it leads to the remodelling of the socket, such that an implant is required for repair. We performed meta-analysis to determine whether leucocyte- and platelet-rich fibrin (L-PRF) improves dental extraction. MATERIAL AND METHODS Following a search of Scopus, Web of science, ProQuest and PubMed, six relevant studies were included (239 patients treated with L-PRF after dental extraction). RESULTS The results provide higher percentage of bone formation after dental extraction in L-PRF implant patients with a mean difference of -13.16 (-15.89, -10.43) than control. Socket filling and horizontal width were also higher in the L-PRF implant group. A sub-group meta-analysis showed a significantly higher healing index 7 and 14 days after dental extraction in the L-PRF-treated group. The VAS score for pain stimuli was lower in the L-PRF group with a mean difference of 1.26 (1.00, 1.51) than control group; the difference in the heterogeneity of the studies was significant. CONCLUSIONS These results show that L-PRF prevents ridge formation by improving the percentage of bone formation and socket width (improved horizontal width and socket filling). In such patients, the healing index was higher and the VAS score for pain stimuli lower than in the control group.
Collapse
|
3
|
Li Z, Lei S, Zhou S, Zhang Z. Rheumatoid arthritis with chylothorax: a case report. Scand J Rheumatol 2024; 53:396-397. [PMID: 38686821 DOI: 10.1080/03009742.2024.2342053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
|
4
|
Xu D, Zeng S, Qiu W, Wang G, Qin Z, Liu Y, Zhou S, Zhang Z, Chang W, Feng Q, Xu J. Fruquintinib in refractory metastatic colorectal cancer: a multicenter real-world study. ESMO Open 2024; 9:103702. [PMID: 39395266 DOI: 10.1016/j.esmoop.2024.103702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Fruquintinib has been approved by the Food and Drug Administration for refractory metastatic colorectal cancer (mCRC). In clinical practice, fruquintinib is sometimes used in combination with other drugs, but its efficacy and safety are still unknown. In this study, we present a comprehensive analysis of the real-world treatment modalities involving fruquintinib in late-line settings for mCRC across six centers in China. PATIENTS AND METHODS Patients with refractory mCRC who received fruquintinib treatment in six centers in China between 1 January 2021 and 31 June 2022 were included in this study. Patients were categorized into two cohorts: the monotherapy group (treated solely with fruquintinib) and the combined group (received fruquintinib combined with chemotherapy and/or anti-programmed cell death protein 1 antibodies). Demographic, clinical, survival, and safety data were retrospectively analyzed. The study was registered at clinicaltrials.gov as NCT06202417. RESULTS A total of 520 patients were included in this study. The median follow-up time was 9.7 months. The disease control rate was 64.8%. The median progression-free survival was 5.0 months and the median overall survival was 11.4 months. Of them, 387 (74.4%) were treated with fruquintinib alone, while 133 (25.6%) were administered fruquintinib plus chemotherapy and/or anti-programmed cell death protein 1 antibodies, respectively. Adverse events were reported by 91.3% (457/520) of patients. The rate of grade 3 or 4 toxicity was 42.4% (237/520). No treatment-related death occurred. CONCLUSION Fruquintinib, either as a standalone treatment or in combination with other medications, demonstrates substantial efficacy and favorable tolerability in refractory mCRC patients.
Collapse
|
5
|
Shao S, Liao H, Zhou S, Li Y, Yu H, Dai X, Zhu Q, Hua Y, Wang C, Zhou K. Isolated non-immune-mediated second-degree atrioventricular block in the fetus: natural history and predictive factors for spontaneous recovery. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 64:486-492. [PMID: 38642334 DOI: 10.1002/uog.27662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/22/2024]
Abstract
OBJECTIVES To determine the clinical course of fetal isolated non-immune-mediated second-degree atrioventricular block (AVB) and the factors associated with spontaneous recovery in these cases. METHODS Fetuses with isolated non-immune-mediated second-degree AVB were recruited prospectively between 2014 and 2022. These fetuses were divided into two groups: those which recovered spontaneously and those which did not. Maternal and fetal characteristics and intrauterine and postnatal outcomes were compared between the two groups. RESULTS The study cohort included 20 fetuses with isolated non-immune-mediated second-degree AVB, diagnosed at a median gestational age of 22.0 (range, 17.0-35.0) weeks. In 12 fetuses, 1:1 atrioventricular conduction was restored spontaneously in utero and there was no recurrence during the postnatal follow-up period. In the remaining eight fetuses, second-degree AVB was maintained and, in six of these, the pregnancy was terminated on parental request. Of the two liveborn children who had persistent second-degree AVB prenatally, one had progressed to complete AVB at the latest follow-up, at the age of 34 months, but was asymptomatic, without heart enlargement or dysfunction. The other child progressed to complete AVB after delivery and was diagnosed with type-2 long QT syndrome. This infant died aged 2 months. Fetuses in the group that recovered spontaneously had earlier gestational age at diagnosis (median, 20.0 (range, 17.0-26.0) vs 24.5 (range, 18.0-35.0) weeks; P = 0.004) and higher atrial rate at diagnosis (median, 147 (range, 130-160) vs 138 (range, 125-149) bpm; P = 0.006) in comparison with the group that did not recover spontaneously. The best cut-off values for prediction of failure to recover spontaneously were 22.5 weeks' gestational age at diagnosis and 144 bpm atrial rate at diagnosis, with sensitivities of 87.5% and 75.0%, respectively, and specificities of 92.0% and 87.5%, respectively. CONCLUSIONS The outcome of 60% of fetuses with isolated non-immune-mediated second-degree AVB was favorable. Earlier gestational age and higher atrial rate at diagnosis were associated with spontaneous reversion to normal sinus rhythm. Prenatal genetic testing should be performed in cases with persistent AVB, to exclude heritable disorders including long QT syndrome. These findings provide important information for clinical management and prenatal counseling in these cases. © 2024 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
|
6
|
Surawski NC, Awadallah M, Zhao E, Zhou S, Dunn T, Hall C, Walker PD. Reducing real driving fuel consumption and emissions with a hydraulic hybrid vehicle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176549. [PMID: 39341257 DOI: 10.1016/j.scitotenv.2024.176549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
We have successfully prototyped and tested the real-driving performance of a hydraulic hybrid heavy commercial vehicle. Hydraulic hybrid driveline technology was fitted to a Euro IV diesel truck equipped with a diesel particulate diffuser/filter and an exhaust gas recirculation system. An AVL portable emissions measurement system was fitted to the test vehicle to quantify gaseous and particle phase emissions species and an on-board diagnostic scan tool was used to obtain data from the trucks electronic control unit. Fuel consumption savings up to 17 % were accomplished in hydraulic hybrid mode when testing on a short urban driving route featuring a high intensity of stop-start activity. Average reductions in solid particle number concentration of 40 % were achieved along with increases in NOx, Hydrocarbons (THCs) and CO. Future work could target improved control system integration of the various driveline components to further reduce fuel consumption and emissions in an improved prototype design.
Collapse
|
7
|
Ablikim M, Achasov MN, Adlarson P, Afedulidis O, Ai XC, Aliberti R, Amoroso A, An Q, Bai Y, Bakina O, Balossino I, Ban Y, Bao HR, Batozskaya V, Begzsuren K, Berger N, Berlowski M, Bertani M, Bettoni D, Bianchi F, Bianco E, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Che GR, Chelkov G, Chen C, Chen CH, Chen C, Chen G, Chen HS, Chen HY, Chen ML, Chen SJ, Chen SL, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen YQ, Chen ZJ, Chen ZY, Choi SK, Cibinetto G, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng CQ, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding B, Ding XX, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du MC, Du SX, Duan YY, Duan ZH, Egorov P, Fan YH, Fang J, Fang J, Fang SS, Fang WX, Fang Y, Fang YQ, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Feng YT, Fritsch M, Fu CD, Fu JL, Fu YW, Gao H, Gao XB, Gao YN, Gao Y, Garbolino S, Garzia I, Ge L, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Gramigna S, Greco M, Gu MH, Gu YT, Guan CY, Guo AQ, Guo LB, Guo MJ, Guo RP, Guo YP, Guskov A, Gutierrez J, Han KL, Han TT, Hanisch F, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Holtmann T, Hong PC, Hou GY, Hou XT, Hou YR, Hou ZL, Hu BY, Hu HM, Hu JF, Hu SL, Hu T, Hu Y, Hu ZM, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Huang YS, Hussain T, Hölzken F, Hüsken N, In der Wiesche N, Jackson J, Janchiv S, Jeong JH, Ji Q, Ji QP, Ji W, Ji XB, Ji XL, Ji YY, Jia XQ, Jia ZK, Jiang D, Jiang HB, Jiang PC, Jiang SS, Jiang TJ, Jiang XS, Jiang Y, Jiao JB, Jiao JK, Jiao Z, Jin S, Jin Y, Jing MQ, Jing XM, Johansson T, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kavatsyuk M, Ke BC, Khachatryan V, Khoukaz A, Kiuchi R, Kolcu OB, Kopf B, Kuessner M, Kui X, Kumar N, Kupsc A, Kühn W, Lane JJ, Lavezzi L, Lei TT, Lei ZH, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li HN, Li H, Li JR, Li JS, Li K, Li KL, Li LJ, Li LK, Li L, Li MH, Li PR, Li QM, Li QX, Li R, Li SX, Li T, Li WD, Li WG, Li X, Li XH, Li XL, Li XY, Li XZ, Li YG, Li ZJ, Li ZY, Liang C, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao YP, Libby J, Limphirat A, Lin CC, Lin DX, Lin T, Liu BJ, Liu BX, Liu C, Liu CX, Liu F, Liu FH, Liu F, Liu GM, Liu H, Liu HB, Liu HH, Liu HM, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LC, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu X, Liu Y, Liu Y, Liu YB, Liu ZA, Liu ZD, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo JR, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma H, Ma HL, Ma JL, Ma LL, Ma LR, Ma MM, Ma QM, Ma RQ, Ma T, Ma XT, Ma XY, Ma Y, Ma