1
|
Thel MC, Cochran JD, Teruya S, Hayashi O, Xie CR, Srinivasan AR, Chavkin NW, Arai Y, Sano S, Santos AM, Santos JDL, Fine D, Sabogal N, Ullah I, Helmke S, Rodriguez C, Prokaeva T, Foster RH, Spencer BH, Izumiya Y, Maurer MS, Walsh K, Ruberg FL. Mosaic Loss of the Y Chromosome Is Enriched in Patients With Wild-Type Transthyretin Cardiac Amyloidosis and Associated With Increased Mortality. Circ Heart Fail 2024; 17:e011681. [PMID: 38853760 PMCID: PMC11335443 DOI: 10.1161/circheartfailure.124.011681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
|
2
|
Sano S, Walsh K. Can dental problems be indicative of clonal hematopoiesis? Cell Res 2024:10.1038/s41422-024-01006-2. [PMID: 39054344 DOI: 10.1038/s41422-024-01006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
|
3
|
Tsuchiya J, Maki Y, Ayano M, Kikuchi T, Watanabe Y, Ohtake K, Fujita R, Hayashi M, Yamamoto J, Wang Y, Anzai A, Kubo T, Sano S. A Novel Method for Acquired Sex Chromosome Mosaicism. Adv Biol (Weinh) 2024; 8:e2300512. [PMID: 38684458 DOI: 10.1002/adbi.202300512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/19/2024] [Indexed: 05/02/2024]
Abstract
The phenomenon of sex chromosome loss from hematopoietic cells is an emerging indicator of biological aging. While many methods to detect this loss have been developed, enhancing the field, these existing methods often suffer from being labor-intensive, expensive, and not sufficiently sensitive. To bridge this gap, a novel and more efficient technique is developed, named the SinChro assay. This method employs multiplexed single-cell droplet PCR, designed to detect cells with sex chromosome loss at single-cell resolution. Through the SinChro assay, the age-dependent increase in Y chromosome loss in male blood is successfully mapped. The age-dependent loss of the X chromosome in female blood is also identified, a finding that has been challenging with existing methods. The advent of the SinChro assay marks a significant breakthrough in the study of age-related sex mosaicism. Its utility extends beyond blood analysis, applicable to a variety of tissues, and it holds the potential to deepen the understanding of biological aging and related diseases.
Collapse
|
4
|
Wang Y, Sano S. Why Y matters? The implication of loss of Y chromosome in blood and cancer. Cancer Sci 2024; 115:706-714. [PMID: 38258457 PMCID: PMC10921008 DOI: 10.1111/cas.16072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Hematopoietic mosaic loss of Y chromosome (mLOY) has emerged as a potential male-specific accelerator of biological aging, increasing the risk of various age-related diseases, including cancer. Importantly, mLOY is not confined to hematopoietic cells; its presence has also been observed in nonhematological cancer cells, with the impact of this presence previously unknown. Recent studies have revealed that, whether occurring in leukocytes or cancer cells, mLOY plays a role in promoting the development of an immunosuppressive tumor microenvironment. This occurs through the modulation of tumor-infiltrating immune cells, ultimately enabling cancer cells to evade the vigilant immune system. In this review, we illuminate recent progress concerning the effects of hematopoietic mLOY and cancer mLOY on cancer progression. Examining cancer progression from the perspective of LOY adds a new layer to our understanding of cancer immunity, promising insights that hold the potential to identify innovative and potent immunotherapy targets for cancer.
Collapse
|
5
|
Sano S, Walsh K. Mosaic loss of chromosome Y and cardiovascular disease. Nat Rev Cardiol 2024; 21:151-152. [PMID: 38057442 DOI: 10.1038/s41569-023-00976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
|
6
|
Horitani K, Chavkin NW, Arai Y, Wang Y, Ogawa H, Yura Y, Evans MA, Cochran JD, Thel MC, Polizio AH, Sano M, Miura-Yura E, Arai Y, Doviak H, Arnold AP, Gelfand BD, Hirschi KK, Sano S, Walsh K. Disruption of the Uty epigenetic regulator locus in hematopoietic cells phenocopies the profibrotic attributes of Y chromosome loss in heart failure. NATURE CARDIOVASCULAR RESEARCH 2024; 3:343-355. [PMID: 39183958 PMCID: PMC11343478 DOI: 10.1038/s44161-024-00441-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/31/2024] [Indexed: 08/27/2024]
Abstract
Heart failure affects millions of people worldwide, with men exhibiting a higher incidence than women. Our previous work has shown that mosaic loss of the Y chromosome (LOY) in leukocytes is causally associated with an increased risk for heart failure. Here, we show that LOY macrophages from the failing hearts of humans with dilated cardiomyopathy exhibit widespread changes in gene expression that correlate with cardiac fibroblast activation. Moreover, we identify the ubiquitously transcribed t et ratricopeptide Y-linked (Uty) gene in leukocytes as a causal locus for an accelerated progression of heart failure in male mice with LOY. We demonstrate that Uty disruption leads to epigenetic alterations in both monocytes and macrophages, increasing the propensity of differentiation into profibrotic macrophages. Treatment with a transforming growth factor-β-neutralizing antibody prevented the cardiac pathology associated with Uty deficiency in leukocytes. These findings shed light on the mechanisms that contribute to the higher incidence of heart failure in men.
