1
|
Moliner R, Girych M, Brunello CA, Kovaleva V, Biojone C, Enkavi G, Antenucci L, Kot EF, Goncharuk SA, Kaurinkoski K, Kuutti M, Fred SM, Elsilä LV, Sakson S, Cannarozzo C, Diniz CRAF, Seiffert N, Rubiolo A, Haapaniemi H, Meshi E, Nagaeva E, Öhman T, Róg T, Kankuri E, Vilar M, Varjosalo M, Korpi ER, Permi P, Mineev KS, Saarma M, Vattulainen I, Casarotto PC, Castrén E. Psychedelics promote plasticity by directly binding to BDNF receptor TrkB. Nat Neurosci 2023; 26:1032-1041. [PMID: 37280397 PMCID: PMC10244169 DOI: 10.1038/s41593-023-01316-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/21/2023] [Indexed: 06/08/2023]
Abstract
Psychedelics produce fast and persistent antidepressant effects and induce neuroplasticity resembling the effects of clinically approved antidepressants. We recently reported that pharmacologically diverse antidepressants, including fluoxetine and ketamine, act by binding to TrkB, the receptor for BDNF. Here we show that lysergic acid diethylamide (LSD) and psilocin directly bind to TrkB with affinities 1,000-fold higher than those for other antidepressants, and that psychedelics and antidepressants bind to distinct but partially overlapping sites within the transmembrane domain of TrkB dimers. The effects of psychedelics on neurotrophic signaling, plasticity and antidepressant-like behavior in mice depend on TrkB binding and promotion of endogenous BDNF signaling but are independent of serotonin 2A receptor (5-HT2A) activation, whereas LSD-induced head twitching is dependent on 5-HT2A and independent of TrkB binding. Our data confirm TrkB as a common primary target for antidepressants and suggest that high-affinity TrkB positive allosteric modulators lacking 5-HT2A activity may retain the antidepressant potential of psychedelics without hallucinogenic effects.
Collapse
|
2
|
Oliveira AA, Róg T, da Silva ABF, Amaro RE, Johnson MS, Postila PA. Examining the Effect of Charged Lipids on Mitochondrial Outer Membrane Dynamics Using Atomistic Simulations. Biomolecules 2022; 12:183. [PMID: 35204684 PMCID: PMC8961577 DOI: 10.3390/biom12020183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/11/2022] Open
Abstract
The outer mitochondrial membrane (OMM) is involved in multiple cellular functions such as apoptosis, inflammation and signaling via its membrane-associated and -embedded proteins. Despite the central role of the OMM in these vital phenomena, the structure and dynamics of the membrane have regularly been investigated in silico using simple two-component models. Accordingly, the aim was to generate the realistic multi-component model of the OMM and inspect its properties using atomistic molecular dynamics (MD) simulations. All major lipid components, phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS), were included in the probed OMM models. Because increased levels of anionic PS lipids have potential effects on schizophrenia and, more specifically, on monoamine oxidase B enzyme activity, the effect of varying the PS concentration was explored. The MD simulations indicate that the complex membrane lipid composition (MLC) behavior is notably different from the two-component PC-PE model. The MLC changes caused relatively minor effects on the membrane structural properties such as membrane thickness or area per lipid; however, notable effects could be seen with the dynamical parameters at the water-membrane interface. Increase of PS levels appears to slow down lateral diffusion of all lipids and, in general, the presence of anionic lipids reduced hydration and slowed down the PE headgroup rotation. In addition, sodium ions could neutralize the membrane surface, when PI was the main anionic component; however, a similar effect was not seen for high PS levels. Based on these results, it is advisable for future studies on the OMM and its protein or ligand partners, especially when wanting to replicate the correct properties on the water-membrane interface, to use models that are sufficiently complex, containing anionic lipid types, PI in particular.