YM, Maas FE, Maggiora M, Malde S, Malik QA, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Moses B, Muchnoi NY, Muskalla J, Nefedov Y, Nerling F, Nie LS, Nikolaev IB, Ning Z, Nisar S, Niu QL, Niu WD, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pei YP, Pelizaeus M, Peng HP, Peng YY, Peters K, Ping JL, Ping RG, Plura S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qiao XK, Qin JJ, Qin LQ, Qin LY, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu ZH, Redmer CF, Ren KJ, Rivetti A, Rolo M, Rong G, Rosner C, Ruan SN, Salone N, Sarantsev A, Schelhaas Y, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shang ZJ, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi H, Shi HC, Shi JL, Shi JY, Shi QQ, Shi SY, Shi X, Song JJ, Song TZ, Song WM, Song YJ, Song YX, Sosio S, Spataro S, Stieler F, Su SS, Su YJ, Sun GB, Sun GX, Sun H, Sun HK, Sun JF, Sun K, Sun L, Sun SS, Sun T, Sun WY, Sun Y, Sun YJ, Sun YZ, Sun ZQ, Sun ZT, Tang CJ, Tang GY, Tang J, Tang M, Tang YA, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian Y, Tian ZF, Uman I, Wan Y, Wang SJ, Wang B, Wang BL, Wang B, Wang DY, Wang F, Wang HJ, Wang JJ, Wang JP, Wang K, Wang LL, Wang M, Wang NY, Wang S, Wang S, Wang T, Wang TJ, Wang W, Wang W, Wang WP, Wang X, Wang XF, Wang XJ, Wang XL, Wang XN, Wang Y, Wang YD, Wang YF, Wang YL, Wang YN, Wang YQ, Wang Y, Wang Y, Wang Z, Wang ZL, Wang ZY, Wang Z, Wei DH, Weidner F, Wen SP, Wen YR, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu C, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YH, Wu YJ, Wu Z, Xia L, Xian XM, Xiang BH, Xiang T, Xiao D, Xiao GY, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu M, Xu QJ, Xu QN, Xu W, Xu WL, Xu XP, Xu Y, Xu YC, Xu ZS, Yan F, Yan L, Yan WB, Yan WC, Yan XQ, Yang HJ, Yang HL, Yang HX, Yang T, Yang Y, Yang YF, Yang YF, Yang YX, Yang ZW, Yao ZP, Ye M, Ye MH, Yin JH, Yin J, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu MC, Yu T, Yu XD, Yu YC, Yuan CZ, Yuan J, Yuan J, Yuan L, Yuan SC, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng SH, Zeng X, Zeng Y, Zeng YJ, Zeng YJ, Zhai XY, Zhai YC, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang H, Zhang HC, Zhang HH, Zhang HH, Zhang HQ, Zhang HR, Zhang HY, Zhang J, Zhang J, Zhang JJ, Zhang JL, Zhang JQ, Zhang JS, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang LM, Zhang L, Zhang P, Zhang QY, Zhang RY, Zhang SH, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang XY, Zhang Y, Zhang Y, Zhang YT, Zhang YH, Zhang YM, Zhang Y, Zhang ZD, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhang ZZ, Zhao G, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao N, Zhao RP, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng BM, Zheng JP, Zheng WJ, Zheng YH, Zhong B, Zhong X, Zhou H, Zhou JY, Zhou LP, Zhou S, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhou ZC, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu KS, Zhu L, Zhu LX, Zhu SH, Zhu TJ, Zhu WD, Zhu YC, Zhu ZA, Zou JH, Zu J. Strong and Weak CP Tests in Sequential Decays of Polarized Σ^{0} Hyperons. PHYSICAL REVIEW LETTERS 2024; 133:101902. [PMID: 39303247 DOI: 10.1103/physrevlett.133.101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024]
Abstract
The J/ψ, ψ(3686)→Σ^{0}Σ[over ¯]^{0} processes and subsequent decays are studied using the world's largest J/ψ and ψ(3686) data samples collected with the BESIII detector. The parity-violating decay parameters of the decays Σ^{0}→Λγ and Σ[over ¯]^{0}→Λ[over ¯]γ, α_{Σ^{0}}=-0.0017±0.0021±0.0018 and α[over ¯]_{Σ^{0}}=0.0021±0.0020±0.0022, are measured for the first time. The strong CP symmetry is tested in the decays of the Σ^{0} hyperons for the first time by measuring the asymmetry A_{CP}^{Σ}=α_{Σ^{0}}+α[over ¯]_{Σ^{0}}=(0.4±2.9±1.3)×10^{-3}. The weak CP test is performed in the subsequent decays of their daughter particles Λ and Λ[over ¯]. Also for the first time, the transverse polarizations of the Σ^{0} hyperons in J/ψ and ψ(3686) decays are observed with opposite directions, and the ratios between the S-wave and D-wave contributions of the J/ψ, ψ(3686)→Σ^{0}Σ[over ¯]^{0} decays are obtained. These results are crucial to understand the decay dynamics of the charmonium states and the production mechanism of the Σ^{0}-Σ[over ¯]^{0} pairs.
Collapse
|
8
|
Li J, Pang YY, Zhang BW, Zhou S, Wang Q, Lai JZ, Li MT. [Two cases of inflammatory myopathy complicated with primary biliary cholangitis with myocardial involvement as the initial manifestation]. ZHONGHUA NEI KE ZA ZHI 2024; 63:876-880. [PMID: 39183161 DOI: 10.3760/cma.j.cn112138-20231206-00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
|
9
|
Patel NS, Duke RP, Tian Z, Zhou S, Kaiser JR. Agreement between intermittent glucose concentrations and continuous glucose monitoring in at-risk newborns. J Perinatol 2024; 44:1367-1368. [PMID: 38374217 DOI: 10.1038/s41372-024-01906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
|
10
|
Duan S, Tian B, Huang G, Huang S, Zhou S. A Rabbit Dry Eye Model Induced by Subcutaneous Scopolamine. Curr Eye Res 2024; 49:905-913. [PMID: 38717185 DOI: 10.1080/02713683.2024.2349642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE To establish and characterize a dry eye model in New Zealand rabbits by subcutaneous injections of scopolamine hydrobromide (SCOP). METHODS Twenty New Zealand male rabbits were injected subcutaneously SCOP for 14 consecutive days; subcutaneous saline was used as a negative control. The correlated clinical parameters of ocular surface dryness were detected in vivo using tear secretion and corneal fluorescein staining. The expression of IL-1β and TNF-α on the ocular surface and in lacrimal glands were analyzed by real-time PCR and western blot on the 14th day. The expression of Mucin-5 subtype AC (MUC5AC) was detected by Immunofluorescence staining in conjunctival tissue. RESULTS The SCOP-treated rabbits exhibited significantly decreased aqueous tear secretion and increased corneal fluorescein staining scores over time. Both the mRNA expression levels and the protein expression levels of IL-1β and TNF-α were significantly increased after SCOP treatment compared with those after saline treatment. The loss of conjunctival MUC5AC was found in the SCOP-injected rabbits. Some infiltrated inflammatory cells and atrophic acinar cells were observed in the lacrimal gland after SCOP treatment. The disordered structures of the ocular surface and lacrimal glands were also observed. CONCLUSIONS This study showed that repeated subcutaneous SCOP injections successfully elicited some of the typical dry eye symptoms commonly seen in humans.
Collapse
|
11
|
Patel NS, Duke RP, Tian Z, Zhou S, Kaiser JR. Statistical analysis of continuous glucose monitoring in at-risk newborns. J Perinatol 2024; 44:1384-1385. [PMID: 39048630 DOI: 10.1038/s41372-024-02072-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
|
12
|
Zhou S, Liang Z, Li Q, Tian W, Song S, Wang Z, Huang J, Ren M, Liu G, Xu M, Zheng ZJ. Individual and area-level socioeconomic status, Life's Simple 7, and comorbid cardiovascular disease and cancer: a prospective analysis of the UK Biobank cohort. Public Health 2024; 234:178-186. [PMID: 39024928 DOI: 10.1016/j.puhe.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVES We aimed to investigate the associations of individual and area-level socioeconomic status (SES) with incident cardiovascular diseases (CVD) alone, cancer alone, and comorbid CVD and cancer, and the mediation role of cardiovascular health score in these associations. STUDY DESIGN This was a population-based prospective cohort study. METHODS We used data from the UK Biobank, a population-based prospective cohort study. Latent class analysis was used to create an individual-level SES index based on three indicators (household income, education level, and employment status), and the Townsend Index was defined as the area-level socioeconomic status. We used the American Heart Association's (AHA) Life's Simple 7 (smoking, body weight, physical activity, diet, blood pressure, blood glucose, and total cholesterol) to calculate the cardiovascular health score. We used Cox proportional hazard regression models to estimate the hazard ratio (HR) and 95% confidence interval (CI) adjusted for demographic, environmental, and genetic factors. RESULTS Compared with high SES, the HRs in participants with low individual and area-level SES were 1.33 (95% confidence interval [CI] 1.29 to 1.38) and 1.24 (95% CI 1.20 to 1.29) for incident CVD, 0.96 (95% CI 0.93 to 0.99) and 0.95 (95%CI 0.92 to 0.98) for incident cancer, 1.32 (95%CI 1.24 to 1.40) and 1.15 (95%CI 1.08 to 1.22) for incident comorbid CVD and cancer, respectively. Additionally, the mediation proportion of CVD score for individual and area-level SES was 47.93% and 48.87% for incident CVD, 44.83% and 59.93% for incident comorbid CVD and cancer. The interactions between individual-level SES and CVD scores were significant on incident CVD, and comorbid CVD and cancer, and the protective associations were stronger in participants with high individual-level SES. CONCLUSIONS Life's Simple 7 significantly mediated the associations between SES and comorbid CVD and cancer, while almost half of the associations remained unclear.
Collapse
|
13
|
Chen X, Shi Y, Zhou S, Geng M, Tu H, Song J, Zheng C, Sun J. [Risk factors of visceral leishmaniasis in the world: a review]. ZHONGGUO XUE XI CHONG BING FANG ZHI ZA ZHI = CHINESE JOURNAL OF SCHISTOSOMIASIS CONTROL 2024; 36:412-421. [PMID: 39322304 DOI: 10.16250/j.32.1374.2024079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Visceral leishmaniasis is a zoonotic parasitic disease caused by viscerotropic Leishmania species and transmitted by bites of infected phlebotomine sandflies, which is predominantly prevalent in the Indian subcontinent, eastern Africa and South America. Currently, visceral leishmaniasis is the second most fatal parasitic disease in the world. Because of climate changes, urban development and individual conditions, there are changes in the density of visceral leishmaniasis vector sandflies and the likelihood of contact with humans, resulting in a visceral leishmaniasis transmission risk. The review summarizes natural, social and biological factors affecting the transmission of visceral leishmaniasis, so as to provide insights into formulation of targeted control measures for visceral leishmaniasis.