Collapse
|
7
|
Abe K, Hayato Y, Hiraide K, Ieki K, Ikeda M, Kameda J, Kanemura Y, Kaneshima R, Kashiwagi Y, Kataoka Y, Miki S, Mine S, Miura M, Moriyama S, Nakano Y, Nakahata M, Nakayama S, Noguchi Y, Okamoto K, Sato K, Sekiya H, Shiba H, Shimizu K, Shiozawa M, Sonoda Y, Suzuki Y, Takeda A, Takemoto Y, Takenaka A, Tanaka H, Watanabe S, Yano T, Han S, Kajita T, Okumura K, Tashiro T, Tomiya T, Wang X, Xia J, Yoshida S, Megias GD, Fernandez P, Labarga L, Ospina N, Zaldivar B, Pointon BW, Kearns E, Raaf JL, Wan L, Wester T, Bian J, Griskevich NJ, Kropp WR, Locke S, Smy MB, Sobel HW, Takhistov V, Yankelevich A, Hill J, Park RG, Bodur B, Scholberg K, Walter CW, Bernard L, Coffani A, Drapier O, El Hedri S, Giampaolo A, Mueller TA, Santos AD, Paganini P, Quilain B, Ishizuka T, Nakamura T, Jang JS, Learned JG, Choi K, Cao S, Anthony LHV, Martin D, Scott M, Sztuc AA, Uchida Y, Berardi V, Catanesi MG, Radicioni E, Calabria NF, Machado LN, De Rosa G, Collazuol G, Iacob F, Lamoureux M, Mattiazzi M, Ludovici L, Gonin M, Pronost G, Fujisawa C, Maekawa Y, Nishimura Y, Friend M, Hasegawa T, Ishida T, Kobayashi T, Jakkapu M, Matsubara T, Nakadaira T, Nakamura K, Oyama Y, Sakashita K, Sekiguchi T, Tsukamoto T, Boschi T, Di Lodovico F, Gao J, Goldsack A, Katori T, Migenda J, Taani M, Zsoldos S, Kotsar Y, Ozaki H, Suzuki AT, Takeuchi Y, Bronner C, Feng J, Kikawa T, Mori M, Nakaya T, Wendell RA, Yasutome K, Jenkins SJ, McCauley N, Mehta P, Tsui KM, Fukuda Y, Itow Y, Menjo H, Ninomiya K, Lagoda J, Lakshmi SM, Mandal M, Mijakowski P, Prabhu YS, Zalipska J, Jia M, Jiang J, Jung CK, Wilking MJ, Yanagisawa C, Harada M, Ishino H, Ito S, Kitagawa H, Koshio Y, Nakanishi F, Sakai S, Barr G, Barrow D, Cook L, Samani S, Wark D, Nova F, Yang JY, Malek M, McElwee JM, Stone O, Thiesse MD, Thompson LF, Okazawa H, Kim SB, Seo JW, Yu I, Ichikawa AK, Nakamura KD, Tairafune S, Nishijima K, Iwamoto K, Nakagiri K, Nakajima Y, Taniuchi N, Yokoyama M, Martens K, de Perio P, Vagins MR, Kuze M, Izumiyama S, Inomoto M, Ishitsuka M, Ito H, Kinoshita T, Matsumoto R, Ommura Y, Shigeta N, Shinoki M, Suganuma T, Yamauchi K, Martin JF, Tanaka HA, Towstego T, Akutsu R, Gousy-Leblanc V, Hartz M, Konaka A, Prouse NW, Chen S, Xu BD, Zhang B, Posiadala-Zezula M, Hadley D, Nicholson M, O'Flaherty M, Richards B, Ali A, Jamieson B, Marti L, Minamino A, Pintaudi G, Sano S, Suzuki S, Wada K. Erratum: Search for Cosmic-Ray Boosted Sub-GeV Dark Matter Using Recoil Protons at Super-Kamiokande [Phys. Rev. Lett. 130, 031802 (2023)]. PHYSICAL REVIEW LETTERS 2023; 131:159903. [PMID: 37897794 DOI: 10.1103/physrevlett.131.159903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Indexed: 10/30/2023]
Abstract
This corrects the article DOI: 10.1103/PhysRevLett.130.031802.
