1
|
Smaers JB, Rothman RS, Hudson DR, Balanoff AM, Beatty B, Dechmann DKN, de Vries D, Dunn JC, Fleagle JG, Gilbert CC, Goswami A, Iwaniuk AN, Jungers WL, Kerney M, Ksepka DT, Manger PR, Mongle CS, Rohlf FJ, Smith NA, Soligo C, Weisbecker V, Safi K. The evolution of mammalian brain size. SCIENCE ADVANCES 2021; 7:7/18/eabe2101. [PMID: 33910907 PMCID: PMC8081360 DOI: 10.1126/sciadv.abe2101] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/10/2021] [Indexed: 05/08/2023]
Abstract
Relative brain size has long been considered a reflection of cognitive capacities and has played a fundamental role in developing core theories in the life sciences. Yet, the notion that relative brain size validly represents selection on brain size relies on the untested assumptions that brain-body allometry is restrained to a stable scaling relationship across species and that any deviation from this slope is due to selection on brain size. Using the largest fossil and extant dataset yet assembled, we find that shifts in allometric slope underpin major transitions in mammalian evolution and are often primarily characterized by marked changes in body size. Our results reveal that the largest-brained mammals achieved large relative brain sizes by highly divergent paths. These findings prompt a reevaluation of the traditional paradigm of relative brain size and open new opportunities to improve our understanding of the genetic and developmental mechanisms that influence brain size.
Collapse
|
2
|
Morwood MJ, Jungers WL. Conclusions: implications of the Liang Bua excavations for hominin evolution and biogeography. J Hum Evol 2010; 57:640-8. [PMID: 19913680 DOI: 10.1016/j.jhevol.2009.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 08/31/2009] [Indexed: 11/15/2022]
Abstract
Excavations at Liang Bua, on the Indonesian island of Flores, have yielded a stratified sequence of stone artifacts and faunal remains spanning the last 95k.yr., which includes the skeletal remains of two human species, Homo sapiens in the Holocene and Homo floresiensis in the Pleistocene. This paper summarizes and focuses on some of the evidence for Homo floresiensis in context, as presented in this Special Issue edition of the Journal of Human Evolution and elsewhere. Attempts to dismiss the Pleistocene hominins (and the type specimen LB1 in particular) as pathological pygmy humans are not compatible with detailed analyses of the skull, teeth, brain endocast, and postcranium. We initially concluded that H. floresiensis may have evolved by insular dwarfing of a larger-bodied hominin species over 880k.yr. or more. However, recovery of additional specimens and the numerous primitive morphological traits seen throughout the skeleton suggest instead that it is more likely to be a late representative of a small-bodied lineage that exited Africa before the emergence of Homo erectus sensu lato. Homo floresiensis is clearly not an australopithecine, but does retain many aspects of anatomy (and perhaps behavior) that are probably plesiomorphic for the genus Homo. We also discuss some of the other implications of this tiny, endemic species for early hominin dispersal and evolution (e.g., for the "Out of Africa 1" paradigm and more specifically for colonizing Southeast Asia), and we present options for future research in the region.
Collapse
|
3
|
Jungers WL, Harcourt-Smith WEH, Wunderlich RE, Tocheri MW, Larson SG, Sutikna T, Due RA, Morwood MJ. The foot of Homo floresiensis. Nature 2009; 459:81-4. [DOI: 10.1038/nature07989] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 03/17/2009] [Indexed: 11/09/2022]
|
4
|
Godfrey LR, Jungers WL, Burney DA, Vasey N, Wheeler W, Lemelin P, Shapiro LJ, Schwartz GT, King SJ, Ramarolahy MF, Raharivony LL, Randria GFN. New discoveries of skeletal elements of Hadropithecus stenognathus from Andrahomana Cave, southeastern Madagascar. J Hum Evol 2006; 51:395-410. [PMID: 16911817 DOI: 10.1016/j.jhevol.2006.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 04/24/2006] [Indexed: 10/24/2022]
Abstract
Remains of what appears to be a single, subadult Hadropithecus stenognathus were recovered from a previously unexcavated site at Andrahomana Cave (southeastern Madagascar). Specimens found comprise isolated teeth and cranial fragments (including the frontal processes of the orbits), as well as a partial postcranial skeleton. They include the first associated fore- and hind-limb bones, confirming the hind-limb attributions made by Godfrey and co-workers in 1997, and refuting earlier attributions by Lamberton in 1937/1938. Of particular interest here are the previously unknown elements, including a sacrum, other vertebrae and ribs, some hand bones, and the distal epiphysis of a femur. We briefly discuss the functional implications of previously unknown elements. Hadropithecus displayed a combination of characters reminiscent of lemurids, others more like those of the larger-bodied Old World monkeys, and still others more like those of African apes. Yet other characteristics appear unique. Lemurid-like postcranial characteristics may be primitive for the Archaeolemuridae. Hadropithecus diverges from the Lemuridae in the direction of Archaeolemur, but more extremely so. Thus, for example, it exhibits a stronger reduction in the size of the hamulus of the hamate, greater anteroposterior compression of the femoral shaft, and greater asymmetry of the femoral condyles. Nothing in its postcranial anatomy signals a close relationship to either the Indriidae or the Palaeopropithecidae.