Collapse
|
3
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
|
4
|
Mahmoudzadeh M, Magarkar A, Koivuniemi A, Róg T, Bunker A. Mechanistic Insight into How PEGylation Reduces the Efficacy of pH-Sensitive Liposomes from Molecular Dynamics Simulations. Mol Pharm 2021; 18:2612-2621. [PMID: 34096310 PMCID: PMC8289284 DOI: 10.1021/acs.molpharmaceut.1c00122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Liposome-based drug
delivery systems composed of DOPE stabilized
with cholesteryl hemisuccinate (CHMS) have been proposed as a drug
delivery mechanism with pH-triggered release as the anionic form (CHSa)
is protonated (CHS) at reduced pH; PEGylation is known to decrease
this pH sensitivity. In this manuscript, we set out to use molecular
dynamics (MD) simulations with a model with all-atom resolution to
provide insight into why incorporation of poly(ethyleneglycol) (PEG)
into DOPE–CHMS liposomes reduces their pH sensitivity; we also
address two additional questions: (1) How CHSa stabilizes DOPE bilayers
into a lamellar conformation at a physiological pH of 7.4? and (2)
how the change from CHSa to CHS at acidic pH triggers the destabilization
of DOPE bilayers? We found that (A) CHSa stabilizes the DOPE lipid
membrane by increasing the hydrophilicity of the bilayer surface,
(B) when CHSa changes to CHS by pH reduction, DOPE bilayers are destabilized
due to a reduction in bilayer hydrophilicity and a reduction in the
area per lipid, and (C) PEG stabilizes DOPE bilayers into the lamellar
phase, thus reducing the pH sensitivity of the liposomes by increasing
the area per lipid through penetration into the bilayer, which is
our main focus.
Collapse
|
5
|
Cannarozzo C, Fred SM, Girych M, Biojone C, Enkavi G, Róg T, Vattulainen I, Casarotto PC, Castrén E. Cholesterol-recognition motifs in the transmembrane domain of the tyrosine kinase receptor family: The case of TRKB. Eur J Neurosci 2021; 53:3311-3322. [PMID: 33825223 DOI: 10.1111/ejn.15218] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 01/19/2023]
Abstract
Cholesterol is an essential constituent of cell membranes. The discovery of cholesterol-recognition amino acid consensus (CRAC) motif in proteins indicated a putative direct, non-covalent interaction between cholesterol and proteins. In the present study, we evaluated the presence of a CRAC motif and its inverted version (CARC) in the transmembrane region (TMR) of the tyrosine kinase receptor family (RTK) in several species using in silico methods. CRAC motifs were found across all species analyzed, while CARC was found only in vertebrates. The tropomyosin-related kinase B (TRKB), a member of the RTK family, through interaction with its endogenous ligand brain-derived neurotrophic factor (BDNF) is a core participant in the neuronal plasticity process and exhibits a CARC motif in its TMR. Upon identifying the conserved CARC motif in the TRKB, we performed molecular dynamics simulations of the mouse TRKB.TMR. The simulations indicated that cholesterol interaction with the TRKB CARC motif occurs mainly at the central Y433 residue. Our binding assay suggested a bell-shaped effect of cholesterol on BDNF interaction with TRKB receptors, and our results suggest that CARC/CRAC motifs may play a role in the function of the RTK family TMR.
Collapse
|
6
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
|
7
|
Lautala S, Provenzani R, Koivuniemi A, Kulig W, Talman V, Róg T, Tuominen RK, Yli-Kauhaluoma J, Bunker A. Rigorous Computational Study Reveals What Docking Overlooks: Double Trouble from Membrane Association in Protein Kinase C Modulators. J Chem Inf Model 2020; 60:5624-5633. [PMID: 32915560 DOI: 10.1021/acs.jcim.0c00624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increasing protein kinase C (PKC) activity is of potential therapeutic value. Its activation involves an interaction between the C1 domain and diacylglycerol (DAG) at intracellular membrane surfaces; DAG mimetics hold promise as new drugs. We previously developed the isophthalate derivative HMI-1a3, an effective but highly lipophilic (clogP = 6.46) DAG mimetic. Although a less lipophilic pyrimidine analog, PYR-1gP (clogP = 3.30), gave positive results in computational docking, it unexpectedly presented greatly diminished binding to PKC in vitro. Through more rigorous computational molecular modeling, we reveal that, unlike HMI-1a3, PYR-1gP forms an intramolecular hydrogen bond, which both obstructs binding and reorients PYR-1gP in the membrane in a fashion that prevents it from correctly accessing the PKC C1 domain. Our results highlight the great value of molecular dynamics simulations as a key component for the drug design process of ligands targeting weakly membrane-associated proteins, where simulation in the relevant membrane environment is crucial for obtaining biologically applicable results.