Collapse
|
8
|
Cochran J, Yura Y, Thel MC, Doviak H, Polizio AH, Arai Y, Arai Y, Horitani K, Park E, Chavkin NW, Kour A, Sano S, Mahajan N, Evans M, Huba M, Naya NM, Sun H, Ban Y, Hirschi KK, Toldo S, Abbate A, Druley TE, Ruberg FL, Maurer MS, Ezekowitz JA, Dyck JR, Walsh K. Clonal Hematopoiesis in Clinical and Experimental Heart Failure With Preserved Ejection Fraction. Circulation 2023; 148:1165-1178. [PMID: 37681311 PMCID: PMC10575571 DOI: 10.1161/circulationaha.123.064170] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Clonal hematopoiesis (CH), which results from an array of nonmalignant driver gene mutations, can lead to altered immune cell function and chronic disease, and has been associated with worse outcomes in patients with heart failure (HF) with reduced ejection fraction. However, the role of CH in the prognosis of HF with preserved ejection fraction (HFpEF) has been understudied. This study aimed to characterize CH in patients with HFpEF and elucidate its causal role in a murine model. METHODS Using a panel of 20 candidate CH driver genes and a variant allele fraction cutoff of 0.5%, ultradeep error-corrected sequencing identified CH in a cohort of 81 patients with HFpEF (mean age, 71±6 years; ejection fraction, 63±5%) and 36 controls without a diagnosis of HFpEF (mean age, 74±7 years; ejection fraction, 61.5±8%). CH was also evaluated in a replication cohort of 59 individuals with HFpEF. RESULTS Compared with controls, there was an enrichment of TET2-mediated CH in the HFpEF patient cohort (12% versus 0%, respectively; P=0.02). In the HFpEF cohort, patients with CH exhibited exacerbated diastolic dysfunction in terms of E/e' (14.9 versus 11.7, respectively; P=0.0096) and E/A (1.69 versus 0.89, respectively; P=0.0206) compared with those without CH. The association of CH with exacerbated diastolic dysfunction was corroborated in a validation cohort of individuals with HFpEF. In accordance, patients with HFpEF, an age ≥70 years, and CH exhibited worse prognosis in terms of 5-year cardiovascular-related hospitalization rate (hazard ratio, 5.06; P=0.042) compared with patients with HFpEF and an age ≥70 years without CH. To investigate the causal role of CH in HFpEF, nonconditioned mice underwent adoptive transfer with Tet2-wild-type or Tet2-deficient bone marrow and were subsequently subjected to a high-fat diet/L-NAME (Nω-nitro-l-arginine methyl ester) combination treatment to induce features of HFpEF. This model of Tet2-CH exacerbated cardiac hypertrophy by heart weight/tibia length and cardiomyocyte size, diastolic dysfunction by E/e' and left ventricular end-diastolic pressure, and cardiac fibrosis compared with the Tet2-wild-type condition. CONCLUSIONS CH is associated with worse heart function and prognosis in patients with HFpEF, and a murine experimental model of Tet2-mediated CH displays greater features of HFpEF.
Collapse
|
9
|
Sano S, Walsh K. Development of a Mouse Model of Hematopoietic Loss of Y Chromosome. Bio Protoc 2023; 13:e4729. [PMID: 37575386 PMCID: PMC10415196 DOI: 10.21769/bioprotoc.4729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/27/2023] [Accepted: 05/08/2023] [Indexed: 08/15/2023] Open
Abstract
This protocol describes the generation of chimeric mice in which the Y chromosome is deleted from a proportion of blood cells. This model recapitulates the phenomenon of hematopoietic mosaic loss of Y chromosome (mLOY), which is frequently observed in the blood of aged men. To construct mice with hematopoietic Y chromosome loss, lineage-negative cells are isolated from the bone marrow of ROSA26-Cas9 knock-in mice. These cells are transduced with a lentivirus vector encoding a guide RNA (gRNA) that targets multiple repeats of the Y chromosome centromere, effectively removing the Y chromosome. These cells are then transplanted into lethally irradiated wildtype C57BL6 mice. Control gRNAs are designed to target either no specific region or the fourth intron of Actin gene. Transduced cells are tracked by measuring the fraction of blood cells expressing the virally encoded reporter gene tRFP. This model represents a clinically relevant model of hematopoietic mosaic loss of Y chromosome, which can be used to study the impact of mLOY on various age-related diseases. Graphical overview.