Collapse
|
5
|
Jungers WL, Lemelin P, Godfrey LR, Wunderlich RE, Burney DA, Simons EL, Chatrath PS, James HF, Randria GFN. The hands and feet of Archaeolemur: metrical affinities and their functional significance. J Hum Evol 2006; 49:36-55. [PMID: 15989943 DOI: 10.1016/j.jhevol.2005.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 03/03/2005] [Accepted: 03/03/2005] [Indexed: 10/25/2022]
Abstract
Recent expeditions to Madagascar have recovered abundant skeletal remains of Archaeolemur, one of the so-called "monkey lemurs" known from Holocene deposits scattered across the island. These new skeletons are sufficiently complete to permit reassembly of entire hands and feet--postcranial elements crucial to drawing inferences about substrate preferences and positional behavior. Univariate and multivariate analysis of intrinsic hand and foot proportions, phalangeal indices, relative pollex and hallux lengths, phalangeal curvature, and distal phalangeal shape reveal a highly derived and unique morphology for an extinct strepsirrhine that diverges dramatically from that of living lemurs and converges in some respects on that of Old World monkeys (e.g., mandrills, but not baboons or geladas). The hands and feet of Archaeolemur are relatively short (extremely so relative to body size); the carpus and tarsus are both "long" relative to total hand and foot lengths, respectively; phalangeal indices of both the hands and feet are low; both pollex and hallux are reduced; the apical tufts of the distal phalanges are very broad; and the proximal phalanges are slightly curved (but more so than in baboons). Overall grasping capabilities may have been compromised to some extent, and dexterous handling of small objects seems improbable. Deliberate and noncursorial quadrupedalism was most likely practiced on both the ground and in the trees. A flexible locomotor repertoire in conjunction with a eurytopic trophic adaptation allowed Archaeolemur to inhabit much of Madagascar and may explain why it was one of the latest surviving subfossil lemurs.
Collapse
|
6
|
Godfrey LR, Samonds KE, Jungers WL, Sutherland MR, Irwin MT. Ontogenetic correlates of diet in Malagasy lemurs. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2004; 123:250-76. [PMID: 14968422 DOI: 10.1002/ajpa.10315] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
There is a well-documented relationship between development and other life-history parameters among anthropoid primates. Smaller-bodied anthropoids tend to mature more rapidly than do larger-bodied species. Among anthropoids of similar body sizes, folivorous species tend to grow and mature more quickly than do frugivorous species, thus attaining adult body size at an earlier age. This pattern conforms to the expectations of Janson and van Schaik's "ecological risk aversion hypothesis," which predicts that rates of growth and maturation should vary in inverse relation to the intensity of intraspecific feeding competition. According to the ecological risk aversion hypothesis (RAH), species experiencing high intraspecific feeding competition will grow and mature slowly to reduce the risk of mortality due to food shortages. Species experiencing low levels of intraspecific feeding competition will shorten the juvenile period to reduce the overall duration of this high-risk portion of the life cycle. This paper focuses on development and maturation in lemurs. We show that folivorous lemurs (such as indriids) grow and mature more slowly than like-sized frugivorous lemurs (e.g., most lemurids), but tend to exhibit faster dental development. Their dental developmental schedules are accelerated on an absolute scale, relative to craniofacial growth, and relative to particular life-history landmarks, such as weaning. Dental development has a strong phylogenetic component: even those lemurids that consume substantial amounts of foliage have slower dental development than those indriids that consume substantial amounts of fruit. Implications of these results for the RAH are discussed, and an explanation for this hypothesis' failure to predict lemur growth schedules is offered. We propose that the differing developmental schedules of folivorous and frugivorous lemurs may reflect different solutions to the ecological problem of environmental instability: some rely on a strategy of low maternal input and slow returns, while others rely on a strategy of high maternal input and fast returns.