Collapse
|
8
|
Kukkurainen S, Azizi L, Zhang P, Jacquier MC, Baikoghli M, von Essen M, Tuukkanen A, Laitaoja M, Liu X, Rahikainen R, Orłowski A, Jänis J, Määttä JAE, Varjosalo M, Vattulainen I, Róg T, Svergun D, Cheng RH, Wu J, Hytönen VP, Wehrle-Haller B. The F1 loop of the talin head domain acts as a gatekeeper in integrin activation and clustering. J Cell Sci 2020; 133:jcs239202. [PMID: 33046605 PMCID: PMC10679385 DOI: 10.1242/jcs.239202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
Integrin activation and clustering by talin are early steps of cell adhesion. Membrane-bound talin head domain and kindlin bind to the β integrin cytoplasmic tail, cooperating to activate the heterodimeric integrin, and the talin head domain induces integrin clustering in the presence of Mn2+ Here we show that kindlin-1 can replace Mn2+ to mediate β3 integrin clustering induced by the talin head, but not that induced by the F2-F3 fragment of talin. Integrin clustering mediated by kindlin-1 and the talin head was lost upon deletion of the flexible loop within the talin head F1 subdomain. Further mutagenesis identified hydrophobic and acidic motifs in the F1 loop responsible for β3 integrin clustering. Modeling, computational and cysteine crosslinking studies showed direct and catalytic interactions of the acidic F1 loop motif with the juxtamembrane domains of α- and β3-integrins, in order to activate the β3 integrin heterodimer, further detailing the mechanism by which the talin-kindlin complex activates and clusters integrins. Moreover, the F1 loop interaction with the β3 integrin tail required the newly identified compact FERM fold of the talin head, which positions the F1 loop next to the inner membrane clasp of the talin-bound integrin heterodimer.This article has an associated First Person interview with the first author of the paper.
Collapse
|
9
|
Kasparyan G, Poojari C, Róg T, Hub JS. Cooperative Effects of an Antifungal Moiety and DMSO on Pore Formation over Lipid Membranes Revealed by Free Energy Calculations. J Phys Chem B 2020; 124:8811-8821. [PMID: 32924486 DOI: 10.1021/acs.jpcb.0c03359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Itraconazole is a triazole drug widely used in the treatment of fungal infections, and it is in clinical trials for treatment of several cancers. However, the drug suffers from poor solubility, while experiments have shown that itraconazole delivery in liposome nanocarriers improves both circulation half-life and tissue distribution. The drug release mechanism from the nanocarrier is still unknown, and it depends on several factors including membrane stability against defect formation. In this work, we used molecular dynamics simulations and potential of mean force (PMF) calculations to quantify the influence of itraconazole on pore formation over lipid membranes, and we compared the effect by itraconazole with a pore-stabilizing effect by the organic solvent dimethyl sulfoxide (DMSO). According to the PMFs, both itraconazole and DMSO greatly reduce the free energy of pore formation, by up to ∼20 kJ mol-1. However, whereas large concentrations of itraconazole of 8 mol % (relative to lipid) were required, only small concentrations of a few mole % DMSO (relative to water) were sufficient to stabilize pores. In addition, itraconazole and DMSO facilitate pore formation by different mechanisms. Whereas itraconazole predominantly aids the formation of a partial defect with a locally thinned membrane, DMSO mainly stabilizes a transmembrane water needle by shielding it from the hydrophobic core. Notably, the two distinct mechanisms act cooperatively upon adding both itraconazole and DMSO to the membrane, as revealed by an additional reduction of the pore free energy. Overall, our simulations reveal molecular mechanisms and free energies of membrane pore formation by small molecules. We suggest that the stabilization of a locally thinned membrane as well as the shielding of a transmembrane water needle from the hydrophobic membrane core may be a general mechanism by which amphiphilic molecules facilitate pore formation over lipid membranes at sufficient concentrations.