Collapse
|
10
|
Sano S, Thel MC, Walsh K. Mosaic Loss of Y Chromosome in White Blood Cells: Its Impact on Men's Health. Physiology (Bethesda) 2023; 38:0. [PMID: 36976266 PMCID: PMC10281780 DOI: 10.1152/physiol.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
We present a brief introduction of loss of Y chromosome (LOY) in blood and describe the known risk factors for this condition. We then overview the associations between LOY and age-related disease traits. Finally, we discuss murine models and the potential mechanisms by which LOY contributes to disease.
Collapse
|
11
|
Sano S, Thel MC, Walsh K. Clonal hematopoiesis: the nonhereditary genetics of age-associated cardiovascular disease. Curr Opin Cardiol 2023; 38:201-206. [PMID: 36811645 PMCID: PMC10079606 DOI: 10.1097/hco.0000000000001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
PURPOSE OF REVIEW Somatic mutations, described as noninherited changes in DNA that arise and are passed on to descendant cells, are well known to cause cancers; however, it is increasingly appreciated that the propagation of somatic mutations within a tissue may have a role in causing nonneoplastic disorders and abnormalities in elderly individuals. The nonmalignant clonal expansion of somatic mutations in the hematopoietic system is termed clonal hematopoiesis. This review will briefly discuss how this condition has been linked to various age-related diseases outside the hematopoietic system. RECENT FINDINGS Clonal hematopoiesis, resulting from leukemic driver gene mutations or mosaic loss of the Y chromosome in leukocytes, is associated with the development of various forms of cardiovascular disease, including atherosclerosis and heart failure, in a mutation-dependent manner. SUMMARY Accumulating evidence shows that clonal hematopoiesis represents a new mechanism for cardiovascular disease and a new risk factor that is as prevalent and consequential as the traditional risk factors that have been studied for decades.
Collapse
|
12
|
Abe K, Hayato Y, Hiraide K, Ieki K, Ikeda M, Kameda J, Kanemura Y, Kaneshima R, Kashiwagi Y, Kataoka Y, Miki S, Mine S, Miura M, Moriyama S, Nakano Y, Nakahata M, Nakayama S, Noguchi Y, Okamoto K, Sato K, Sekiya H, Shiba H, Shimizu K, Shiozawa M, Sonoda Y, Suzuki Y, Takeda A, Takemoto Y, Takenaka A, Tanaka H, Watanabe S, Yano T, Han S, Kajita T, Okumura K, Tashiro T, Tomiya T, Wang X, Xia J, Yoshida S, Megias GD, Fernandez P, Labarga L, Ospina N, Zaldivar B, Pointon BW, Kearns E, Raaf JL, Wan L, Wester T, Bian J, Griskevich NJ, Kropp WR, Locke S, Smy MB, Sobel HW, Takhistov V, Yankelevich A, Hill J, Park RG, Bodur B, Scholberg K, Walter CW, Bernard L, Coffani A, Drapier O, El Hedri S, Giampaolo A, Mueller TA, Santos AD, Paganini P, Quilain B, Ishizuka T, Nakamura T, Jang JS, Learned JG, Choi K, Cao S, Anthony LHV, Martin D, Scott M, Sztuc AA, Uchida Y, Berardi V, Catanesi MG, Radicioni E, Calabria NF, Machado LN, De Rosa G, Collazuol G, Iacob F, Lamoureux M, Mattiazzi M, Ludovici L, Gonin M, Pronost G, Fujisawa C, Maekawa Y, Nishimura Y, Friend M, Hasegawa T, Ishida T, Kobayashi T, Jakkapu M, Matsubara T, Nakadaira T, Nakamura K, Oyama Y, Sakashita K, Sekiguchi T, Tsukamoto T, Boschi T, Di Lodovico F, Gao J, Goldsack A, Katori T, Migenda J, Taani M, Zsoldos S, Kotsar Y, Ozaki H, Suzuki AT, Takeuchi Y, Bronner C, Feng J, Kikawa T, Mori M, Nakaya T, Wendell RA, Yasutome K, Jenkins SJ, McCauley N, Mehta P, Tsui KM, Fukuda Y, Itow Y, Menjo H, Ninomiya K, Lagoda J, Lakshmi SM, Mandal M, Mijakowski P, Prabhu YS, Zalipska J, Jia M, Jiang J, Jung CK, Wilking MJ, Yanagisawa C, Harada M, Ishino H, Ito S, Kitagawa H, Koshio Y, Nakanishi F, Sakai S, Barr G, Barrow D, Cook L, Samani S, Wark D, Nova F, Yang JY, Malek M, McElwee JM, Stone O, Thiesse MD, Thompson LF, Okazawa H, Kim SB, Seo JW, Yu I, Ichikawa AK, Nakamura KD, Tairafune S, Nishijima K, Iwamoto K, Nakagiri K, Nakajima Y, Taniuchi N, Yokoyama