Collapse
|
7
|
Rafferty KL, Teaford MF, Jungers WL. Molar microwear of subfossil lemurs: improving the resolution of dietary inferences. J Hum Evol 2002; 43:645-57. [PMID: 12457853 DOI: 10.1006/jhev.2002.0592] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study we use molar microwear analyses to examine the trophic distinctions among various taxa of Malagasy subfossil lemurs. High resolution casts of the teeth of Megaladapis, Archaeolemur, Palaeopropithecus, Babakotia, and Hadropithecus were examined under a scanning electron microscope. Megaladapis was undoubtedly a browsing folivore, but there are significant differences between species of this genus. However, dietary specialists appear to be the exception; for example, Palaeopropithecus and Babakotia probably supplemented their leaf-eating with substantial amounts of seed-predation, much like modern indrids. Hadropithecus was decidedly not like the modern gelada baboon, but probably did feed on hard objects. Evidence from microwear and coprolites suggests that Archaeolemur probably had an eclectic diet that differed regionally and perhaps seasonally. Substantial trophic diversity within Madgascar's primate community was diminished by the late Quaternary extinctions of the large-bodied species (>9 kg).
Collapse
|
8
|
Grine FE, Stevens NJ, Jungers WL. An evaluation of dental radiograph accuracy in the measurement of enamel thickness. Arch Oral Biol 2001; 46:1117-25. [PMID: 11684031 DOI: 10.1016/s0003-9969(01)00078-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many studies have employed lateral radiographs to measure the thickness of tooth enamel in recent human and fossil hominid samples, but the accuracy of measurements obtained by this technique has not been assessed. In this study, 20 isolated human maxillary permanent molars were radiographed using the parallel film technique. The crowns were then sectioned longitudinally through the tips of the buccal cusps. Measurements of enamel cap area, and of linear enamel thickness in the occlusal basin and over the metacone apex, were made from the radiographs and corresponding sectioned surfaces. Comparisons of the two sets of values revealed that radiographs generally overestimated enamel thickness but there was considerable variability in the error by which measurements from radiographs either under- or overestimated the true value. Lateral radiographs may provide a rough visual impression of whether a tooth has thin or thick enamel but they do not generally provide for accurate measurement of enamel thickness. Quantitative data on enamel thickness from studies that have employed lateral radiographs should be viewed with circumspection.
Collapse
|
9
|
Godfrey LR, Samonds KE, Jungers WL, Sutherland MR. Teeth, brains, and primate life histories. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2001; 114:192-214. [PMID: 11241186 DOI: 10.1002/1096-8644(200103)114:3<192::aid-ajpa1020>3.0.co;2-q] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper explores the correlates of variation in dental development across the order Primates. We are particularly interested in how 1) dental precocity (percentage of total postcanine primary and secondary teeth that have erupted at selected absolute ages and life cycle stages) and 2) dental endowment at weaning (percentage of adult postcanine occlusal area that is present at weaning) are related to variation in body or brain size and diet in primates. We ask whether folivores have more accelerated dental schedules than do like-sized frugivores, and if so, to what extent this is part and parcel of a general pattern of acceleration of life histories in more folivorous taxa. What is the adaptive significance of variation in dental eruption schedules across the order Primates? We show that folivorous primate species tend to exhibit more rapid dental development (on an absolute scale) than comparably sized frugivores, and their dental development tends to be more advanced at weaning. Our data affirm an important role for brain (rather than body) size as a predictor of both absolute and relative dental development. Tests of alternative dietary hypotheses offer the strongest support for the foraging independence and food processing hypotheses.
Collapse
|
10
|
Demes B, Jungers WL, Walker C. Cortical bone distribution in the femoral neck of strepsirhine primates. J Hum Evol 2000; 39:367-79. [PMID: 11006046 DOI: 10.1006/jhev.2000.0424] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The thickness of the inferior and superior cortices of the femoral neck was measured on X-rays of 181 strepsirhine primate femora representing 24 species. Neck length, neck depth and neck-shaft angle were also measured. The strength of the femoral neck in frontal bending was estimated by modeling the neck as a hollow cylinder, with neck depth as the outer diameter and cortical thickness representing the superior and inferior shell dimensions. Results indicate that the inferior cortex is always thicker than the superior cortex. The ratio of superior to inferior cortical thickness is highly variable but distinguishes two of the three locomotor groups in the sample. Vertical clingers and leapers have higher ratios (i.e., a more even distribution of cortical bone) than quadrupeds. The slow climbers tend to have the lowest ratios, although they do not differ significantly from the leapers and quadrupeds. These results do not confirm prior theoretical expectations and reported data for anthropoid primates that link greater asymmetry of the cortical shell to more stereotypical hip excursions. The ratio of superior to inferior cortical thickness is unrelated to body mass, femoral neck length, and neck-shaft angle, calling into question whether the short neck of strepsirhine primates acts as a cantilever beam in bending. On the other hand, the estimated section moduli are highly correlated with body mass and neck length, a correlation that is driven primarily by body mass. In conclusion, we believe that an alternative interpretation to the cantilever beam model is needed to explain the asymmetry in bone distribution in the femoral neck, at least in strepsirhine primates (e.g., a thicker inferior cortex is required to reinforce the strongly curved inferior surface). As in prior studies of cross-sectional geometry of long bones, we found slightly positive allometry of cortical dimensions with body mass.