Collapse
|
10
|
Lolicato F, Juhola H, Zak A, Postila PA, Saukko A, Rissanen S, Enkavi G, Vattulainen I, Kepczynski M, Róg T. Membrane-Dependent Binding and Entry Mechanism of Dopamine into Its Receptor. ACS Chem Neurosci 2020; 11:1914-1924. [PMID: 32538079 PMCID: PMC7735663 DOI: 10.1021/acschemneuro.9b00656] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Synaptic neurotransmission has recently been proposed to function via either a membrane-independent or a membrane-dependent mechanism, depending on the neurotransmitter type. In the membrane-dependent mechanism, amphipathic neurotransmitters first partition to the lipid headgroup region and then diffuse along the membrane plane to their membrane-buried receptors. However, to date, this mechanism has not been demonstrated for any neurotransmitter-receptor complex. Here, we combined isothermal calorimetry measurements with a diverse set of molecular dynamics simulation methods to investigate the partitioning of an amphipathic neurotransmitter (dopamine) and the mechanism of its entry into the ligand-binding site. Our results show that the binding of dopamine to its receptor is consistent with the membrane-dependent binding and entry mechanism. Both experimental and simulation results showed that dopamine favors binding to lipid membranes especially in the headgroup region. Moreover, our simulations revealed a ligand-entry pathway from the membrane to the binding site. This pathway passes through a lateral gate between transmembrane alpha-helices 5 and 6 on the membrane-facing side of the protein. All in all, our results demonstrate that dopamine binds to its receptor by a membrane-dependent mechanism, and this is complemented by the more traditional binding mechanism directly through the aqueous phase. The results suggest that the membrane-dependent mechanism is common in other synaptic receptors, too.
Collapse
|
11
|
Chronopoulos A, Thorpe SD, Cortes E, Lachowski D, Rice AJ, Mykuliak VV, Róg T, Lee DA, Hytönen VP, Del Río Hernández AE. Syndecan-4 tunes cell mechanics by activating the kindlin-integrin-RhoA pathway. NATURE MATERIALS 2020; 19:669-678. [PMID: 31907416 PMCID: PMC7260055 DOI: 10.1038/s41563-019-0567-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/19/2019] [Indexed: 05/24/2023]
Abstract
Extensive research over the past decades has identified integrins to be the primary transmembrane receptors that enable cells to respond to external mechanical cues. We reveal here a mechanism whereby syndecan-4 tunes cell mechanics in response to localized tension via a coordinated mechanochemical signalling response that involves activation of two other receptors: epidermal growth factor receptor and β1 integrin. Tension on syndecan-4 induces cell-wide activation of the kindlin-2/β1 integrin/RhoA axis in a PI3K-dependent manner. Furthermore, syndecan-4-mediated tension at the cell-extracellular matrix interface is required for yes-associated protein activation. Extracellular tension on syndecan-4 triggers a conformational change in the cytoplasmic domain, the variable region of which is indispensable for the mechanical adaptation to force, facilitating the assembly of a syndecan-4/α-actinin/F-actin molecular scaffold at the bead adhesion. This mechanotransduction pathway for syndecan-4 should have immediate implications for the broader field of mechanobiology.
Collapse
|
12
|
Poojari C, Zak A, Dzieciuch-Rojek M, Bunker A, Kepczynski M, Róg T. Cholesterol Reduces Partitioning of Antifungal Drug Itraconazole into Lipid Bilayers. J Phys Chem B 2020; 124:2139-2148. [PMID: 32101005 PMCID: PMC7735721 DOI: 10.1021/acs.jpcb.9b11005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Cholesterol
plays a crucial role in modulating the physicochemical
properties of biomembranes, both increasing mechanical strength and
decreasing permeability. Cholesterol is also a common component of
vesicle-based delivery systems, including liposome-based drug delivery
systems (LDSs). However, its effect on the partitioning of drug molecules
to lipid membranes is very poorly recognized. Herein, we performed
a combined experimental/computational study of the potential for the
use of the LDS formulation for the delivery of the antifungal drug
itraconazole (ITZ). We consider the addition of cholesterol to the
lipid membrane. Since ITZ is only weakly soluble in water, its bioavailability
is limited. Use of an LDS has thus been proposed. We studied lipid
membranes composed of cholesterol, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC), and ITZ using a combination of
computational molecular dynamics (MD) simulations of lipid bilayers
and Brewster angle microscopy (BAM) experiments of monolayers. Both
experimental and computational results show separation of cholesterol
and ITZ. Cholesterol has a strong preference to orient parallel to
the bilayer normal. However, ITZ, a long and relatively rigid molecule
with weakly hydrophilic groups along the backbone, predominantly locates
below the interface between the hydrocarbon chain region and the polar
region of the membrane, with its backbone oriented parallel to the
membrane surface; the orthogonal orientation in the membrane could
be the cause of the observed separation. In addition, fluorescence
measurements demonstrated that the affinity of ITZ for the lipid membrane
is decreased by the presence of cholesterol, which is thus probably
not a suitable formulation component of an LDS designed for ITZ delivery.