M, Martens K, de Perio P, Vagins MR, Kuze M, Izumiyama S, Inomoto M, Ishitsuka M, Ito H, Kinoshita T, Matsumoto R, Ommura Y, Shigeta N, Shinoki M, Suganuma T, Yamauchi K, Martin JF, Tanaka HA, Towstego T, Akutsu R, Gousy-Leblanc V, Hartz M, Konaka A, Prouse NW, Chen S, Xu BD, Zhang B, Posiadala-Zezula M, Hadley D, Nicholson M, O'Flaherty M, Richards B, Ali A, Jamieson B, Marti L, Minamino A, Pintaudi G, Sano S, Suzuki S, Wada K. Search for Cosmic-Ray Boosted Sub-GeV Dark Matter Using Recoil Protons at Super-Kamiokande. PHYSICAL REVIEW LETTERS 2023; 130:031802. [PMID: 36763398 DOI: 10.1103/physrevlett.130.031802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/30/2022] [Indexed: 06/18/2023]
Abstract
We report a search for cosmic-ray boosted dark matter with protons using the 0.37 megaton×years data collected at Super-Kamiokande experiment during the 1996-2018 period (SKI-IV phase). We searched for an excess of proton recoils above the atmospheric neutrino background from the vicinity of the Galactic Center. No such excess is observed, and limits are calculated for two reference models of dark matter with either a constant interaction cross section or through a scalar mediator. This is the first experimental search for boosted dark matter with hadrons using directional information. The results present the most stringent limits on cosmic-ray boosted dark matter and exclude the dark matter-nucleon elastic scattering cross section between 10^{-33}cm^{2} and 10^{-27}cm^{2} for dark matter mass from 1 MeV/c^{2} to 300 MeV/c^{2}.
Collapse
|
13
|
Morisaka H, Takaishi M, Akira S, Sano S. 436 Keratinocyte Regnase-1, a down-modulator of skin inflammation, contributes to protection from carcinogenesis through regulating COX-2. J Invest Dermatol 2022. [DOI: 10.1016/j.jid.2022.09.450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Sano S, Horitani K, Ogawa H, Halvardson J, Chavkin NW, Wang Y, Sano M, Mattisson J, Hata A, Danielsson M, Miura-Yura E, Zaghlool A, Evans MA, Fall T, De Hoyos HN, Sundström J, Yura Y, Kour A, Arai Y, Thel MC, Arai Y, Mychaleckyj JC, Hirschi KK, Forsberg LA, Walsh K. Hematopoietic loss of Y chromosome leads to cardiac fibrosis and heart failure mortality. Science 2022; 377:292-297. [PMID: 35857592 PMCID: PMC9437978 DOI: 10.1126/science.abn3100] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hematopoietic mosaic loss of Y chromosome (mLOY) is associated with increased risk of mortality and age-related diseases in men, but the causal and mechanistic relationships have yet to be established. Here, we show that male mice reconstituted with bone marrow cells lacking the Y chromosome display increased mortality and age-related profibrotic pathologies including reduced cardiac function. Cardiac macrophages lacking the Y chromosome exhibited polarization toward a more fibrotic phenotype, and treatment with a transforming growth factor β1-neutralizing antibody ameliorated cardiac dysfunction in mLOY mice. A prospective study revealed that mLOY in blood is associated with an increased risk for cardiovascular disease and heart failure-associated mortality. Together, these results indicate that hematopoietic mLOY causally contributes to fibrosis, cardiac dysfunction, and mortality in men.
Collapse
|
15
|
Abstract
Contrary to earlier beliefs, every cell in the individual is genetically different due to somatic mutations. Consequently, tissues become a mixture of cells with distinct genomes, a phenomenon termed somatic mosaicism. Recent advances in genome sequencing technology have unveiled possible causes of mutations and how they shape the unique mutational landscape of the tissues. Moreover, the analysis of sequencing data in combination with clinical information has revealed the impacts of somatic mosaicism on disease processes. In this review, we discuss somatic mosaicism in various tissues and its clinical implications for human disease.