Collapse
|
11
|
Polk JD, Demes B, Jungers WL, Biknevicius AR, Heinrich RE, Runestad JA. A comparison of primate, carnivoran and rodent limb bone cross-sectional properties: are primates really unique? J Hum Evol 2000; 39:297-325. [PMID: 10964531 DOI: 10.1006/jhev.2000.0420] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cross-sectional properties of mammalian limb bones provide an important source of information about their loading history and locomotor adaptations. It has been suggested, for instance, that the cross-sectional strength of primate limb bones differs from that of other mammals as a consequence of living in a complex arboreal environment (Kimura, 1991, 1995). In order to test this hypothesis more rigorously, we have investigated cross-sectional properties in samples of humeri and femora of 71 primate species, 30 carnivorans and 59 rodents. Primates differ from carnivorans and rodents in having limb bones with greater cross-sectional strength than mammals of similar mass. This might imply that primates have stronger bones than carnivorans and rodents. However, primates also have longer proximal limb bones than other mammals. When cross-sectional dimensions are regressed against bone length, primates appear to have more gracile bones than other mammals. These two seemingly contradictory findings can be reconciled by recognizing that most limb bones experience bending as a predominant loading regime. After regressing cross-sectional strength against the product of body mass and bone length, a product which should be proportional to the bending moments applied to the limb, primates are found to overlap considerably with carnivorans and rodents. Consequently, primate humeri and femora are similar to those of nonprimates in their resistance to bending. Comparisons between arboreal and terrestrial species within the orders show that the bones of arboreal carnivorans have greater cross-sectional properties than those of terrestrial carnivorans, thus supporting Kimura's general notion. However, no differences were found between arboreal and terrestrial rodents. Among primates, the only significant difference was in humeral bending rigidity, which is higher in the terrestrial species. In summary, arboreal and terrestrial species do not show consistent differences in long bone reinforcement, and Kimura's conclusions must be modified to take into account the interaction of bone length and cross-sectional geometry.
Collapse
|
12
|
Abstract
The midsagittal profile of the mandibular symphysis has served as both a taxonomic marker and a phylogenetically salient character in debates over hominoid evolution. Nevertheless, the utility of symphyseal shape as an informative attribute for paleobiological reconstructions is suspect. Quantification of shape variation has proven to be particularly problematic; it has long been recognized that conventional linear measurements (and the indices derived from them), while replicable, summarize aspects of shape very poorly because of the vast amount of contour information that is lost in the process. In this study, a type of Fourier analysis is applied to cross-sectional contours of ape mandibles in order to provide a mathematical accounting of shape variation in a "global" sense; that is, by applying the "totality" of contour information in a comparative analysis. Shape variation in the mandibular symphysis is explored through the decomposition of coordinate data into elliptical Fourier coefficients. These coefficients are used to compute average taxonomic distances (ATD) among individuals of chimpanzees, gorillas, and orang-utans. The resulting shape-based distances are summarized via clustering (UPGMA) and ordination (principal coordinates analysis-PCO). Principal coordinate scores are subjected to analysis of variance in univariate and multivariate designs; these data are also applied to discriminant function analyses. Species and sex effects on morphology are statistically significant; however, no significant interaction of these factors is indicated. This would seem to imply that patterns of sexual dimorphism are not distinct among great apes; to the contrary, within-species sex comparisons reveal that significant size and shape dimorphism is present only in Gorilla. Despite significant size dimorphism in Pan and Pongo, significant shape differences between males and females are not apparent in these taxa. These results suggest that it is theoretically possible to sort taxa by a symphyseal shape criterion, but the discriminant function results suggest that there still exists a large potential for error in assigning particular shapes to a given species or sex. Thus, despite real shape differences among these species, the use of symphyseal shape as a character in species identification or in systematic arguments remains limited and problematic.