Collapse
|
14
|
Abdulhamid MI, Aboona BE, Adam J, Adamczyk L, Adams JR, Aggarwal I, Aggarwal MM, Ahammed Z, Aschenauer EC, Aslam S, Atchison J, Bairathi V, Cap JGB, Barish K, Bellwied R, Bhagat P, Bhasin A, Bhatta S, Bhosale SR, Bielcik J, Bielcikova J, Brandenburg JD, Broodo C, Cai XZ, Caines H, Sánchez MCDLB, Cebra D, Ceska J, Chakaberia I, Chaloupka P, Chan BK, Chang Z, Chatterjee A, Chen D, Chen J, Chen JH, Chen Z, Cheng J, Cheng Y, Choudhury S, Christie W, Chu X, Crawford HJ, Csanád M, Dale-Gau G, Das A, Deppner IM, Dhamija A, Dixit P, Dong X, Drachenberg JL, Duckworth E, Dunlop JC, Engelage J, Eppley G, Esumi S, Evdokimov O, Eyser O, Fatemi R, Fazio S, Feng CJ, Feng Y, Finch E, Fisyak Y, Flor FA, Fu C, Gagliardi CA, Galatyuk T, Gao T, Geurts F, Ghimire N, Gibson A, Gopal K, Gou X, Grosnick D, Gupta A, Guryn W, Hamed A, Han Y, Harabasz S, Harasty MD, Harris JW, Harrison-Smith H, He W, He XH, He Y, Herrmann N, Holub L, Hu C, Hu Q, Hu Y, Huang H, Huang HZ, Huang SL, Huang T, Huang X, Huang Y, Huang Y, Humanic TJ, Isshiki M, Jacobs WW, Jalotra A, Jena C, Jentsch A, Ji Y, Jia J, Jin C, Ju X, Judd EG, Kabana S, Kalinkin D, Kang K, Kapukchyan D, Kauder K, Keane D, Khanal A, Khyzhniak YV, Kikoła DP, Kincses D, Kisel I, Kiselev A, Knospe AG, Ko HS, Kosarzewski LK, Kumar L, Labonte MC, Lacey R, Landgraf JM, Lauret J, Lebedev A, Lee JH, Leung YH, Lewis N, Li C, Li D, Li HS, Li H, Li W, Li X, Li Y, Li Y, Li Z, Liang X, Liang Y, Licenik R, Lin T, Lin Y, Lisa MA, Liu C, Liu G, Liu H, Liu L, Liu T, Liu X, Liu Y, Liu Z, Ljubicic T, Lomicky O, Longacre RS, Loyd EM, Lu T, Luo J, Luo XF, Ma L, Ma R, Ma YG, Magdy N, Mallick D, Manikandhan R, Margetis S, Markert C, McNamara G, Mezhanska O, Mi K, Mioduszewski S, Mohanty B, Mondal MM, Mooney I, Mrazkova J, Nagy MI, Nain AS, Nam JD, Nasim M, Neff D, Nelson JM, Nemes DB, Nie M, Nigmatkulov G, Niida T, Nonaka T, Odyniec G, Ogawa A, Oh S, Okubo K, Page BS, Pak R, Pal S, Pandav A, Pandey AK, Pani T, Paul A, Pawlik B, Pawlowska D, Perkins C, Pluta J, Pokhrel BR, Posik M, Protzman T, Prozorova V, Pruthi NK, Przybycien M, Putschke J, Qin Z, Qiu H, Racz C, Radhakrishnan SK, Rana A, Ray RL, Reed R, Robertson CW, Robotkova M, Aguilar MAR, Roy D, Chowdhury PR, Ruan L, Sahoo AK, Sahoo NR, Sako H, Salur S, Sato S, Schaefer BC, Schmidke WB, Schmitz N, Seck FJ, Seger J, Seto R, Seyboth P, Shah N, Shanmuganathan PV, Shao T, Sharma M, Sharma N, Sharma R, Sharma SR, Sheikh AI, Shen D, Shen DY, Shen K, Shi SS, Shi Y, Shou QY, Si F, Singh J, Singha S, Sinha P, Skoby MJ, Smirnov N, Söhngen Y, Song Y, Srivastava B, Stanislaus TDS, Stefaniak M, Stewart DJ, Su Y, Sumbera M, Sun C, Sun X, Sun Y, Sun Y, Surrow B, Svoboda M, Sweger ZW, Tamis AC, Tang AH, Tang Z, Tarnowsky T, Thomas JH, Timmins AR, Tlusty D, Todoroki T, Trentalange S, Tribedy P, Tripathy SK, Truhlar T, Trzeciak BA, Tsai OD, Tsang CY, Tu Z, Tyler J, Ullrich T, Underwood DG, Upsal I, Van Buren G, Vanek J, Vassiliev I, Verkest V, Videbæk F, Voloshin SA, Wang F, Wang G, Wang JS, Wang J, Wang K, Wang X, Wang Y, Wang Y, Wang Y, Wang Z, Webb JC, Weidenkaff PC, Westfall GD, Wielanek D, Wieman H, Wilks G, Wissink SW, Witt R, Wu J, Wu J, Wu X, Wu X, Xi B, Xiao ZG, Xie G, Xie W, Xu H, Xu N, Xu QH, Xu Y, Xu Y, Xu Z, Xu Z, Yan G, Yan Z, Yang C, Yang Q, Yang S, Yang Y, Ye Z, Ye Z, Yi L, Yip K, Yu Y, Zbroszczyk H, Zha W, Zhang C, Zhang D, Zhang J, Zhang S, Zhang W, Zhang X, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang ZJ, Zhang Z, Zhang Z, Zhao F, Zhao J, Zhao M, Zhou J, Zhou S, Zhou Y, Zhu X, Zurek M, Zyzak M. Observation of Strong Nuclear Suppression in Exclusive J/ψ Photoproduction in Au+Au Ultraperipheral Collisions at RHIC. PHYSICAL REVIEW LETTERS 2024; 133:052301. [PMID: 39159117 DOI: 10.1103/physrevlett.133.052301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/24/2024] [Accepted: 06/25/2024] [Indexed: 08/21/2024]
Abstract
We report a measurement of exclusive J/ψ and ψ(2s) photoproduction in Au+Au ultraperipheral collisions at sqrt[s_{NN}]=200 GeV using the STAR detector. For the first time, (i) the ψ(2s) photoproduction in midrapidity at the Relativistic Heavy-Ion Collider has been experimentally measured; (ii) nuclear suppression factors are measured for both the coherent and incoherent J/ψ production. At average photon-nucleon center-of-mass energy of 25.0 GeV, the coherent and incoherent J/ψ cross sections of Au nuclei are found to be 71±10% and 36±7%, respectively, of that of free protons. The stronger suppression observed in the incoherent production provides a new experimental handle to study the initial-state parton density in heavy nuclei. Data are compared with theoretical models quantitatively.
Collapse
|
15
|
Abdulhamid MI, Aboona BE, Adam J, Adamczyk L, Adams JR, Aggarwal I, Aggarwal MM, Ahammed Z, Aschenauer EC, Aslam S, Atchison J, Bairathi V, Cap JGB, Barish K, Bellwied R, Bhagat P, Bhasin A, Bhatta S, Bhosale SR, Bielcik J, Bielcikova J, Brandenburg JD, Broodo C, Cai XZ, Caines H, de la Barca Sánchez MC, Cebra D, Ceska J, Chakaberia I, Chaloupka P, Chan BK, Chang Z, Chatterjee A, Chen D, Chen J, Chen JH, Chen Z, Cheng J, Cheng Y, Choudhury S, Christie W, Chu X, Crawford HJ, Csanád M, Dale-Gau G, Das A, Deppner IM, Dhamija A, Dixit P, Dong X, Drachenberg JL, Duckworth E, Dunlop JC, Engelage J, Eppley G, Esumi S, Evdokimov O, Eyser O, Fatemi R, Fazio S, Feng CJ, Feng Y, Finch E, Fisyak Y, Flor FA, Fu C, Gagliardi CA, Galatyuk T, Gao T, Geurts F, Ghimire N, Gibson A, Gopal K, Gou X, Grosnick D, Gupta A, Guryn W, Hamed A, Han Y, Harabasz S, Harasty MD, Harris JW, Harrison-Smith H, He W, He XH, He Y, Herrmann N, Holub L, Hu C, Hu Q, Hu Y, Huang H, Huang HZ, Huang SL, Huang T, Huang X, Huang Y, Huang Y, Humanic TJ, Isshiki M, Jacobs WW, Jalotra A, Jena C, Jentsch A, Ji Y, Jia J, Jin C, Ju X, Judd EG, Kabana S, Kalinkin D, Kang K, Kapukchyan D, Kauder K, Keane D, Khanal A, Khyzhniak YV, Kikoła DP, Kincses D, Kisel I, Kiselev A, Knospe AG, Ko HS, Kosarzewski LK, Kumar L, Labonte MC, Lacey R, Landgraf JM, Lauret J, Lebedev A, Lee JH, Leung YH, Lewis N, Li C, Li D, Li HS, Li H, Li W, Li X, Li Y, Li Y, Li Z, Liang X, Liang Y, Licenik R, Lin T, Lin Y, Lisa MA, Liu C, Liu G, Liu H, Liu L, Liu T, Liu X, Liu Y, Liu Z, Ljubicic T, Lomicky O, Longacre RS, Loyd EM, Lu T, Luo J, Luo XF, Ma L, Ma R, Ma YG, Magdy N, Mallick D, Manikandhan R, Margetis S, Markert C, McNamara G, Mezhanska O, Mi K, Mioduszewski S, Mohanty B, Mondal MM, Mooney I, Mrazkova J, Nagy MI, Nain AS, Nam JD, Nasim M, Neff D, Nelson JM, Nemes DB, Nie M, Nigmatkulov G, Niida T, Nonaka T, Odyniec G, Ogawa A, Oh S, Okubo K, Page BS, Pak R, Pal S, Pandav A, Pandey AK, Pani T, Paul A, Pawlik B, Pawlowska D, Perkins C, Pluta J, Pokhrel BR, Posik M, Protzman T, Prozorova V, Pruthi NK, Przybycien M, Putschke J, Qin Z, Qiu H, Racz C, Radhakrishnan SK, Rana A, Ray RL, Reed R, Robertson CW, Robotkova M, Aguilar MAR, Roy D, Chowdhury PR, Ruan L, Sahoo AK, Sahoo NR, Sako H, Salur S, Sato S, Schaefer BC, Schmidke WB, Schmitz N, Seck FJ, Seger J, Seto R, Seyboth P, Shah N, Shanmuganathan PV, Shao T, Sharma M, Sharma N, Sharma R, Sharma SR, Sheikh AI, Shen D, Shen DY, Shen K, Shi SS, Shi Y, Shou QY, Si F, Singh J, Singha S, Sinha P, Skoby MJ, Smirnov N, Söhngen Y, Song Y, Srivastava B, Stanislaus TDS, Stefaniak M, Stewart DJ, Su Y, Sumbera M, Sun C, Sun X, Sun Y, Sun Y, Surrow B, Svoboda M, Sweger ZW, Tamis AC, Tang AH, Tang Z, Tarnowsky T, Thomas JH, Timmins AR, Tlusty D, Todoroki T, Trentalange S, Tribedy P, Tripathy SK, Truhlar T, Trzeciak BA, Tsai OD, Tsang CY, Tu Z, Tyler J, Ullrich T, Underwood DG, Upsal I, Van Buren G, Vanek J, Vassiliev I, Verkest V, Videbæk F, Voloshin SA, Wang F, Wang G, Wang JS, Wang J, Wang K, Wang X, Wang Y, Wang Y, Wang Y, Wang Z, Webb JC, Weidenkaff PC, Westfall GD, Wielanek D, Wieman H, Wilks G, Wissink SW, Witt R, Wu J, Wu J, Wu X, Wu X, Xi B, Xiao ZG, Xie G, Xie W, Xu H, Xu N, Xu QH, Xu Y, Xu Y, Xu Z, Xu Z, Yan G, Yan Z, Yang C, Yang Q, Yang S, Yang Y, Ye Z, Ye Z, Yi L, Yip K, Yu Y, Zbroszczyk H, Zha W, Zhang C, Zhang D, Zhang J, Zhang S, Zhang W, Zhang X, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang ZJ, Zhang Z, Zhang Z, Zhao F, Zhao J, Zhao M, Zhou J, Zhou S, Zhou Y, Zhu X, Zurek M, Zyzak M. Observation of the antimatter hypernucleus H ¯ Λ ¯ 4. Nature 2024; 632:1026-1031. [PMID: 39169195 DOI: 10.1038/s41586-024-07823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
At the origin of the Universe, an asymmetry between the amount of created matter and antimatter led to the matter-dominated Universe as we know it today. The origins of this asymmetry remain unknown so far. High-energy nuclear collisions create conditions similar to the Universe microseconds after the Big Bang, with comparable amounts of matter and antimatter1-6. Much of the created antimatter escapes the rapidly expanding fireball without annihilating, making such collisions an effective experimental tool to create heavy antimatter nuclear objects and to study their properties7-14, hoping to shed some light on the existing questions on the asymmetry between matter and antimatter. Here we report the observation of the antimatter hypernucleusH ¯ Λ ¯ 4 , composed of aΛ ¯ , an antiproton and two antineutrons. The discovery was made through its two-body decay after production in ultrarelativistic heavy-ion collisions by the STAR experiment at the Relativistic Heavy Ion Collider15,16. In total, 15.6 candidateH ¯ Λ ¯ 4 antimatter hypernuclei are obtained with an estimated background count of 6.4. The lifetimes of the antihypernucleiH ¯ Λ ¯ 3 andH ¯ Λ ¯ 4 are measured and compared with the lifetimes of their corresponding hypernuclei, testing the symmetry between matter and antimatter. Various production yield ratios among (anti)hypernuclei (hypernuclei and/or antihypernuclei) and (anti)nuclei (nuclei and/or antinuclei) are also measured and compared with theoretical model predictions, shedding light on their production mechanisms.