Collapse
|
13
|
Augustyn B, Stepien P, Poojari C, Mobarak E, Polit A, Wisniewska-Becker A, Róg T. Cholesteryl Hemisuccinate Is Not a Good Replacement for Cholesterol in Lipid Nanodiscs. J Phys Chem B 2019; 123:9839-9845. [DOI: 10.1021/acs.jpcb.9b07853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Poojari C, Wilkosz N, Lira RB, Dimova R, Jurkiewicz P, Petka R, Kepczynski M, Róg T. Behavior of the DPH fluorescence probe in membranes perturbed by drugs. Chem Phys Lipids 2019; 223:104784. [PMID: 31199906 DOI: 10.1016/j.chemphyslip.2019.104784] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/09/2019] [Accepted: 06/08/2019] [Indexed: 12/22/2022]
Abstract
1,6-Diphenyl-1,3,5-hexatriene (DPH) is one of the most commonly used fluorescent probes to study dynamical and structural properties of lipid bilayers and cellular membranes via measuring steady-state or time-resolved fluorescence anisotropy. In this study, we present a limitation in the use of DPH to predict the order of lipid acyl chains when the lipid bilayer is doped with itraconazole (ITZ), an antifungal drug. Our steady-state fluorescence anisotropy measurements showed a significant decrease in fluorescence anisotropy of DPH embedded in the ITZ-containing membrane, suggesting a substantial increase in membrane fluidity, which indirectly indicates a decrease in the order of the hydrocarbon chains. This result or its interpretation is in disagreement with the fluorescence recovery after photobleaching measurements and molecular dynamics (MD) simulation data. The results of these experiments and calculations indicate an increase in the hydrocarbon chain order. The MD simulations of the bilayer containing both ITZ and DPH provide explanations for these observations. Apparently, in the presence of the drug, the DPH molecules are pushed deeper into the hydrophobic membrane core below the lipid double bonds, and the probe predominately adopts the orientation of the ITZ molecules that is parallel to the membrane surface, instead of orienting parallel to the lipid acyl chains. For this reason, DPH anisotropy provides information related to the less ordered central region of the membrane rather than reporting the properties of the upper segments of the lipid acyl chains.
Collapse
|
15
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
|
16
|
Kulig W, Korolainen H, Zatorska M, Kwolek U, Wydro P, Kepczynski M, Róg T. Complex Behavior of Phosphatidylcholine-Phosphatidic Acid Bilayers and Monolayers: Effect of Acyl Chain Unsaturation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5944-5956. [PMID: 30942590 DOI: 10.1021/acs.langmuir.9b00381] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phosphatidic acids (PAs) have many biological functions in biomembranes, e.g., they are involved in the proliferation, differentiation, and transformation of cells. Despite decades of research, the molecular understanding of how PAs affect the properties of biomembranes remains elusive. In this study, we explored the properties of lipid bilayers and monolayers composed of PAs and phosphatidylcholines (PCs) with various acyl chains. For this purpose, the Langmuir monolayer technique and atomistic molecular dynamics (MD) simulations were used to study the miscibility of PA and PC lipids and the molecular organization of mixed bilayers. The monolayer experiments demonstrated that the miscibility of membrane components strongly depends on the structure of the hydrocarbon chains and thus on the overall lipid shape. Interactions between PA and PC molecules vary from repulsive, for systems containing lipids with saturated and unsaturated acyl tails (strongly positive values of the excess free energy of mixing), to attractive, for systems in which all lipid tails are saturated (negative values of the excess free energy of mixing). The MD simulations provided atomistic insight into polar interactions (formation of hydrogen bonds and charge pairs) in PC-PA systems. H-bonding between PA monoanions and PCs in mixed bilayers is infrequent, and the lipid molecules interact mainly via electrostatic interactions. However, the number of charge pairs significantly decreases with the number of unsaturated lipid chains in the PA-PC system. The PA dianions weakly interact with the zwitterionic lipids, but their headgroups are more hydrated as compared to the monoanionic form. The acyl chains in all PC-PA bilayers are more ordered compared to single-component PC systems. In addition, depending on the combination of lipids, we observed a deeper location of the PA phosphate groups compared to the PC phosphate groups, which can alter the presentation of PAs for the peripheral membrane proteins, affecting their accessibility for binding.