Collapse
|
13
|
Hens SM, Konigsberg LW, Jungers WL. Estimating stature in fossil hominids: which regression model and reference sample to use? J Hum Evol 2000; 38:767-84. [PMID: 10835261 DOI: 10.1006/jhev.1999.0382] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
coResearchers have long appreciated the significant relationship between body size and an animal's overall adaptive strategy and life history. However, much more emphasis has been placed on interpreting body size than on the actual calculation of it. One measure of size that is especially important for human evolutionary studies is stature. Despite a long history of investigation, stature estimation remains plagued by two methodological problems: (1) the choice of the statistical estimator, and (2) the choice of the reference population from which to derive the parameters. This work addresses both of these problems in estimating stature for fossil hominids, with special reference to A.L. 288-1 (Australopithecus afarensis) and WT 15000 (Homo erectus). Three reference samples of known stature with maximum humerus and femur lengths are used in this study: a large (n=2209) human sample from North America, a smaller sample of modern human pygmies (n=19) from Africa, and a sample of wild-collected African great apes (n=85). Five regression techniques are used to estimate stature in the fossil hominids using both univariate and multivariate parameters derived from the reference samples: classical calibration, inverse calibration, major axis, reduced major axis and the zero-intercept ratio model. We also explore a new diagnostic to test extrapolation and allometric differences with multivariate data, and we calculate 95% confidence intervals to examine the range of variation in estimates for A.L. 288-1, WT 15000 and the new Bouri hominid (contemporary with [corrected] Australopithecus garhi). Results frequently vary depending on whether the data are univariate or multivariate. Unique limb proportions and fragmented remains complicate the choice of estimator. We are usually left in the end with the classical calibrator as the best choice. It is the maximum likelihood estimator that performs best overall, especially in scenarios where extrapolation occurs away from the mean of the reference sample. The new diagnostic appears to be a quick and efficient way to determine at the outset whether extrapolation exists in size and/or shape of the long bones between the reference sample and the target specimen.
Collapse
|
14
|
Abstract
Recently discovered wrist bones of the Malagasy subfossil lemurs Babakotia radofilai, Palaeopropithecus ingens, Mesopropithecus dolichobrachion, and Megaladapis madagascariensis shed new light on the postcranial morphologies and positional behaviors that characterized these extinct primates. Wrist bones of P. ingens resemble those of certain modern hominoids in having a relatively enlarged ulnar head and dorsally extended articular surface on the hamate, features related to a large range of rotation at the inferior radioulnar and midcarpal joints. The scaphoid of P. ingens is also similar to that of the extant tree sloth Choloepus in having an elongate, palmarly directed tubercle forming a deep radial margin of the carpal tunnel for the passage of large digital flexors. In contrast, wrist remains of Megaladapis edwardsi and M. madagascariensis exhibit traits observed in the hands of extant pronograde, arboreal primates; these include a dorsopalmarly expanded pisiform and well-developed "spiral" facet on the hamate. Moreover, Megaladapis spp. and Mesopropithecus dolichobrachion possess bony tubercles (e.g., scaphoid tubercle and hamate hamulus) forming the carpal tunnel that are relatively similar in length to those of modern pronograde lemurs. Babakotia and Mesopropithecus differ from Megaladapis in exhibiting features of the midcarpal joint related to frequent supination and radioulnar deviation of the hand characteristic of animals that use vertical and quadrumanous climbing in their foraging behaviors. Comparative analysis of subfossil lemur wrist morphology complements and expands upon prior inferences based on other regions of the postcranial skeleton, and suggests a considerable degree of locomotor and postural heterogeneity among these recently extinct primates.
Collapse
|
15
|
Eliot DJ, Jungers WL. Fifth metatarsal morphology does not predict presence or absence of fibularis tertius muscle in hominids. J Hum Evol 2000; 38:333-42. [PMID: 10656782 DOI: 10.1006/jhev.1999.0337] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The leg muscle fibularis tertius (formerly peroneus tertius) is occasionally absent in humans, but it is rarely found in other primates. Phylogenetically and functionally it appears to be linked to efficient terrestrial bipedalism. An osseous indicator of the muscle would therefore be useful for interpreting the locomotor behavior of fossil hominids. To determine whether the presence of fibularis tertius can be detected osteologically, we isolated 58 human fifth metatarsals, noting which came from cadavers lacking the muscle. The bones were then ranked according to two characters that have been said to suggest presence of fibularis tertius in australopithecines: (1) sharpness of the dorsal shaft edge and (2) size and prominence of the dorsal tubercle. Presence of the muscle showed little association with the ranked characters, and the two criteria were uncorrelated. For example, one individual lacking a fibularis tertius exhibited nearly maximal expression of both features, whereas another possessing the muscle showed the weakest development of both. Only one of the 58 bones had a line comparable to that seen on SK 33380, a robust australopithecine fifth metatarsal from Member 3 of Swartkrans, South Africa. We conclude that fifth metatarsal morphology offers little reliable information about the presence of fibularis tertius or the timing of its appearance in the human career.