Collapse
|
16
|
Cui WG, Xue JJ, Liu ZL, Lv DY, Chen Y, Luo Y, Wang QG, Zhou S, Wang C. Effects of feed conditioning temperature on pellet quality, growth performance, intestinal development and blood parameters of geese from 1 to 28 d of age. Poult Sci 2024; 103:103849. [PMID: 38838588 PMCID: PMC11216004 DOI: 10.1016/j.psj.2024.103849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
A 28-d experiment was conducted to investigate the effects of feed-conditioning temperature on the pellet quality, growth performance, intestinal development, and blood parameters of geese. A total of 180 one-day-old White Yuzhou goslings were randomly allotted to 5 treatment groups, with 6 replicates containing 6 birds each. Five diets were conditioned at 65, 70, 75, 80, and 85°C. Body weight and feed intake per pen basis were recorded from the arrival to the end of the trial. Blood and small intestine samples were collected on d 28 for analysis. The results showed that the pellet durability index (PDI), pellet hardness, and gelatinisation degree of starch (GDS) increased with increasing conditioning temperature (P < 0.05). The final body weight (FBW), average daily gain (ADG) and average daily feed intake (ADFI) of goslings significantly increased when conditioning temperature increased from 65 or 70°C to 80 or 85°C (P < 0.05), accompanied by unaffected feed conversion ratio (FCR) (P > 0.05). The villus height to crypt depth ratio (VH/CD) in the duodenum and ileum improved with increasing conditioning temperature (P < 0.05). Additionally, trypsin and amylase activity were enhanced when the conditioning temperature increased from 65 to 85°C (P < 0.05). No significant differences in the carcass traits and blood parameters of goslings were observed among the groups (P > 0.05). Overall, under the present experimental conditions, increasing the steam-conditioning temperature of pelleted feed improved pellet quality, growth performance, intestinal morphology, and digestive enzyme activity in goslings. Based on broken-line regression analysis, the lower critical conditioning temperature for ADG in geese from 1 to 28 d of age was 80.95°C.
Collapse
|
17
|
Ablikim M, Achasov MN, Adlarson P, Afedulidis O, Ai XC, Aliberti R, Amoroso A, An Q, Anderle D, Bai Y, Bakina O, Balossino I, Ban Y, Bao HR, Batozskaya V, Begzsuren K, Berger N, Berlowski M, Bertani M, Bettoni D, Bianchi F, Bianco E, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Che GR, Chelkov G, Chen C, Chen CH, Chen C, Chen G, Chen HS, Chen HY, Chen ML, Chen SJ, Chen SL, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen YQ, Chen ZJ, Chen ZY, Choi SK, Cibinetto G, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng CQ, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding B, Ding XX, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du MC, Du SX, Duan YY, Duan ZH, Egorov P, Fan YH, Fang J, Fang J, Fang SS, Fang WX, Fang Y, Fang YQ, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Feng YT, Fritsch M, Fu CD, Fu JL, Fu YW, Gao H, Gao XB, Gao YN, Gao Y, Garbolino S, Garzia I, Ge L, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Gramigna S, Greco M, Gu MH, Gu YT, Guan CY, Guan ZL, Guo AQ, Guo LB, Guo MJ, Guo RP, Guo YP, Guskov A, Gutierrez J, Han KL, Han TT, Hanisch F, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Holtmann T, Hong PC, Hou GY, Hou XT, Hou YR, Hou ZL, Hu BY, Hu HM, Hu JF, Hu SL, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Hussain T, Hölzken F, Hüsken N, Hüsken N, In der Wiesche N, Jackson J, Janchiv S, Jeong JH, Ji Q, Ji QP, Ji W, Ji XB, Ji XL, Ji YY, Jia XQ, Jia ZK, Jiang D, Jiang HB, Jiang PC, Jiang SS, Jiang TJ, Jiang XS, Jiang Y, Jiao JB, Jiao JK, Jiao Z, Jin S, Jin Y, Jing MQ, Jing XM, Johansson T, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kavatsyuk M, Ke BC, Khachatryan V, Khoukaz A, Kiuchi R, Kolcu OB, Kopf B, Kuessner M, Kui X, Kumar N, Kupsc A, Kühn W, Lane JJ, Larin P, Lavezzi L, Lei TT, Lei ZH, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li HN, Li H, Li JR, Li JS, Li K, Li LJ, Li LK, Li L, Li MH, Li MY, Li PR, Li QM, Li QX, Li R, Li SX, Li T, Li WD, Li WG, Li X, Li XH, Li XL, Li XZ, Li X, Li YG, Li ZJ, Li ZX, Li ZY, Liang C, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Limphirat A, Lin CC, Lin DX, Lin T, Liu BJ, Liu BX, Liu C, Liu CX, Liu FH, Liu F, Liu F, Liu GM, Liu H, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LC, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu X, Liu Y, Liu Y, Liu YB, Liu ZA, Liu ZD, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma H, Ma HL, Ma JL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma T, Ma XT, Ma XY, Ma Y, Ma YM, Maas FE, Maggiora M, Malde S, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Moses B, Muchnoi NY, Muskalla J, Nefedov Y, Nerling F, Nie LS, Nikolaev IB, Ning Z, Nisar S, Niu QL, Niu WD, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pei YP, Pelizaeus M, Peng HP, Peng YY, Peters K, Ping JL, Ping RG, Plura S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qiao XK, Qin JJ, Qin LQ, Qin LY, Qin XS, Qin ZH, Qiu JF, Qu ZH, Redmer CF, Ren KJ, Rivetti A, Rolo M, Rong G, Rosner C, Ruan SN, Salone N, Sarantsev A, Schelhaas Y, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shang ZJ, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi H, Shi HC, Shi JL, Shi JY, Shi QQ, Shi SY, Shi X, Song JJ, Song TZ, Song WM, Song YJ, Song YX, Sosio S, Spataro S, Stieler F, Su YJ, Sun GB, Sun GX, Sun H, Sun HK, Sun JF, Sun K, Sun L, Sun SS, Sun T, Sun WY, Sun Y, Sun YJ, Sun YZ, Sun ZQ, Sun ZT, Tang CJ, Tang GY, Tang J, Tang M, Tang YA, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian Y, Tian ZF, Uman I, Wan Y, Wang SJ, Wang B, Wang BL, Wang B, Wang DY, Wang F, Wang HJ, Wang JJ, Wang JP, Wang K, Wang LL, Wang M, Wang M, Wang NY, Wang S, Wang S, Wang T, Wang TJ, Wang W, Wang W, Wang WP, Wang X, Wang XF, Wang XJ, Wang XL, Wang XN, Wang Y, Wang YD, Wang YF, Wang YL, Wang YN, Wang YQ, Wang Y, Wang Y, Wang Z, Wang ZL, Wang ZY, Wang Z, Wei DH, Weidner F, Wen SP, Wen YR, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu C, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YH, Wu YJ, Wu Z, Xia L, Xian XM, Xiang BH, Xiang T, Xiao D, Xiao GY, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing HX, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu M, Xu QJ, Xu QN, Xu W, Xu WL, Xu XP, Xu YC, Xu ZP, Xu ZS, Yan F, Yan L, Yan WB, Yan WC, Yan XQ, Yang HJ, Yang HL, Yang HX, Yang T, Yang Y, Yang YF, Yang YX, Yang Y, Yang ZW, Yao ZP, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yu XD, Yu YC, Yuan CZ, Yuan J, Yuan L, Yuan SC, Yuan Y, Yuan YJ, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng SH, Zeng X, Zeng Y, Zeng YJ, Zhai XY, Zhai YC, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang H, Zhang HC, Zhang HH, Zhang HH, Zhang HQ, Zhang HR, Zhang HY, Zhang J, Zhang J, Zhang JJ, Zhang JL, Zhang JQ, Zhang JS, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang LM, Zhang L, Zhang P, Zhang QY, Zhang RY, Zhang S, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang Y, Zhang YT, Zhang YH, Zhang YM, Zhang Y, Zhang Y, Zhang ZD, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhang ZZ, Zhao G, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao N, Zhao RP, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng BM, Zheng JP, Zheng WJ, Zheng YH, Zhong B, Zhong X, Zhou H, Zhou JY, Zhou LP, Zhou S, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu KS, Zhu L, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WD, Zhu YC, Zhu ZA, Zou JH, Zu J. Measurements of Normalized Differential Cross Sections of Inclusive η Production in e^{+}e^{-} Annihilation at Energy from 2.0000 to 3.6710 GeV. PHYSICAL REVIEW LETTERS 2024; 133:021901. [PMID: 39073971 DOI: 10.1103/physrevlett.133.021901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 07/31/2024]
Abstract
Using data samples collected with the BESIII detector operating at the BEPCII storage ring, the cross section of the inclusive process e^{+}e^{-}→η+X, normalized by the total cross section of e^{+}e^{-}→hadrons, is measured at eight center-of-mass energy points from 2.0000 to 3.6710 GeV. These are the first measurements with momentum dependence in this energy region. Our measurement shows a significant discrepancy compared to the existing fragmentation functions. To address this discrepancy, a new QCD analysis is performed at the next-to-next-to-leading order with hadron mass corrections and higher twist effects, which can explain both the established high-energy data and our measurements reasonably well.