Collapse
|
17
|
Juhola H, Postila PA, Rissanen S, Lolicato F, Vattulainen I, Róg T. Negatively Charged Gangliosides Promote Membrane Association of Amphipathic Neurotransmitters. Neuroscience 2018; 384:214-223. [DOI: 10.1016/j.neuroscience.2018.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 01/09/2023]
|
18
|
Magarkar A, Parkkila P, Viitala T, Lajunen T, Mobarak E, Licari G, Cramariuc O, Vauthey E, Róg T, Bunker A. Membrane bound COMT isoform is an interfacial enzyme: general mechanism and new drug design paradigm. Chem Commun (Camb) 2018; 54:3440-3443. [DOI: 10.1039/c8cc00221e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have determined the substrate differentiation mechanism between the membrane bound and water soluble isoforms of important drug target catechol-O-methyltransferase.
Collapse
|
19
|
Danne R, Poojari C, Martinez-Seara H, Rissanen S, Lolicato F, Róg T, Vattulainen I. doGlycans-Tools for Preparing Carbohydrate Structures for Atomistic Simulations of Glycoproteins, Glycolipids, and Carbohydrate Polymers for GROMACS. J Chem Inf Model 2017; 57:2401-2406. [PMID: 28906114 PMCID: PMC5662928 DOI: 10.1021/acs.jcim.7b00237] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Indexed: 11/30/2022]
Abstract
Carbohydrates constitute a structurally and functionally diverse group of biological molecules and macromolecules. In cells they are involved in, e.g., energy storage, signaling, and cell-cell recognition. All of these phenomena take place in atomistic scales, thus atomistic simulation would be the method of choice to explore how carbohydrates function. However, the progress in the field is limited by the lack of appropriate tools for preparing carbohydrate structures and related topology files for the simulation models. Here we present tools that fill this gap. Applications where the tools discussed in this paper are particularly useful include, among others, the preparation of structures for glycolipids, nanocellulose, and glycans linked to glycoproteins. The molecular structures and simulation files generated by the tools are compatible with GROMACS.
Collapse
|
20
|
Grabon A, Orłowski A, Tripathi A, Vuorio J, Javanainen M, Róg T, Lönnfors M, McDermott MI, Siebert G, Somerharju P, Vattulainen I, Bankaitis VA. Dynamics and energetics of the mammalian phosphatidylinositol transfer protein phospholipid exchange cycle. J Biol Chem 2017; 292:14438-14455. [PMID: 28718450 DOI: 10.1074/jbc.m117.791467] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/14/2017] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol-transfer proteins (PITPs) regulate phosphoinositide signaling in eukaryotic cells. The defining feature of PITPs is their ability to exchange phosphatidylinositol (PtdIns) molecules between membranes, and this property is central to PITP-mediated regulation of lipid signaling. However, the details of the PITP-mediated lipid exchange cycle remain entirely obscure. Here, all-atom molecular dynamics simulations of the mammalian StART-like PtdIns/phosphatidylcholine (PtdCho) transfer protein PITPα, both on membrane bilayers and in solvated systems, informed downstream biochemical analyses that tested key aspects of the hypotheses generated by the molecular dynamics simulations. These studies provided five key insights into the PITPα lipid exchange cycle: (i) interaction of PITPα with the membrane is spontaneous and mediated by four specific protein substructures; (ii) the ability of PITPα to initiate closure around the PtdCho ligand is accompanied by loss of flexibility of two helix/loop regions, as well as of the C-terminal helix; (iii) the energy barrier of phospholipid extraction from the membrane is lowered by a network of hydrogen bonds between the lipid molecule and PITPα; (iv) the trajectory of PtdIns or PtdCho into and through the lipid-binding pocket is chaperoned by sets of PITPα residues conserved throughout the StART-like PITP family; and (v) conformational transitions in the C-terminal helix have specific functional involvements in PtdIns transfer activity. Taken together, these findings provide the first mechanistic description of key aspects of the PITPα PtdIns/PtdCho exchange cycle and offer a rationale for the high conservation of particular sets of residues across evolutionarily distant members of the metazoan StART-like PITP family.