Collapse
|
16
|
Abe K, Bronner C, Hayato Y, Hiraide K, Ikeda M, Imaizumi S, Kameda J, Kanemura Y, Kataoka Y, Miki S, Miura M, Moriyama S, Nagao Y, Nakahata M, Nakayama S, Okada T, Okamoto K, Orii A, Pronost G, Sekiya H, Shiozawa M, Sonoda Y, Suzuki Y, Takeda A, Takemoto Y, Takenaka A, Tanaka H, Watanabe S, Yano T, Han S, Kajita T, Okumura K, Tashiro T, Xia J, Megias G, Bravo-Berguño D, Labarga L, Marti L, Zaldivar B, Pointon B, Blaszczyk F, Kearns E, Raaf J, Stone J, Wan L, Wester T, Bian J, Griskevich N, Kropp W, Locke S, Mine S, Smy M, Sobel H, Takhistov V, Hill J, Kim J, Lim I, Park R, Bodur B, Scholberg K, Walter C, Cao S, Bernard L, Coffani A, Drapier O, El Hedri S, Giampaolo A, Gonin M, Mueller T, Paganini P, Quilain B, Ishizuka T, Nakamura T, Jang J, Learned J, Anthony L, Martin D, Scott M, Sztuc A, Uchida Y, Berardi V, Catanesi M, Radicioni E, Calabria N, Machado L, De Rosa G, Collazuol G, Iacob F, Lamoureux M, Mattiazzi M, Ospina N, Ludovici L, Maekawa Y, Nishimura Y, Friend M, Hasegawa T, Ishida T, Kobayashi T, Jakkapu M, Matsubara T, Nakadaira T, Nakamura K, Oyama Y, Sakashita K, Sekiguchi T, Tsukamoto T, Kotsar Y, Nakano Y, Ozaki H, Shiozawa T, Suzuki A, Takeuchi Y, Yamamoto S, Ali A, Ashida Y, Feng J, Hirota S, Kikawa T, Mori M, Nakaya T, Wendell R, Yasutome K, Fernandez P, McCauley N, Mehta P, Tsui K, Fukuda Y, Itow Y, Menjo H, Niwa T, Sato K, Tsukada M, Lagoda J, Lakshmi S, Mijakowski P, Zalipska J, Jiang J, Jung C, Vilela C, Wilking M, Yanagisawa C, Hagiwara K, Harada M, Horai T, Ishino H, Ito S, Kitagawa H, Koshio Y, Ma W, Piplani N, Sakai S, Barr G, Barrow D, Cook L, Goldsack A, Samani S, Wark D, Nova F, Boschi T, Di Lodovico F, Gao J, Migenda J, Taani M, Zsoldos S, Yang J, Jenkins S, Malek M, McElwee J, Stone O, Thiesse M, Thompson L, Okazawa H, Kim S, Seo J, Yu I, Nishijima K, Koshiba M, Iwamoto K, Nakagiri K, Nakajima Y, Ogawa N, Yokoyama M, Martens K, Vagins M, Kuze M, Izumiyama S, Yoshida T, Inomoto M, Ishitsuka M, Ito H, Kinoshita T, Matsumoto R, Ohta K, Shinoki M, Suganuma T, Ichikawa A, Nakamura K, Martin J, Tanaka H, Towstego T, Akutsu R, Gousy-Leblanc V, Hartz M, Konaka A, de Perio P, Prouse N, Chen S, Xu B, Zhang Y, Posiadala-Zezula M, Hadley D, O’Flaherty M, Richards B, Jamieson B, Walker J, Minamino A, Okamoto K, Pintaudi G, Sano S, Sasaki R. Diffuse supernova neutrino background search at Super-Kamiokande. Int J Clin Exp Med 2021. [DOI: 10.1103/physrevd.104.122002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Takaishi M, Ishimoto T, Tokunaga M, Kokubu C, Takeda J, Sano S. 104 Ahed, a novel spliceosomal protein, is essential for the development and maintenance of the epidermis through regulation of mRNA splicing. J Invest Dermatol 2021. [DOI: 10.1016/j.jid.2021.08.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Chavkin N, Sano S, Walsh K. Abstract MP258: The Cell Surface Receptors Ror1/2 Control Cardiac Myofibroblast Differentiation. Circ Res 2021. [DOI: 10.1161/res.129.suppl_1.mp258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
A hallmark of heart failure is cardiac fibrosis, which results from the injury-induced differentiation response of resident fibroblasts to myofibroblasts that deposit extracellular matrix. During myofibroblast differentiation, fibroblasts progress through polarization stages of early pro-inflammation, intermediate proliferation, and late maturation, but the regulators of this progression are poorly understood. Planar cell polarity receptors, receptor tyrosine kinase like orphan receptor 1 and 2 (Ror1/2), can function to promote cell differentiation and transformation. In this study, we investigated the role of the Ror1/2 in a model of heart failure with emphasis on myofibroblast differentiation.