Collapse
|
18
|
Ablikim M, Achasov MN, Adlarson P, Afedulidis O, Ai XC, Aliberti R, Amoroso A, An Q, Bai Y, Bakina O, Balossino I, Ban Y, Bao HR, Batozskaya V, Begzsuren K, Berger N, Berlowski M, Bertani M, Bettoni D, Bianchi F, Bianco E, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Che GR, Chelkov G, Chen C, Chen CH, Chen C, Chen G, Chen HS, Chen HY, Chen ML, Chen SJ, Chen SL, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen YQ, Chen ZJ, Chen ZY, Choi SK, Cibinetto G, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng CQ, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding B, Ding XX, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du MC, Du SX, Duan ZH, Egorov P, Fan YH, Fang J, Fang J, Fang SS, Fang WX, Fang Y, Fang YQ, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Feng YT, Fritsch M, Fu CD, Fu JL, Fu YW, Gao H, Gao XB, Gao YN, Gao Y, Garbolino S, Garzia I, Ge L, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Gramigna S, Greco M, Gu MH, Gu YT, Guan CY, Guan ZL, Guo AQ, Guo LB, Guo MJ, Guo RP, Guo YP, Guskov A, Gutierrez J, Han KL, Han TT, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Holtmann T, Hong PC, Hou GY, Hou XT, Hou YR, Hou ZL, Hu BY, Hu HM, Hu JF, Hu SL, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Hussain T, Hölzken F, Hüsken N, In der Wiesche N, Jackson J, Janchiv S, Jeong JH, Ji Q, Ji QP, Ji W, Ji XB, Ji XL, Ji YY, Jia XQ, Jia ZK, Jiang D, Jiang HB, Jiang PC, Jiang SS, Jiang TJ, Jiang XS, Jiang Y, Jiao JB, Jiao JK, Jiao Z, Jin S, Jin Y, Jing MQ, Jing XM, Johansson T, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kavatsyuk M, Ke BC, Khachatryan V, Khoukaz A, Kiuchi R, Kolcu OB, Kopf B, Kuessner M, Kui X, Kumar N, Kupsc A, Kühn W, Lane JJ, Larin P, Lavezzi L, Lei TT, Lei ZH, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li HN, Li H, Li JR, Li JS, Li K, Li LJ, Li LK, Li L, Li MH, Li PR, Li QM, Li QX, Li R, Li SX, Li T, Li WD, Li WG, Li X, Li XH, Li XL, Li XZ, Li X, Li YG, Li ZJ, Li ZX, Liang C, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Limphirat A, Lin CC, Lin DX, Lin T, Liu BJ, Liu BX, Liu C, Liu CX, Liu FH, Liu F, Liu F, Liu GM, Liu H, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LC, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu X, Liu Y, Liu Y, Liu YB, Liu ZA, Liu ZD, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma H, Ma HL, Ma JL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma T, Ma XT, Ma XY, Ma Y, Ma YM, Maas FE, Maggiora M, Malde S, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Moses B, Muchnoi NY, Muskalla J, Nefedov Y, Nerling F, Nie LS, Nikolaev IB, Ning Z, Nisar S, Niu QL, Niu WD, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pei YP, Pelizaeus M, Peng HP, Peng YY, Peters K, Ping JL, Ping RG, Plura S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qiao XK, Qin JJ, Qin LQ, Qin LY, Qin XS, Qin ZH, Qiu JF, Qu ZH, Redmer CF, Ren KJ, Rivetti A, Rolo M, Rong G, Rosner C, Ruan SN, Salone N, Sarantsev A, Schelhaas Y, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shang ZJ, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi H, Shi HC, Shi JL, Shi JY, Shi QQ, Shi SY, Shi X, Song JJ, Song TZ, Song WM, Song YJ, Song YX, Sosio S, Spataro S, Stieler F, Su YJ, Sun GB, Sun GX, Sun H, Sun HK, Sun JF, Sun K, Sun L, Sun SS, Sun T, Sun WY, Sun Y, Sun YJ, Sun YZ, Sun ZQ, Sun ZT, Tang CJ, Tang GY, Tang J, Tang M, Tang YA, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian Y, Tian ZF, Uman I, Wan Y, Wang SJ, Wang B, Wang BL, Wang B, Wang DY, Wang F, Wang HJ, Wang JJ, Wang JP, Wang K, Wang LL, Wang M, Wang M, Wang NY, Wang S, Wang S, Wang T, Wang TJ, Wang W, Wang W, Wang WP, Wang X, Wang XF, Wang XJ, Wang XL, Wang XN, Wang Y, Wang YD, Wang YF, Wang YL, Wang YN, Wang YQ, Wang Y, Wang Y, Wang Z, Wang ZL, Wang ZY, Wang Z, Wei DH, Weidner F, Wen SP, Wen YR, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu C, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YH, Wu YJ, Wu Z, Xia L, Xian XM, Xiang BH, Xiang T, Xiao D, Xiao GY, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu M, Xu QJ, Xu QN, Xu W, Xu WL, Xu XP, Xu YC, Xu ZP, Xu ZS, Yan F, Yan L, Yan WB, Yan WC, Yan XQ, Yang HJ, Yang HL, Yang HX, Yang T, Yang Y, Yang YF, Yang YX, Yang Y, Yang ZW, Yao ZP, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yu XD, Yu YC, Yuan CZ, Yuan J, Yuan L, Yuan SC, Yuan Y, Yuan YJ, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng SH, Zeng X, Zeng Y, Zeng YJ, Zhai XY, Zhai YC, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang H, Zhang HC, Zhang HH, Zhang HH, Zhang HQ, Zhang HR, Zhang HY, Zhang J, Zhang J, Zhang JJ, Zhang JL, Zhang JQ, Zhang JS, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang LM, Zhang L, Zhang P, Zhang QY, Zhang RY, Zhang S, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang Y, Zhang YT, Zhang YH, Zhang YM, Zhang Y, Zhang Y, Zhang ZD, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhang ZZ, Zhao G, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao N, Zhao RP, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng BM, Zheng JP, Zheng WJ, Zheng YH, Zhong B, Zhong X, Zhou H, Zhou JY, Zhou LP, Zhou S, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu KS, Zhu L, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WD, Zhu YC, Zhu ZA, Zou JH, Zu J. First Study of Antihyperon-Nucleon Scattering Λ[over ¯]p→Λ[over ¯]p and Measurement of Λp→Λp Cross Section. PHYSICAL REVIEW LETTERS 2024; 132:231902. [PMID: 38905649 DOI: 10.1103/physrevlett.132.231902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 06/23/2024]
Abstract
Using (10.087±0.044)×10^{9} J/ψ events collected with the BESIII detector at the BEPCII storage ring, the processes Λp→Λp and Λ[over ¯]p→Λ[over ¯]p are studied, where the Λ/Λ[over ¯] baryons are produced in the process J/ψ→ΛΛ[over ¯] and the protons are the hydrogen nuclei in the cooling oil of the beam pipe. Clear signals are observed for the two reactions. The cross sections in -0.9≤cosθ_{Λ/Λ[over ¯]}≤0.9 are measured to be σ(Λp→Λp)=(12.2±1.6_{stat}±1.1_{syst}) and σ(Λ[over ¯]p→Λ[over ¯]p)=(17.5±2.1_{stat}±1.6_{syst}) mb at the Λ/Λ[over ¯] momentum of 1.074 GeV/c within a range of ±0.017 GeV/c, where the θ_{Λ/Λ[over ¯]} are the scattering angles of the Λ/Λ[over ¯] in the Λp/Λ[over ¯]p rest frames. Furthermore, the differential cross sections of the two reactions are also measured, where there is a slight tendency of forward scattering for Λp→Λp, and a strong forward peak for Λ[over ¯]p→Λ[over ¯]p. We present an approach to extract the total elastic cross sections by extrapolation. The study of Λ[over ¯]p→Λ[over ¯]p represents the first study of antihyperon-nucleon scattering, and these new measurements will serve as important inputs for the theoretical understanding of the (anti)hyperon-nucleon interaction.
Collapse
|
19
|
Shi Y, Geng M, Zhou S, Chen X, Sun J, Tian X, Xu H, Li Y, Zheng C. [Epidemiological characteristics of leptospirosis in China from 2010 to 2022]. ZHONGGUO XUE XI CHONG BING FANG ZHI ZA ZHI = CHINESE JOURNAL OF SCHISTOSOMIASIS CONTROL 2024; 36:130-136. [PMID: 38857955 DOI: 10.16250/j.32.1374.2024033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
OBJECTIVE To analyze the epidemiological characteristics of leptospirosis in China from 2010 to 2022, so as to provide insights into formulation of the leptospirosis control strategy. METHODS All data pertaining to clinically diagnosed cases and confirmed cases of leptospirosis reported in China from January 1, 2010 to December 31, 2022 was collected from Chinese Disease Prevention and Control Information Management System. The spatial, temporal and population distributions, and report and diagnosis institutions of leptospirosis cases were analyzed using a descriptive epidemiological method. RESULTS A total of 4 559 leptospirosis cases were reported in China from 2010 to 2022, with an annual average number of 351 cases, and the number of reported leptospirosis cases reduced from 679 cases in 2010 to 158 cases in 2018. A total of 4 276 leptospirosis cases were reported in Sichuan Province, Yunnan Province, Guangdong Province, Hunan Province, Fujian Province, Zhejiang Province, Guangxi Zhuang Autonomous Region, Anhui Province, Jiangxi Province and Guizhou Province, accounting for 93.79% of the total number of leptospirosis cases in China. The number of leptospirosis cases had recently appeared a remarkable decline in Yunnan Province, while a significant rise was seen in the number of leptospirosis cases in two provinces of Zhejiang and Guangdong. No leptospirosis cases were reported in Henan Province from 2010 to 2020; however, there were 5 cases and 2 cases reported in 2021 and 2022, respectively. There was only one leptospirosis case reported in Shaanxi Province from 2010 to 2017; however, leptospirosis cases were reported in the province for 5 consecutive years since 2018. Leptospirosis cases were reported throughout the year in China from 2010 to 2022, with the peak of incidence found during the period between August and October, and the peak of leptospirosis incidence varied in provinces. A higher number of leptospirosis cases was seen among men than among women, with a male to female ratio of 2.3:1, and the median age of leptospirosis cases was 50 years (interquartile range, 23 years), with the highest proportion of leptospirosis cases reported at ages of 51 to 60 years (23.21%). Among all reported leptospirosis cases, 53.28% were confirmed cases, and the proportion of confirmed cases increased from 35.05% in 2010 to 61.66% in 2022. In addition, there were 67.22% of leptospirosis cases (2 937 cases) reported by comprehensive hospitals, 20.44% (893 cases) by disease control and prevention institutions, 7.23% (316 cases) by grassroots healthcare institutions and 5.10% (223 cases) by other healthcare and medical institutions, and the mortality of reported leptospirosis cases was 1.07% in China from 2010 to 2022, with a higher mortality seen among men than among women (1.39% vs. 0.36%; χ2 = 9.52, P = 0.002). CONCLUSIONS The incidence of leptospirosis remained at a low level in China from 2010 to 2022, and southern China was still the main endemic area for leptospirosis. The epidemiological characteristics of leptospirosis cases varied in endemic provinces, and leptospirosis cases had been continued to be reported in Shaanxi and Henan provinces, which should be paid much attention to. Intensified surveillance of leptospirosis, improved diagnosis and treatment capability of leptospirosis cases and leptospirosis control with adaptations to local circumstance are recommended.
Collapse
|
20
|
Li FH, Xiang L, Ran L, Zhou S, Huang Z, Chen M, Yu WF. Retraction Note: BNIP1 inhibits cell proliferation, migration and invasion, and promotes apoptosis by mTOR in cervical cancer cells. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2024; 28:3294. [PMID: 38766787 DOI: 10.26355/eurrev_202405_36205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The article "BNIP1 inhibits cell proliferation, migration and invasion, and promotes apoptosis by mTOR in cervical cancer cells", by F.-H. Li, L. Xiang, L. Ran, S. Zhou, Z. Huang, M. Chen, W.-F. Yu, published in Eur Rev Med Pharmacol Sci 2019; 23 (4): 1397-1407-DOI: 10.26355/eurrev_201902_17096-PMID: 30840260 has been retracted by the Editor in Chief for the following reasons. Following some concerns raised on PubPeer regarding a possible overlap in Figure 2A, the Editor in Chief has started an investigation to assess the validity of the results as well as possible figure manipulation. The journal investigation revealed a duplication in Figure 2A between BNIP1 panels, migration and invasion, respectively and in Control and invasion panels. Consequently, the Editor in Chief mistrusts the results presented and has decided to withdraw the article. The authors have been informed about the journal's investigation but remained unresponsive. https://www.europeanreview.org/article/17096 This article has been retracted. The Publisher apologizes for any inconvenience this may cause.