Collapse
|
21
|
Mokkila S, Postila PA, Rissanen S, Juhola H, Vattulainen I, Róg T. Calcium Assists Dopamine Release by Preventing Aggregation on the Inner Leaflet of Presynaptic Vesicles. ACS Chem Neurosci 2017; 8:1242-1250. [PMID: 28165217 DOI: 10.1021/acschemneuro.6b00395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this study, the dopamine-lipid bilayer interactions were probed with three physiologically relevant ion compositions using atomistic molecular dynamics simulations and free energy calculations. The in silico results indicate that calcium is able to decrease significantly the binding of dopamine to a neutral (zwitterionic) phosphatidylcholine lipid bilayer model mimicking the inner leaflet of a presynaptic vesicle. We argue that the observed calcium-induced effect is likely in crucial role in the neurotransmitter release from the presynaptic vesicles docked in the active zone of nerve terminals. The inner leaflets of presynaptic vesicles, which are responsible for releasing neurotransmitters into the synaptic cleft, are mainly composed of neutral lipids such as phosphatidylcholine and phosphatidylethanolamine. The neutrality of the lipid head group region, enhanced by a low pH level, should limit membrane aggregation of transmitters. In addition, the simulations suggest that the high calcium levels inside presynaptic vesicles prevent even the most lipophilic transmitters such as dopamine from adhering to the inner leaflet surface, thus rendering unhindered neurotransmitter release feasible.
Collapse
|
22
|
Rissanen S, Grzybek M, Orłowski A, Róg T, Cramariuc O, Levental I, Eggeling C, Sezgin E, Vattulainen I. Phase Partitioning of GM1 and Its Bodipy-Labeled Analog Determine Their Different Binding to Cholera Toxin. Front Physiol 2017; 8:252. [PMID: 28536532 PMCID: PMC5422513 DOI: 10.3389/fphys.2017.00252] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/10/2017] [Indexed: 12/19/2022] Open
Abstract
Driven by interactions between lipids and proteins, biological membranes display lateral heterogeneity that manifests itself in a mosaic of liquid-ordered (Lo) or raft, and liquid-disordered (Ld) or non-raft domains with a wide range of different properties and compositions. In giant plasma membrane vesicles and giant unilamellar vesicles, specific binding of Cholera Toxin (CTxB) to GM1 glycolipids is a commonly used strategy to label raft domains or Lo membrane environments. However, these studies often use acyl-chain labeled bodipy-GM1 (bdGM1), whose headgroup accessibility and membrane order or phase partitioning may differ from those of GM1, rendering the interpretation of CTxB binding data quite problematic. To unravel the molecular basis of CTxB binding to GM1 and bdGM1, we explored the partitioning and the headgroup presentation of these gangliosides in the Lo and Ld phases using atomistic molecular dynamics simulations complemented by CTxB binding experiments. The conformation of both GM1 and bdGM1 was shown to be largely similar in the Lo and Ld phases. However, bdGM1 showed reduction in receptor availability when reconstituted into synthetic bilayer mixtures, highlighting that membrane phase partitioning of the gangliosides plays a considerable role in CTxB binding. Our results suggest that the CTxB binding is predominately modulated by the partitioning of the receptor to an appropriate membrane phase. Further, given that the Lo and Ld partitioning of bdGM1 differs from those of GM1, usage of bdGM1 for studying GM1 behavior in cells can lead to invalid interpretation of experimental data.
Collapse
|
23
|
Magarkar A, Róg T, Bunker A. A computational study suggests that replacing PEG with PMOZ may increase exposure of hydrophobic targeting moiety. Eur J Pharm Sci 2017; 103:128-135. [PMID: 28285174 DOI: 10.1016/j.ejps.2017.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/28/2017] [Accepted: 03/07/2017] [Indexed: 12/18/2022]
Abstract
In a previous study we showed that the cause of failure of a new, proposed, targeting ligand, the AETP moiety, when attached to a PEGylated liposome, was occlusion by the poly(ethylene glycol) (PEG) layer due to its hydrophobic nature, given that PEG is not entirely hydrophilic. At the time we proposed that possible replacement with a more hydrophilic protective polymer could alleviate this problem. In this study we have used computational molecular dynamics modelling, using a model with all atom resolution, to suggest that a specific alternative protective polymer, poly(2-methyloxazoline) (PMOZ), would perform exactly this function. Our results show that when PEG is replaced by PMOZ the relative exposure to the solvent of AETP is increased to a level even greater than that we found in previous simulations for the RGD peptide, a targeting moiety that has previously been used successfully in PEGylated liposome based therapies. While the AETP moiety itself is no longer under consideration, the results of this computational study have broader significance: the use of PMOZ as an alternative polymer coating to PEG could be efficacious in the context of more hydrophobic targeting ligands. In addition to PMOZ we studied another polyoxazoline, poly(2-ethyloxazoline) (PEOZ), that has also been mooted as a possible alternate protective polymer. It was also found that the RDG peptide occlusion was significantly greater for the case of both oxazolines as opposed to PEG and that, unlike PEG, neither oxazoline entered the membrane. As far as we are aware this is the first time that polyoxazolines have been studied using molecular dynamics simulation with all atom resolution.