Methods and Results:
The role of Ror1/2 during cardiac myofibroblast differentiation was studied in cell culture models of primary murine cardiac fibroblast activation and in knockout mouse models that underwent transverse aortic constriction (TAC) surgery to induce cardiac injury by pressure overload. Expression of Ror1 and Ror2 were robustly and exclusively induced in fibroblasts in hearts after TAC surgery, and both were rapidly upregulated after early activation of primary murine cardiac fibroblasts in culture. Cultured fibroblasts isolated from Ror1/2-KO mice displayed a pro-inflammatory phenotype indicative of impaired myofibroblast differentiation. Although the combined ablation of Ror1/2 in mice did not result in a detectable baseline phenotype, TAC surgery led to the death of all mice by day 6 that was associated with myocardial hyper-inflammation and vascular leakage.
Conclusions:
Together, these results show that Ror1/2 are essential for the progression of myofibroblast differentiation and for the adaptive remodeling of the heart in response to pressure overload.
Collapse
|
19
|
Yura Y, Miura-Yura E, Katanasaka Y, Min KD, Chavkin N, Polizio AH, Ogawa H, Horitani K, Doviak H, Evans MA, Sano M, Wang Y, Boroviak K, Philippos G, Domingues AF, Vassiliou G, Sano S, Walsh K. The Cancer Therapy-Related Clonal Hematopoiesis Driver Gene Ppm1d Promotes Inflammation and Non-Ischemic Heart Failure in Mice. Circ Res 2021; 129:684-698. [PMID: 34315245 PMCID: PMC8409899 DOI: 10.1161/circresaha.121.319314] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
|
20
|
Sano S, Wang Y, Ogawa H, Horitani K, Sano M, Polizio AH, Kour A, Yura Y, Doviak H, Walsh K. TP53-mediated therapy-related clonal hematopoiesis contributes to doxorubicin-induced cardiomyopathy by augmenting a neutrophil-mediated cytotoxic response. JCI Insight 2021; 6:e146076. [PMID: 34236050 PMCID: PMC8410064 DOI: 10.1172/jci.insight.146076] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/13/2021] [Indexed: 12/27/2022] Open
Abstract
Therapy-related clonal hematopoiesis (t-CH) is often observed in cancer survivors. This form of clonal hematopoiesis typically involves somatic mutations in driver genes that encode components of the DNA damage response and confer hematopoietic stem and progenitor cells (HSPCs) with resistance to the genotoxic stress of the cancer therapy. Here, we established a model of TP53-mediated t-CH through the transfer of Trp53 mutant HSPCs to mice, followed by treatment with a course of the chemotherapeutic agent doxorubicin. These studies revealed that neutrophil infiltration in the heart significantly contributes to doxorubicin-induced cardiac toxicity and that this condition is amplified in the model of Trp53-mediated t-CH. These data suggest that t-CH could contribute to the elevated heart failure risk that occurs in cancer survivors who have been treated with genotoxic agents.
Collapse
|
21
|
Chavkin NW, Sano S, Wang Y, Oshima K, Ogawa H, Horitani K, Sano M, MacLauchlan S, Nelson A, Setia K, Vippa T, Watanabe Y, Saucerman JJ, Hirschi KK, Gokce N, Walsh K. The Cell Surface Receptors Ror1/2 Control Cardiac Myofibroblast Differentiation. J Am Heart Assoc 2021; 10:e019904. [PMID: 34155901 PMCID: PMC8403294 DOI: 10.1161/jaha.120.019904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/22/2021] [Indexed: 12/25/2022]
Abstract
Background A hallmark of heart failure is cardiac fibrosis, which results from the injury-induced differentiation response of resident fibroblasts to myofibroblasts that deposit extracellular matrix. During myofibroblast differentiation, fibroblasts progress through polarization stages of early proinflammation, intermediate proliferation, and late maturation, but the regulators of this progression are poorly understood. Planar cell polarity receptors, receptor tyrosine kinase-like orphan receptor 1 and 2 (Ror1/2), can function to promote cell differentiation and transformation. In this study, we investigated the role of the Ror1/2 in a model of heart failure with emphasis on myofibroblast differentiation. Methods and Results The role of Ror1/2 during cardiac myofibroblast differentiation was studied in cell culture models of primary murine cardiac fibroblast activation and in knockout mouse models that underwent transverse aortic constriction surgery to induce cardiac injury by pressure overload. Expression of Ror1 and Ror2 were robustly and exclusively induced in fibroblasts in hearts after transverse aortic constriction surgery, and both were rapidly upregulated after early activation of primary murine cardiac fibroblasts in culture. Cultured fibroblasts isolated from Ror1/2 knockout mice displayed a proinflammatory phenotype indicative of impaired myofibroblast differentiation. Although the combined ablation of Ror1/2 in mice did not result in a detectable baseline phenotype, transverse aortic constriction surgery led to the death of all mice by day 6 that was associated with myocardial hyperinflammation and vascular leakage. Conclusions Together, these results show that Ror1/2 are essential for the progression of myofibroblast differentiation and for the adaptive remodeling of the heart in response to pressure overload.