Collapse
|
21
|
Wang Y, Xu XW, Zhou S, Li JN. The safety signal detection and analysis of monoclonal antibodies against SARS-CoV-2 based on real-world evidence - the suitable selectivity for different populations. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2024; 28:2943-2954. [PMID: 38639534 DOI: 10.26355/eurrev_202404_35925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
OBJECTIVE Bebtelovimab (BEB), Tixagevimab/Cilgavimab (TIX/CIL), and Sotrovimab (SOT) are important agents against the severe acute respiratory syndrome coronavirus 2-Omicron strain. However, due to their short duration of application, little is known about their safety profiles. This research aimed to explore the safety profile of these monoclonal antibodies (mAbs) via real-world evidence databases and data mining tools. MATERIALS AND METHODS Safety reports were retrieved from the database of the U.S. Food and Drug Administration (FDA) Adverse Event Reporting System from April 2022 to March 2023. To detect the safety signal, the disproportionality analysis was performed using the reporting odds ratio method. RESULTS SOT had the greatest proportion of "skin and subcutaneous tissue disorders" and "disorders of investigations"; BEB showed significant associations with "gastrointestinal disorders" and "nervous system disorders"; TIX/CIL had the weakest correlation with "skin and subcutaneous tissue disorders" and "general disorders and administration site conditions". Furthermore, there were still other signals related to nervous system disorders, gastrointestinal disorders only caused by BEB. TIX/CIL has been reported solely to be associated with multiple types of cardiovascular disorders. As for SOT alone, signals were strongly related to infusion reactions and hypersensitivity. CONCLUSIONS In summary, SOT may be unsuitable for allergic patients and may lead to abnormal test results. BEB showed the highest correlations with gastrointestinal and neuropsychiatric events. In addition, its infusion reactions should also be noted. TIX/CIL can lead to a variety of cardiovascular events.
Collapse
|
22
|
Yang HC, He JX, Yang Y, Han Z, Zhang B, Zhou S, Wu T, Qiao Q, He XL, Wang N. [Propensity score matching analysis of the short-term efficacy of Kamikawa versus double- tract reconstruction in laparoscopic proximal gastric cancer surgery]. ZHONGHUA WEI CHANG WAI KE ZA ZHI = CHINESE JOURNAL OF GASTROINTESTINAL SURGERY 2024; 27:261-267. [PMID: 38532588 DOI: 10.3760/cma.j.cn441530-20230809-00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Objective: To compare the short-term efficacy of Kamikawa anastomosis and double-tract reconstruction (DTR) after proximal gastrectomy. Methods: This was a propensity score matched, retrospective, cohort study. Inclusion criteria comprised age 20-70 years, diagnosis of gastric cancer by pathological examination of preoperative endoscopic biopsies, tumor diameter ≤4 cm, and location in the upper 1/3 of the stomach (including the gastroesophageal junction), and TNM stage IA, IB, or IIA. The study cohort comprised 73 patients who had undergone laparoscopic proximal gastric cancer radical surgery in the Department of Gastroenterology, Tangdu Hospital, Air Force Medical University between June 2020 and February 2023, 19 of whom were in the Kamikawa group and 54 in the DTR group. After using R language to match the baseline characteristics of patients in a ratio of 1:2, there were 17 patients in the Kamikawa group and 34 in the DTR group. Surgery-related conditions, postoperative quality of life, and postoperative complications were compared between the two groups. Results: After propensity score matching, there were no statistically significant differences in baseline data between the two groups (P>0.05). Compared with the DTR group, the Kamikawa group had longer operative times (321.5±15.7 minutes vs. 296.8±26.1 minutes, t=32.056, P<0.001), longer anastomosis times (93.0±6.8 minutes vs. 45.3±7.7 minutes, t=56.303, P<0.001), and less bleeding (76 [54~103] mL vs.112 [82~148) mL, Z=71.536, P<0.001); these differences are statistically significant. There were no statistically significant differences between the two groups in tumor size, time to first postoperative passage of gas, postoperative hospital stay, number of lymph nodes removed, duration of lymph node dissection, or total hospitalization cost (all P>0.05). The median follow-up time was 6.1 ± 1.8 months. As to postoperative quality of life, the Kamikawa group had a lower rate of upper gastrointestinal contrast reflux than did the DTR group (0 vs. 29.4% [10/34], χ2=6.220, P=0.013); this difference is statistically significant. However, differences between the two groups in quality of life score on follow-up of 3 months and 6 months on the Gastroesophageal Reflux Disease (GERD) scale were not statistically significant (all P>0.05). The incidence of postoperative complications was 2/17 in the Kamikawa group, which is significantly lower than the 41.2% (14/34) in the DTR group (χ2=4.554, P=0.033). Conclusion: Kamikawa anastomosis and DTR are equally safe and effective procedures for reconstructing the digestive tract after proximal gastric surgery. Although Kamikawa anastomosis takes slightly longer and places higher demands on the surgical team, it is more effective at preventing postoperative reflux.
Collapse
|
23
|
Liu Y, Yang LP, Liu BX, Zhou S, Li M, Jia Q, Yu XJ. [Research progress on the role of resveratrol in wound healing]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2024; 40:196-200. [PMID: 38418182 DOI: 10.3760/cma.j.cn501225-20230802-00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
The difficulty of wound healing in patients is a difficult problem that doctors in all clinical departments may encounter, and there is still no good solution. Resveratrol is a kind of natural active substance, which has anti-inflammatory, antioxidant, antibacterial, and angiogenesis promoting effects, and is a potential drug to promote wound healing. However, the clinical application of resveratrol is limited due to its low bioavailability. In this review, the molecular mechanism of resveratrol in promoting wound healing and its administration methods in wound treatment were reviewed to provide ideas for the redevelopment of resveratrol.
Collapse
|
24
|
Judge PK, Staplin N, Mayne KJ, Wanner C, Green JB, Hauske SJ, Emberson JR, Preiss D, Ng SYA, Roddick AJ, Sammons E, Zhu D, Hill M, Stevens W, Wallendszus K, Brenner S, Cheung AK, Liu ZH, Li J, Hooi LS, Liu WJ, Kadowaki T, Nangaku M, Levin A, Cherney D, Maggioni AP, Pontremoli R, Deo R, Goto S, Rossello X, Tuttle KR, Steubl D, Massey D, Landray MJ, Baigent C, Haynes R, Herrington WG, Abat S, Abd Rahman R, Abdul Cader R, Abdul Hafidz MI, Abdul Wahab MZ, Abdullah NK, Abdul-Samad T, Abe M, Abraham N, Acheampong S, Achiri P, Acosta JA, Adeleke A, Adell V, Adewuyi-Dalton R, Adnan N, Africano A, Agharazii M, Aguilar F, Aguilera A, Ahmad M, Ahmad MK, Ahmad NA, Ahmad NH, Ahmad NI, Ahmad Miswan N, Ahmad Rosdi H, Ahmed I, Ahmed S, Ahmed S, Aiello J, Aitken A, AitSadi R, Aker S, Akimoto S, Akinfolarin A, Akram S, Alberici F, Albert C, Aldrich L, Alegata M, Alexander L, Alfaress S, Alhadj Ali M, Ali A, Ali A, Alicic R, Aliu A, Almaraz R, Almasarwah R, Almeida J, Aloisi A, Al-Rabadi L, Alscher D, Alvarez P, Al-Zeer B, Amat M, Ambrose C, Ammar H, An Y, Andriaccio L, Ansu K, Apostolidi A, Arai N, Araki H, Araki S, Arbi A, Arechiga O, Armstrong S, Arnold T, Aronoff S, Arriaga W, Arroyo J, Arteaga D, Asahara S, Asai A, Asai N, Asano S, Asawa M, Asmee MF, Aucella F, Augustin M, Avery A, Awad A, Awang IY, Awazawa M, Axler A, Ayub W, Azhari Z, Baccaro R, Badin C, Bagwell B, Bahlmann-Kroll E, Bahtar AZ, Baigent C, Bains D, Bajaj H, Baker R, Baldini E, Banas B, Banerjee D, Banno S, Bansal S, Barberi S, Barnes S, Barnini C, Barot C, Barrett K, Barrios R, Bartolomei Mecatti B, Barton I, Barton J, Basily W, Bavanandan S, Baxter A, Becker L, Beddhu S, Beige J, Beigh S, Bell S, Benck U, Beneat A, Bennett A, Bennett D, Benyon S, Berdeprado J, Bergler T, Bergner A, Berry M, Bevilacqua M, Bhairoo J, Bhandari S, Bhandary N, Bhatt A, Bhattarai M, Bhavsar M, Bian W, Bianchini F, Bianco S, Bilous R, Bilton J, Bilucaglia D, Bird C, Birudaraju D, Biscoveanu M, Blake C, Bleakley N, Bocchicchia K, Bodine S, Bodington R, Boedecker S, Bolduc M, Bolton S, Bond C, Boreky F, Boren K, Bouchi R, Bough L, Bovan D, Bowler C, Bowman L, Brar N, Braun C, Breach A, Breitenfeldt M, Brenner S, Brettschneider B, Brewer A, Brewer G, Brindle V, Brioni E, Brown C, Brown