Collapse
|
24
|
Dzieciuch-Rojek M, Poojari C, Bednar J, Bunker A, Kozik B, Nowakowska M, Vattulainen I, Wydro P, Kepczynski M, Róg T. Effects of Membrane PEGylation on Entry and Location of Antifungal Drug Itraconazole and Their Pharmacological Implications. Mol Pharm 2017; 14:1057-1070. [PMID: 28234487 DOI: 10.1021/acs.molpharmaceut.6b00969] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Itraconazole (ITZ) is an antifungal agent used clinically to treat mycotic infections. However, its therapeutic effects are limited by low solubility in aqueous media. Liposome-based delivery systems (LDS) have been proposed as a delivery mechanism for ITZ to alleviate this problem. Furthermore, PEGylation, the inclusion in the formulation of a protective "stealth sheath" of poly(ethylene glycol) around carrier particles, is widely used to increase circulation time in the bloodstream and hence efficacy. Together, these themes highlight the importance of mechanistic and structural understanding of ITZ incorporation into liposomes both with and without PEGylation because it can provide a potential foundation for the rational design of LDS-based systems for delivery of ITZ, using alternate protective polymers or formulations. Here we have combined atomistic simulations, cryo-TEM, Langmuir film balance, and fluorescence quenching experiments to explore how ITZ interacts with both pristine and PEGylated liposomes. We found that the drug can be incorporated into conventional and PEGylated liposomes for drug concentrations up to 15 mol % without phase separation. We observed that, in addition to its protective properties, PEGylation significantly increases the stability of liposomes that host ITZ. In a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer without PEGylation, ITZ was found to reside inside the lipid bilayer between the glycerol and the double-bond regions of POPC, adopting a largely parallel orientation along the membrane surface. In a PEGylated liposome, ITZ partitions mainly to the PEG layer. The results provide a solid basis for further development of liposome-based delivery systems.
Collapse
|
25
|
Bilkova E, Pleskot R, Rissanen S, Sun S, Czogalla A, Cwiklik L, Róg T, Vattulainen I, Cremer PS, Jungwirth P, Coskun Ü. Calcium Directly Regulates Phosphatidylinositol 4,5-Bisphosphate Headgroup Conformation and Recognition. J Am Chem Soc 2017; 139:4019-4024. [PMID: 28177616 PMCID: PMC5364432 DOI: 10.1021/jacs.6b11760] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The orchestrated recognition of phosphoinositides and concomitant intracellular release of Ca2+ is pivotal to almost every aspect of cellular processes, including membrane homeostasis, cell division and growth, vesicle trafficking, as well as secretion. Although Ca2+ is known to directly impact phosphoinositide clustering, little is known about the molecular basis for this or its significance in cellular signaling. Here, we study the direct interaction of Ca2+ with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), the main lipid marker of the plasma membrane. Electrokinetic potential measurements of PI(4,5)P2 containing liposomes reveal that Ca2+ as well as Mg2+ reduce the zeta potential of liposomes to nearly background levels of pure phosphatidylcholine membranes. Strikingly, lipid recognition by the default PI(4,5)P2 lipid sensor, phospholipase C delta 1 pleckstrin homology domain (PLC δ1-PH), is completely inhibited in the presence of Ca2+, while Mg2+ has no effect with 100 nm liposomes and modest effect with giant unilamellar vesicles. Consistent with biochemical data, vibrational sum frequency spectroscopy and atomistic molecular dynamics simulations reveal how Ca2+ binding to the PI(4,5)P2 headgroup and carbonyl regions leads to confined lipid headgroup tilting and conformational rearrangements. We rationalize these findings by the ability of calcium to block a highly specific interaction between PLC δ1-PH and PI(4,5)P2, encoded within the conformational properties of the lipid itself. Our studies demonstrate the possibility that switchable phosphoinositide conformational states can serve as lipid recognition and controlled cell signaling mechanisms.
Collapse
|