Collapse
|
16
|
Abstract
Knowledge of the forces animals generate and are exposed to during locomotion is an important prerequisite for understanding the musculoskeletal correlates of locomotor modes. We recorded takeoff and landing forces for 14 animals representing seven species of strepsirhine primates with a compliant force pole. Our sample included both specialized vertical clingers and leapers and more generalized species. Takeoff forces are higher than landing forces. Peak forces during acceleration for takeoff ranged from 6 to 12 times body weight, and the peak impact forces at landing are between 5 and 9 times body weight. There is a size-related trend in peak force magnitudes. Both takeoff and landing forces decrease with increasing body size in our sample of animals from 1 kg to over 5 kg. Peak forces increase with distance leapt. The distance effect is less clear, probably due to the narrow range of distances represented in our sample. A comparison of subadult and adult animals of two species of sifakas reveals a tendency for the young animals to exert relatively higher peak forces in comparison to their adult conspecifics. Finally, Lemur catta and Eulemur rubriventer, the "generalists" in our sample, tend to generate higher forces for equal tasks than the specialized vertical clingers and leapers (i.e., the indriids and Hapalemur).A broad-scale comparison of peak leaping forces and peak forces for quadrupedal and bipedal walking and running shows that leaping at small body size is associated with exceptionally high forces. Whereas relative forces (i.e., forces divided by body weight) decrease with increasing body mass for leaping, forces for walking and running do not change much with size. Leaping forces in our sample scale to (mass)(-1/3), which is consistent with expectations derived from geometric similarity models. Forces associated with other locomotor activities do not appear to follow this pattern. The very high forces found in strepsirhine leapers do not seem to be matched by bone robusticity beyond that documented for quadrupedal species.
Collapse
|
17
|
Abstract
Basic biomechanical principles predict that body size differences and differences in the positional behavior of primates should impact on the design of the locomotor skeleton. Allometric distortions in joint shape might be expected between sexes if the degree of body size dimorphism is substantial and/or if sex-specific differences exist in behavior. Nevertheless, there are few documented cases of sexual dimorphism in the limb joints of hominoids, despite substantial body size dimorphism and some reports of intersexual differences in positional behavior. This study re-examines sexual dimorphism in the hominoid distal humerus using coordinate data, and distinguishes explicitly between degree of dimorphism (i.e., the magnitude of intersexual differences) and pattern of dimorphism (i.e. , the nature of these differences). Using a variety of multivariate morphometric methods (e.g., canonical variates analysis of Mosimann shape variables; Euclidean Distance Matrix Analysis of both form and pattern difference matrices), we address the following issues: (1) do males and females of different species and subspecies (or ethnic groups for humans) maintain similar joint shapes? (2) are multiple patterns of dimorphism evident in this region of hominoids? (3) are differences and similarities in degree and pattern predicted by phylogenetic propinquity and positional behavior? For the most part, our results support earlier findings that sexual dimorphism in the shape of the anthropoid elbow is slight. Of the eight taxa considered here, only the western lowland gorillas exhibited significant differences in the shape of the distal humerus. Gorilla gorilla gorilla also displays a significantly different pattern of dimorphism from the orang-utan. Pattern differences between Andaman Islanders and both mountain gorillas and the orang-utan also approach statistical significance (P<0.06 and P<0.08, respectively). Overall, and despite marked differences in the degree of dimorphism, the knuckle-walking African apes are more similar in patterns of dimorphism to each other than to other taxa (e.g., gorillas are more similar to orang-utans in degree, but more similar to chimpanzees and bonobos in pattern). We could find no definitive "human pattern" in our results and suspect that this is because human upper limbs face less stringent mechanical constraints since they are relieved of locomotor stresses (but we cannot rule out the possibility of undocumented differences among our human groups in sex-specific, work-related activities). We anticipate finding additional pattern differences among anthropoids in articular dimorphism as we add other taxa to our sample (including fossil hominids), and examine other joint systems.
Collapse
|
18
|
Konigsberg LW, Hens SM, Jantz LM, Jungers WL. Stature estimation and calibration: Bayesian and maximum likelihood perspectives in physical anthropology. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 1999; Suppl 27:65-92. [PMID: 9881523 DOI: 10.1002/(sici)1096-8644(1998)107:27+<65::aid-ajpa4>3.3.co;2-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many applied problems in physical anthropology involve estimation of an unobservable quantity (such as age at death or stature) from quantities that are observable. Two of the more disparate subdisciplines of our discipline, paleoanthropology and forensic anthropology, routinely make use of various estimation methods on a case-by-case basis. We discuss the rationales for making estimations on isolated cases, taking stature estimation from femoral and humerus lengths as an example. We show that the entirety of our discussion can be placed within the context of calibration problems, where a large calibration sample is used to estimate an unobservable quantity for a single skeleton. Taking a calibration approach to the problem highlights the essentially Bayesian versus maximum likelihood nature of the question of stature estimation. On the basis of both theoretical arguments and practical examples, we show that inverse calibration (regression of stature on bone length) is generally preferred when the stature distribution for a reference sample forms a reasonable prior, while classical calibration (regression of bone length on stature followed by solving for stature) is preferred when there is reason to suspect that the estimated stature will be an extrapolation beyond the useful limits of the reference sample statures. The choice between these two approaches amounts to the decision to use either a Bayesian or a maximum likelihood method.