H, Brown L, Brown R, Brown S, Browne D, Bruce K, Brueckmann M, Brunskill N, Bryant M, Brzoska M, Bu Y, Buckman C, Budoff M, Bullen M, Burke A, Burnette S, Burston C, Busch M, Bushnell J, Butler S, Büttner C, Byrne C, Caamano A, Cadorna J, Cafiero C, Cagle M, Cai J, Calabrese K, Calvi C, Camilleri B, Camp S, Campbell D, Campbell R, Cao H, Capelli I, Caple M, Caplin B, Cardone A, Carle J, Carnall V, Caroppo M, Carr S, Carraro G, Carson M, Casares P, Castillo C, Castro C, Caudill B, Cejka V, Ceseri M, Cham L, Chamberlain A, Chambers J, Chan CBT, Chan JYM, Chan YC, Chang E, Chang E, Chant T, Chavagnon T, Chellamuthu P, Chen F, Chen J, Chen P, Chen TM, Chen Y, Chen Y, Cheng C, Cheng H, Cheng MC, Cherney D, Cheung AK, Ching CH, Chitalia N, Choksi R, Chukwu C, Chung K, Cianciolo G, Cipressa L, Clark S, Clarke H, Clarke R, Clarke S, Cleveland B, Cole E, Coles H, Condurache L, Connor A, Convery K, Cooper A, Cooper N, Cooper Z, Cooperman L, Cosgrove L, Coutts P, Cowley A, Craik R, Cui G, Cummins T, Dahl N, Dai H, Dajani L, D'Amelio A, Damian E, Damianik K, Danel L, Daniels C, Daniels T, Darbeau S, Darius H, Dasgupta T, Davies J, Davies L, Davis A, Davis J, Davis L, Dayanandan R, Dayi S, Dayrell R, De Nicola L, Debnath S, Deeb W, Degenhardt S, DeGoursey K, Delaney M, Deo R, DeRaad R, Derebail V, Dev D, Devaux M, Dhall P, Dhillon G, Dienes J, Dobre M, Doctolero E, Dodds V, Domingo D, Donaldson D, Donaldson P, Donhauser C, Donley V, Dorestin S, Dorey S, Doulton T, Draganova D, Draxlbauer K, Driver F, Du H, Dube F, Duck T, Dugal T, Dugas J, Dukka H, Dumann H, Durham W, Dursch M, Dykas R, Easow R, Eckrich E, Eden G, Edmerson E, Edwards H, Ee LW, Eguchi J, Ehrl Y, Eichstadt K, Eid W, Eilerman B, Ejima Y, Eldon H, Ellam T, Elliott L, Ellison R, Emberson J, Epp R, Er A, Espino-Obrero M, Estcourt S, Estienne L, Evans G, Evans J, Evans S, Fabbri G, Fajardo-Moser M, Falcone C, Fani F, Faria-Shayler P, Farnia F, Farrugia D, Fechter M, Fellowes D, Feng F, Fernandez J, Ferraro P, Field A, Fikry S, Finch J, Finn H, Fioretto P, Fish R, Fleischer A, Fleming-Brown D, Fletcher L, Flora R, Foellinger C, Foligno N, Forest S, Forghani Z, Forsyth K, Fottrell-Gould D, Fox P, Frankel A, Fraser D, Frazier R, Frederick K, Freking N, French H, Froment A, Fuchs B, Fuessl L, Fujii H, Fujimoto A, Fujita A, Fujita K, Fujita Y, Fukagawa M, Fukao Y, Fukasawa A, Fuller T, Funayama T, Fung E, Furukawa M, Furukawa Y, Furusho M, Gabel S, Gaidu J, Gaiser S, Gallo K, Galloway C, Gambaro G, Gan CC, Gangemi C, Gao M, Garcia K, Garcia M, Garofalo C, Garrity M, Garza A, Gasko S, Gavrila M, Gebeyehu B, Geddes A, Gentile G, George A, George J, Gesualdo L, Ghalli F, Ghanem A, Ghate T, Ghavampour S, Ghazi A, Gherman A, Giebeln-Hudnell U, Gill B, Gillham S, Girakossyan I, Girndt M, Giuffrida A, Glenwright M, Glider T, Gloria R, Glowski D, Goh BL, Goh CB, Gohda T, Goldenberg R, Goldfaden R, Goldsmith C, Golson B, Gonce V, Gong Q, Goodenough B, Goodwin N, Goonasekera M, Gordon A, Gordon J, Gore A, Goto H, Goto S, Goto S, Gowen D, Grace A, Graham J, Grandaliano G, Gray M, Green JB, Greene T, Greenwood G, Grewal B, Grifa R, Griffin D, Griffin S, Grimmer P, Grobovaite E, Grotjahn S, Guerini A, Guest C, Gunda S, Guo B, Guo Q, Haack S, Haase M, Haaser K, Habuki K, Hadley A, Hagan S, Hagge S, Haller H, Ham S, Hamal S, Hamamoto Y, Hamano N, Hamm M, Hanburry A, Haneda M, Hanf C, Hanif W, Hansen J, Hanson L, Hantel S, Haraguchi T, Harding E, Harding T, Hardy C, Hartner C, Harun Z, Harvill L, Hasan A, Hase H, Hasegawa F, Hasegawa T, Hashimoto A, Hashimoto C, Hashimoto M, Hashimoto S, Haskett S, Hauske SJ, Hawfield A, Hayami T, Hayashi M, Hayashi S, Haynes R, Hazara A, Healy C, Hecktman J, Heine G, Henderson H, Henschel R, Hepditch A, Herfurth K, Hernandez G, Hernandez Pena A, Hernandez-Cassis C, Herrington WG, Herzog C, Hewins S, Hewitt D, Hichkad L, Higashi S, Higuchi C, Hill C, Hill L, Hill M, Himeno T, Hing A, Hirakawa Y, Hirata K, Hirota Y, Hisatake T, Hitchcock S, Hodakowski A, Hodge W, Hogan R, Hohenstatt U, Hohenstein B, Hooi L, Hope S, Hopley M, Horikawa S, Hosein D, Hosooka T, Hou L, Hou W, Howie L, Howson A, Hozak M, Htet Z, Hu X, Hu Y, Huang J, Huda N, Hudig L, Hudson A, Hugo C, Hull R, Hume L, Hundei W, Hunt N, Hunter A, Hurley S, Hurst A, Hutchinson C, Hyo T, Ibrahim FH, Ibrahim S, Ihana N, Ikeda T, Imai A, Imamine R, Inamori A, Inazawa H, Ingell J, Inomata K, Inukai Y, Ioka M, Irtiza-Ali A, Isakova T, Isari W, Iselt M, Ishiguro A, Ishihara K, Ishikawa T, Ishimoto T, Ishizuka K, Ismail R, Itano S, Ito H, Ito K, Ito M, Ito Y, Iwagaitsu S, Iwaita Y, Iwakura T, Iwamoto M, Iwasa M, Iwasaki H, Iwasaki S, Izumi K, Izumi K, Izumi T, Jaafar SM, Jackson C, Jackson Y, Jafari G, Jahangiriesmaili M, Jain N, Jansson K, Jasim H, Jeffers L, Jenkins A, Jesky M, Jesus-Silva J, Jeyarajah D, Jiang Y, Jiao X, Jimenez G, Jin B, Jin Q, Jochims J, Johns B, Johnson C, Johnson T, Jolly S, Jones L, Jones L, Jones S, Jones T, Jones V, Joseph M, Joshi S, Judge P, Junejo N, Junus S, Kachele M, Kadowaki T, Kadoya H, Kaga H, Kai H, Kajio H, Kaluza-Schilling W, Kamaruzaman L, Kamarzarian A, Kamimura Y, Kamiya H, Kamundi C, Kan T, Kanaguchi Y, Kanazawa A, Kanda E, Kanegae S, Kaneko K, Kaneko K, Kang HY, Kano T, Karim M, Karounos D, Karsan W, Kasagi R, Kashihara N, Katagiri H, Katanosaka A, Katayama A, Katayama M, Katiman E, Kato K, Kato M, Kato N, Kato S, Kato T, Kato Y, Katsuda Y, Katsuno T, Kaufeld J, Kavak Y, Kawai I, Kawai M, Kawai M, Kawase A, Kawashima S, Kazory A, Kearney J, Keith B, Kellett J, Kelley S, Kershaw M, Ketteler M, Khai Q, Khairullah Q, Khandwala H, Khoo KKL, Khwaja A, Kidokoro K, Kielstein J, Kihara M, Kimber C, Kimura S, Kinashi H, Kingston H, Kinomura M, Kinsella-Perks E, Kitagawa M, Kitajima M, Kitamura S, Kiyosue A, Kiyota M, Klauser F, Klausmann G, Kmietschak W, Knapp K, Knight C, Knoppe A, Knott C, Kobayashi M, Kobayashi R, Kobayashi T, Koch M, Kodama S, Kodani N, Kogure E, Koizumi M, Kojima H, Kojo T, Kolhe N, Komaba H, Komiya T, Komori H, Kon SP, Kondo M, Kondo M, Kong W, Konishi M, Kono K, Koshino M, Kosugi T, Kothapalli B, Kozlowski T, Kraemer B, Kraemer-Guth A, Krappe J, Kraus D, Kriatselis C, Krieger C, Krish P, Kruger B, Ku Md Razi KR, Kuan Y, Kubota S, Kuhn S, Kumar P, Kume S, Kummer I, Kumuji R, Küpper A, Kuramae T, Kurian L, Kuribayashi C, Kurien R, Kuroda E, Kurose T, Kutschat A, Kuwabara N, Kuwata H, La Manna G, Lacey M, Lafferty K, LaFleur P, Lai V, Laity E, Lambert A, Landray MJ, Langlois M, Latif F, Latore E, Laundy E, Laurienti D, Lawson A, Lay M, Leal I, Leal I, Lee AK, Lee J, Lee KQ, Lee R, Lee SA, Lee YY, Lee-Barkey Y, Leonard N, Leoncini G, Leong CM, Lerario S, Leslie A, Levin A, Lewington A, Li J, Li N, Li X, Li Y, Liberti L, Liberti ME, Liew A, Liew YF, Lilavivat U, Lim SK, Lim YS, Limon E, Lin H, Lioudaki E, Liu H, Liu J, Liu L, Liu Q, Liu WJ, Liu X, Liu Z, Loader D, Lochhead H, Loh CL, Lorimer A, Loudermilk L, Loutan J, Low CK, Low CL, Low YM, Lozon Z, Lu Y, Lucci D, Ludwig U, Luker N, Lund D, Lustig R, Lyle S, Macdonald C, MacDougall I, Machicado R, MacLean D, Macleod P, Madera A, Madore F, Maeda K, Maegawa H, Maeno S, Mafham M, Magee J, Maggioni AP, Mah DY, Mahabadi V, Maiguma M, Makita Y, Makos G, Manco L, Mangiacapra R, Manley J, Mann P, Mano S, Marcotte G, Maris J, Mark P, Markau S, Markovic M, Marshall C, Martin M, Martinez C, Martinez S, Martins G, Maruyama K, Maruyama S, Marx K, Maselli A, Masengu A, Maskill A, Masumoto S, Masutani K, Matsumoto M, Matsunaga T, Matsuoka N, Matsushita M, Matthews M, Matthias S, Matvienko E, Maurer M, Maxwell P, Mayne KJ, Mazlan N, Mazlan SA, Mbuyisa A, McCafferty K, McCarroll F, McCarthy T, McClary-Wright C, McCray K, McDermott P, McDonald C, McDougall R, McHaffie E, McIntosh K, McKinley T, McLaughlin S, McLean N, McNeil L, Measor A, Meek J, Mehta A, Mehta R, Melandri M, Mené P, Meng T, Menne J, Merritt K, Merscher S, Meshykhi C, Messa P, Messinger L, Miftari N, Miller R, Miller Y, Miller-Hodges E, Minatoguchi M, Miners M, Minutolo R, Mita T, Miura Y, Miyaji M, Miyamoto S, Miyatsuka T, Miyazaki M, Miyazawa I, Mizumachi R, Mizuno M, Moffat S, Mohamad Nor FS, Mohamad Zaini SN, Mohamed Affandi FA, Mohandas C, Mohd R, Mohd Fauzi NA, Mohd Sharif NH, Mohd Yusoff Y, Moist L, Moncada A, Montasser M, Moon A, Moran C, Morgan N, Moriarty J, Morig G, Morinaga H, Morino K, Morisaki T, Morishita Y, Morlok S, Morris A, Morris F, Mostafa S, Mostefai Y, Motegi M, Motherwell N, Motta D, Mottl A, Moys R, Mozaffari S, Muir J, Mulhern J, Mulligan S, Munakata Y, Murakami C, Murakoshi M, Murawska A, Murphy K, Murphy L, Murray S, Murtagh H, Musa