Collapse
|
22
|
Wang Y, Sano S, Ogawa H, Horitani K, Evans MA, Yura Y, Miura-Yura E, Doviak H, Walsh K. Murine models of clonal hematopoiesis to assess mechanisms of cardiovascular disease. Cardiovasc Res 2021; 118:1413-1432. [PMID: 34164655 DOI: 10.1093/cvr/cvab215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Clonal hematopoiesis (CH) is a phenomenon whereby somatic mutations confer a fitness advantage to hematopoietic stem and progenitor cells (HSPC) and thus facilitate their aberrant clonal expansion. These mutations are carried into progeny leukocytes leading to a situation whereby a substantial fraction of an individual's blood cells originate from the HSPC mutant clone. Although this condition rarely progresses to a hematological malignancy, circulating blood cells bearing the mutation have the potential to affect other organ systems as they infiltrate into tissues under both homeostatic and disease conditions. Epidemiological and clinical studies have revealed that CH is highly prevalent in the elderly and is associated with an increased risk of cardiovascular disease and mortality. Recent experimental studies in murine models have assessed the most commonly mutated "driver" genes associated with CH, and have provided evidence for mechanistic connections between CH and cardiovascular disease. A deeper understanding of the mechanisms by which specific CH mutations promote disease pathogenesis is of importance, as it could pave the way for individualized therapeutic strategies targeting the pathogenic CH gene mutations in the future. Here, we review the epidemiology of CH and the mechanistic work from studies using murine disease models, with a particular focus on the strengths and limitations of these experimental systems. We intend for this review to help investigators select the most appropriate models to study CH in the setting of cardiovascular disease.
Collapse
|
23
|
Sano S, Walsh K. Hematopoietic JAK2 V617F-mediated clonal hematopoiesis: AIM2 understand mechanisms of atherogenesis. THE JOURNAL OF CARDIOVASCULAR AGING 2021; 1. [PMID: 34396370 PMCID: PMC8360421 DOI: 10.20517/jca.2021.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Abstract
Abstract
Collapse
|
25
|
Park E, Evans MA, Doviak H, Horitani K, Ogawa H, Yura Y, Wang Y, Sano S, Walsh K. Bone Marrow Transplantation Procedures in Mice to Study Clonal Hematopoiesis. J Vis Exp 2021:10.3791/61875. [PMID: 34125083 PMCID: PMC8439117 DOI: 10.3791/61875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Clonal hematopoiesis is a prevalent age-associated condition that results from the accumulation of somatic mutations in hematopoietic stem and progenitor cells (HSPCs). Mutations in driver genes, that confer cellular fitness, can lead to the development of expanding HSPC clones that increasingly give rise to progeny leukocytes harboring the somatic mutation. Because clonal hematopoiesis has been associated with heart disease, stroke, and mortality, the development of experimental systems that model these processes is key to understanding the mechanisms that underly this new risk factor. Bone marrow transplantation procedures involving myeloablative conditioning in mice, such as total-body irradiation (TBI), are commonly employed to study the role of immune cells in cardiovascular diseases. However, simultaneous damage to the bone marrow niche and other sites of interest, such as the heart and brain, is unavoidable with these procedures. Thus, our lab has developed two alternative methods to minimize or avoid possible side effects caused by TBI: 1) bone marrow transplantation with irradiation shielding and 2) adoptive BMT to non-conditioned mice. In shielded organs, the local environment is preserved allowing for the analysis of clonal hematopoiesis while the function of resident immune cells is unperturbed. In contrast, the adoptive BMT to non-conditioned mice has the additional advantage that both the local environments of the organs and the hematopoietic niche are preserved. Here, we compare three different hematopoietic cell reconstitution approaches and discuss their strengths and limitations for studies of clonal hematopoiesis in cardiovascular disease.
Collapse
|