Collapse
|
19
|
Wunderlich RE, Simons EL, Jungers WL. New Pedal Remains ofMegaladapis and Their Functional Significance. Am J Phys Anthropol 100:115-139. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 1999. [DOI: 10.1002/(sici)1096-8644(199901)108:1<129::aid-ajpa7>3.0.co;2-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Abstract
The estimation from long bone lengths of stature in humans or body size in apes has a deep history in physical anthropology. To date, we can enumerate at least five different statistical methods for making such estimations. These methods are: (1) the regression of body length on long bone length (inverse calibration), (2) regression of long bone length on body length followed by solving for body length (classical calibration), (3) major axis regression of body length on long bone length, (4) reduced major axis regression of body length on long bone length, and (5) use of a long bone/body length ratio. We examine some of the statistical properties of these estimators using a large sample of humans (n = 2053) to derive the estimators, and applying them to smaller samples of Pan troglodytes (n = 42), Pan paniscus (n = 8), and Gorilla gorilla (n = 35). Based on the root mean-squared error (RMSE), the reduced major axis is the preferred estimator for body length in the combined Pan sample. However, inverse calibration is the best estimator for body length in gorillas based on the RMSE. Many estimators grossly underestimate body length in the apes. Differences in allometries between humans and great apes are obvious, but it is important to show the assumptions necessary in estimating body size from fossil remains, especially when isolated long bones are recovered and the global allometry is consequently unknown.
Collapse
|
21
|
Jungers WL, Godfrey LR, Simons EL, Chatrath PS. Phalangeal curvature and positional behavior in extinct sloth lemurs (Primates, Palaeopropithecidae). Proc Natl Acad Sci U S A 1997; 94:11998-2001. [PMID: 11038588 PMCID: PMC23681 DOI: 10.1073/pnas.94.22.11998] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent paleontological discoveries in Madagascar document the existence of a diverse clade of palaeopropithecids or "sloth lemurs": Mesopropithecus (three species), Babakotia (one species), Palaeopropithecus (three species), and Archaeoindris (one species). This mini-radiation of now extinct ("subfossil") lemurs is most closely related to the living indrids (Indri, Propithecus, and Avahi). Whereas the extant indrids are known for their leaping acrobatics, the palaeopropithecids (except perhaps for the poorly known giant Archaeoindris) exhibit numerous skeletal design features for antipronograde or suspensory positional behaviors (e.g., high intermembral indices and mobile joints). Here we analyze the curvature of the proximal phalanges of the hands and feet. Computed as the included angle (theta), phalangeal curvature develops in response to mechanical use and is known to be correlated in primates with hand and foot function in different habitats; terrestrial species have straighter phalanges than their arboreal counterparts, and highly suspensory forms such as the orangutan possess the most curved phalanges. Sloth lemurs as a group are characterized by very curved proximal phalanges, exceeding those seen in spider monkeys and siamangs, and approaching that of orangutans. Indrids have curvatures roughly half that of sloth lemurs, and the more terrestrial, subfossil Archaeolemur possesses the least curved phalanges of all the indroids. Taken together with many other derived aspects of their postcranial anatomy, phalangeal curvature indicates that the sloth lemurs are one of the most suspensory clades of mammals ever to evolve.
Collapse
|
22
|
Godfrey LR, Jungers WL, Wunderlich RE, Richmond BG. Reappraisal of the postcranium of Hadropithecus (Primates, Indroidea). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 1997; 103:529-56. [PMID: 9292169 DOI: 10.1002/(sici)1096-8644(199708)103:4<529::aid-ajpa9>3.0.co;2-h] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hadropithecus stenognathus (Lorenz von Liburnau [1899] Anz. Akad. Wiss. Wien 36:255-257), a giant extinct lemur from Madagascar, has been reconstructed as primarily terrestrial and probably cursorial on the basis of its postcranial anatomy, especially long bone gracility and interlimb proportions. We show here that aspects of this reconstruction are almost certainly incorrect. Hindlimb bones of Archaeolemur have been misattributed to Hadropithecus, and new hindlimb allocations (including newly recognized elements such as the calcaneus) indicate that Hadropithecus had a robust body build and lacked osteological specializations for cursoriality. We review the evidence for the existence of "Bradylemur" and offer a view of archaeolemurid positional behavior that includes terrestrial and arboreal components. Body size and limb proportions of Hadropithecus are reassessed in light of our new allocations.