MA, Mushahar L, Mustafa R, Mustafar R, Muto M, Nadar E, Nagano R, Nagasawa T, Nagashima E, Nagasu H, Nagelberg S, Nair H, Nakagawa Y, Nakahara M, Nakamura J, Nakamura R, Nakamura T, Nakaoka M, Nakashima E, Nakata J, Nakata M, Nakatani S, Nakatsuka A, Nakayama Y, Nakhoul G, Nangaku M, Naverrete G, Navivala A, Nazeer I, Negrea L, Nethaji C, Newman E, Ng SYA, Ng TJ, Ngu LLS, Nimbkar T, Nishi H, Nishi M, Nishi S, Nishida Y, Nishiyama A, Niu J, Niu P, Nobili G, Nohara N, Nojima I, Nolan J, Nosseir H, Nozawa M, Nunn M, Nunokawa S, Oda M, Oe M, Oe Y, Ogane K, Ogawa W, Ogihara T, Oguchi G, Ohsugi M, Oishi K, Okada Y, Okajyo J, Okamoto S, Okamura K, Olufuwa O, Oluyombo R, Omata A, Omori Y, Ong LM, Ong YC, Onyema J, Oomatia A, Oommen A, Oremus R, Orimo Y, Ortalda V, Osaki Y, Osawa Y, Osmond Foster J, O'Sullivan A, Otani T, Othman N, Otomo S, O'Toole J, Owen L, Ozawa T, Padiyar A, Page N, Pajak S, Paliege A, Pandey A, Pandey R, Pariani H, Park J, Parrigon M, Passauer J, Patecki M, Patel M, Patel R, Patel T, Patel Z, Paul R, Paul R, Paulsen L, Pavone L, Peixoto A, Peji J, Peng BC, Peng K, Pennino L, Pereira E, Perez E, Pergola P, Pesce F, Pessolano G, Petchey W, Petr EJ, Pfab T, Phelan P, Phillips R, Phillips T, Phipps M, Piccinni G, Pickett T, Pickworth S, Piemontese M, Pinto D, Piper J, Plummer-Morgan J, Poehler D, Polese L, Poma V, Pontremoli R, Postal A, Pötz C, Power A, Pradhan N, Pradhan R, Preiss D, Preiss E, Preston K, Prib N, Price L, Provenzano C, Pugay C, Pulido R, Putz F, Qiao Y, Quartagno R, Quashie-Akponeware M, Rabara R, Rabasa-Lhoret R, Radhakrishnan D, Radley M, Raff R, Raguwaran S, Rahbari-Oskoui F, Rahman M, Rahmat K, Ramadoss S, Ramanaidu S, Ramasamy S, Ramli R, Ramli S, Ramsey T, Rankin A, Rashidi A, Raymond L, Razali WAFA, Read K, Reiner H, Reisler A, Reith C, Renner J, Rettenmaier B, Richmond L, Rijos D, Rivera R, Rivers V, Robinson H, Rocco M, Rodriguez-Bachiller I, Rodriquez R, Roesch C, Roesch J, Rogers J, Rohnstock M, Rolfsmeier S, Roman M, Romo A, Rosati A, Rosenberg S, Ross T, Rossello X, Roura M, Roussel M, Rovner S, Roy S, Rucker S, Rump L, Ruocco M, Ruse S, Russo F, Russo M, Ryder M, Sabarai A, Saccà C, Sachson R, Sadler E, Safiee NS, Sahani M, Saillant A, Saini J, Saito C, Saito S, Sakaguchi K, Sakai M, Salim H, Salviani C, Sammons E, Sampson A, Samson F, Sandercock P, Sanguila S, Santorelli G, Santoro D, Sarabu N, Saram T, Sardell R, Sasajima H, Sasaki T, Satko S, Sato A, Sato D, Sato H, Sato H, Sato J, Sato T, Sato Y, Satoh M, Sawada K, Schanz M, Scheidemantel F, Schemmelmann M, Schettler E, Schettler V, Schlieper GR, Schmidt C, Schmidt G, Schmidt U, Schmidt-Gurtler H, Schmude M, Schneider A, Schneider I, Schneider-Danwitz C, Schomig M, Schramm T, Schreiber A, Schricker S, Schroppel B, Schulte-Kemna L, Schulz E, Schumacher B, Schuster A, Schwab A, Scolari F, Scott A, Seeger W, Seeger W, Segal M, Seifert L, Seifert M, Sekiya M, Sellars R, Seman MR, Shah S, Shah S, Shainberg L, Shanmuganathan M, Shao F, Sharma K, Sharpe C, Sheikh-Ali M, Sheldon J, Shenton C, Shepherd A, Shepperd M, Sheridan R, Sheriff Z, Shibata Y, Shigehara T, Shikata K, Shimamura K, Shimano H, Shimizu Y, Shimoda H, Shin K, Shivashankar G, Shojima N, Silva R, Sim CSB, Simmons K, Sinha S, Sitter T, Sivanandam S, Skipper M, Sloan K, Sloan L, Smith R, Smyth J, Sobande T, Sobata M, Somalanka S, Song X, Sonntag F, Sood B, Sor SY, Soufer J, Sparks H, Spatoliatore G, Spinola T, Squyres S, Srivastava A, Stanfield J, Staplin N, Staylor K, Steele A, Steen O, Steffl D, Stegbauer J, Stellbrink C, Stellbrink E, Stevens W, Stevenson A, Stewart-Ray V, Stickley J, Stoffler D, Stratmann B, Streitenberger S, Strutz F, Stubbs J, Stumpf J, Suazo N, Suchinda P, Suckling R, Sudin A, Sugamori K, Sugawara H, Sugawara K, Sugimoto D, Sugiyama H, Sugiyama H, Sugiyama T, Sullivan M, Sumi M, Suresh N, Sutton D, Suzuki H, Suzuki R, Suzuki Y, Suzuki Y, Suzuki Y, Swanson E, Swift P, Syed S, Szerlip H, Taal M, Taddeo M, Tailor C, Tajima K, Takagi M, Takahashi K, Takahashi K, Takahashi M, Takahashi T, Takahira E, Takai T, Takaoka M, Takeoka J, Takesada A, Takezawa M, Talbot M, Taliercio J, Talsania T, Tamori Y, Tamura R, Tamura Y, Tan CHH, Tan EZZ, Tanabe A, Tanabe K, Tanaka A, Tanaka A, Tanaka N, Tang S, Tang Z, Tanigaki K, Tarlac M, Tatsuzawa A, Tay JF, Tay LL, Taylor J, Taylor K, Taylor K, Te A, Tenbusch L, Teng KS, Terakawa A, Terry J, Tham ZD, Tholl S, Thomas G, Thong KM, Tietjen D, Timadjer A, Tindall H, Tipper S, Tobin K, Toda N, Tokuyama A, Tolibas M, Tomita A, Tomita T, Tomlinson J, Tonks L, Topf J, Topping S, Torp A, Torres A, Totaro F, Toth P, Toyonaga Y, Tripodi F, Trivedi K, Tropman E, Tschope D, Tse J, Tsuji K, Tsunekawa S, Tsunoda R, Tucky B, Tufail S, Tuffaha A, Turan E, Turner H, Turner J, Turner M, Tuttle KR, Tye YL, Tyler A, Tyler J, Uchi H, Uchida H, Uchida T, Uchida T, Udagawa T, Ueda S, Ueda Y, Ueki K, Ugni S, Ugwu E, Umeno R, Unekawa C, Uozumi K, Urquia K, Valleteau A, Valletta C, van Erp R, Vanhoy C, Varad V, Varma R, Varughese A, Vasquez P, Vasseur A, Veelken R, Velagapudi C, Verdel K, Vettoretti S, Vezzoli G, Vielhauer V, Viera R, Vilar E, Villaruel S, Vinall L, Vinathan J, Visnjic M, Voigt E, von-Eynatten M, Vourvou M, Wada J, Wada J, Wada T, Wada Y, Wakayama K, Wakita Y, Wallendszus K, Walters T, Wan Mohamad WH, Wang L, Wang W, Wang X, Wang X, Wang Y, Wanner C, Wanninayake S, Watada H, Watanabe K, Watanabe K, Watanabe M, Waterfall H, Watkins D, Watson S, Weaving L, Weber B, Webley Y, Webster A, Webster M, Weetman M, Wei W, Weihprecht H, Weiland L, Weinmann-Menke J, Weinreich T, Wendt R, Weng Y, Whalen M, Whalley G, Wheatley R, Wheeler A, Wheeler J, Whelton P, White K, Whitmore B, Whittaker S, Wiebel J, Wiley J, Wilkinson L, Willett M, Williams A, Williams E, Williams K, Williams T, Wilson A, Wilson P, Wincott L, Wines E, Winkelmann B, Winkler M, Winter-Goodwin B, Witczak J, Wittes J, Wittmann M, Wolf G, Wolf L, Wolfling R, Wong C, Wong E, Wong HS, Wong LW, Wong YH, Wonnacott A, Wood A, Wood L, Woodhouse H, Wooding N, Woodman A, Wren K, Wu J, Wu P, Xia S, Xiao H, Xiao X, Xie Y, Xu C, Xu Y, Xue H, Yahaya H, Yalamanchili H, Yamada A, Yamada N, Yamagata K, Yamaguchi M, Yamaji Y, Yamamoto A, Yamamoto S, Yamamoto S, Yamamoto T, Yamanaka A, Yamano T, Yamanouchi Y, Yamasaki N, Yamasaki Y, Yamasaki Y, Yamashita C, Yamauchi T, Yan Q, Yanagisawa E, Yang F, Yang L, Yano S, Yao S, Yao Y, Yarlagadda S, Yasuda Y, Yiu V, Yokoyama T, Yoshida S, Yoshidome E, Yoshikawa H, Young A, Young T, Yousif V, Yu H, Yu Y, Yuasa K, Yusof N, Zalunardo N, Zander B, Zani R, Zappulo F, Zayed M, Zemann B, Zettergren P, Zhang H, Zhang L, Zhang L, Zhang N, Zhang X, Zhao J, Zhao L, Zhao S, Zhao Z, Zhong H, Zhou N, Zhou S, Zhu D, Zhu L, Zhu S, Zietz M, Zippo M, Zirino F, Zulkipli FH. Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial. Lancet Diabetes Endocrinol 2024; 12:51-60. [PMID: 38061372 DOI: 10.1016/s2213-8587(23)00322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The EMPA-KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. METHODS EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. FINDINGS Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5-2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62-0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16-1·59), representing a 50% (42-58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). INTERPRETATION In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. FUNDING Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council.
Collapse
|
25
|
Wu SQ, Zhu X, Yuan T, Yuan FY, Zhou S, Huang D, Wang Y, Tang GH, Huang ZS, Chen X, Yin S. Discovery of Ingenane Diterpenoids from Euphorbia hylonoma as Antiadipogenic Agents. JOURNAL OF NATURAL PRODUCTS 2023; 86:2691-2702. [PMID: 37974450 DOI: 10.1021/acs.jnatprod.3c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Thirteen new Euphorbia diterpenoids, euphylonanes A-M (1-13), and eight known ones were isolated from the whole plants of Euphorbia hylonoma. Compounds 1 and 2 are two rearranged ingenanes bearing a rare 6/6/7/3-fused ring system. Compound 3 represents the first example of a 9,10-epoxy tigliane, while 4-21 are typical ingenanes varying with substituents. Structures were elucidated using a combination of spectroscopic, computational, and chemical methods. Most ingenanes exerted a significant antiadipogenic effect in 3T3-L1 adipocytes, among which 4 was the most active with an EC50 value of 0.60 ± 0.27 μM. Mechanistic study revealed that 4 inhibited the adipogenesis and lipogenesis in adipocytes via activation of the AMPK signaling pathway.
Collapse
|