Collapse
|
23
|
Abstract
Data are presented on adult body mass for 230 of 249 primate species, based on a review of the literature and previously unpublished data. The issues involved in collecting data on adult body mass are discussed, including the definition of adults, the effects of habitat and pregnancy, the strategy for pooling data on single species from multiple studies, and use of an appropriate number of significant figures. An analysis of variability in body mass indicates that the coefficient of variation for body mass increases with increasing species mean mass. Evaluation of several previous body mass reviews reveals a number of shortcomings with data that have been used often in comparative studies.
Collapse
|
24
|
Shapiro LJ, Anapol FC, Jungers WL. Interlimb coordination, gait, and neural control of quadrupedalism in chimpanzees. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 1997; 102:177-86. [PMID: 9066899 DOI: 10.1002/(sici)1096-8644(199702)102:2<177::aid-ajpa3>3.0.co;2-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Interlimb coordination is directly relevant to the understanding of the neural control of locomotion, but few studies addressing this topic for nonhuman primates are available, and no data exist for any hominoid other than humans. As a follow-up to Jungers and Anapol's ([1985] Am. J. Phys. Anthropol. 67:89-97) analysis on a lemur and talapoin monkey, we describe here the patterns of interlimb coordination in two chimpanzees as revealed by electromyography. Like the lemur and talapoin monkey, ipsilateral limb coupling in chimpanzees is characterized by variability about preferred modes within individual gaits. During symmetrical gaits, limb coupling patterns in the chimpanzee are also influenced by kinematic differences in hindlimb placement ("overstriding"). These observations reflect the neurological constraints placed on locomotion but also emphasize the overall flexibility of locomotor neural mechanisms. Interlimb coordination patterns are also species-specific, exhibiting significant differences among primate taxa and between primates and cats. Interspecific differences may be suggestive of phylogenetic divergence in the basic mechanisms for neural control of locomotion, but do not preclude morphological explanations for observed differences in interlimb coordination across species.
Collapse
|
25
|
Abstract
The magnitude and meaning of morphological variation among Plio-Pleistocene hominid distal humeri have been recurrent points of disagreement among paleoanthropologists. Some researchers have found noteworthy differences among fossil humeri that they believe merit taxonomic separation, while others question the possibility of accurately sorting these fossils into different species and/or functional groups. Size and shape differences among fossil distal humeri are evaluated here to determine whether the magnitude and patterns of these differences can be observed within large-bodied, living hominoids. Specimens analyzed in this study have been assigned to various taxa (Australopithecus afarensis, A. africanus, A. anamensis, Paranthropus, and early Homo) and include AL 288-1m, AL 288-1s, AL 137-48a, AL 322-1, Gomboré IB 7594, TM 1517, KNM-ER 739, KNM-ER 1504, KMN-KP 271 (Kanapoi), and Stw 431. Five extant hominoid populations are sampled to provide a standard by which to consider differences found between the fossils, including two modern human groups (Native American and African American), one group of Pan troglodytes, and two subspecies of Gorilla gorilla (G.g. beringei, G.g. gorilla). All possible pairwise d values (average Euclidena distances) are calculated within each of the reference populations using an exact randomization procedure. This is done using both raw linear measurements as well as scale-free shape data created as ratios of each measurement to the geometric mean. Differences between each pair of fossil humeri are evaluated by comparing their d values to the distribution of d values found within each of the reference populations. Principal coordinate analysis and an unweighted pair group method with arithmetic averages (UPGMA) cluster analysis are utilized to further assess similarities and differences among the fossils. Finally, canonical variates analysis and discriminant analysis are employed using all hominoid samples in order to control for correlations among variables and to identify those variables that discriminate among groups; possible affinities of individual fossils with specific extant species are also examined. The largest size differences, those between the small Hadar specimens and the two largest fossils (KNM-ER 739, IB 7594), can be accommodated easily within the ranges of variation of the two Gorilla samples, but are extreme relative to the other reference samples. The d values between most of the fossils based on shape data, with the notable exception of those associated with KNM-ER 739 and KNM-ER 1504, can be sampled safely within all five reference samples. Subsequent analyses further support the inference that KNM-ER 739 and KNM-ER 1504 are different from the other hominid humeri and possess a unique total morphometric pattern. In overall shape, the distal humeri of the other fossils (non-Koobi Fora) are most similar to living chimpanzees. The distal humerus of Paranthropus from Kromdraai (TM 1517e) is most similar to one of the Hadar specimens of A. afarensis (AL 137-48a), whereas the first specimen of A. africanus from Sterkfontein (Stw 431) is not closely linked to any of the other australopithecines. The A. anamensis humerus from Kanapoi exhibits no special affinities to A. afarensis or to modern humans.
Collapse
|