1
|
Zhuang H, Han S, Harris NS, Reeves WH. MEK1/2- and ERK1/2-Mediated Lung Endothelial Injury and Altered Hemostasis Promote Diffuse Alveolar Hemorrhage in Murine Lupus. Arthritis Rheumatol 2024; 76:1538-1551. [PMID: 38923837 PMCID: PMC11421958 DOI: 10.1002/art.42936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/25/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE About 3% of patients with lupus develop severe diffuse alveolar hemorrhage (DAH) with pulmonary vasculitis. C57BL/6 (B6) mice with pristane-induced lupus also develop DAH, but BALB/c mice are resistant. DAH is independent of Toll-like receptor signaling and other inflammatory pathways. This study examined the role of the MEK1/2 pathway (MEK1/2-ERK1/2, JNK, p38). METHODS B6 and BALB/c mice were treated with pristane with or without inhibitors of MEK1/2 (trametinib/GSK1120212 [GSK]), ERK1/2 (SCH772984 [SCH]), JNK, or p38. Effects on lung hemorrhage and hemostasis were determined. RESULTS GSK and SCH abolished DAH, whereas JNK and p38 inhibitors were ineffective. Apoptotic cells were present in lung samples from pristane-treated mice but not in mice receiving pristane and GSK, and endothelial dysfunction was normalized. Expression of the ERK1/2-regulated transcription factor early growth response 1 increased in pristane-treated B6, but not BALB/c, mice and was normalized by GSK. Pristane also increased expression of the anticoagulant genes Tfpi and Thbd in B6 mice. The ratio of Tfpi to tissue factor (F3) to Tfpi increased in B6 (but not BALB/c) mice and was normalized by GSK. Circulating thrombomodulin protein levels increased in B6 mice and returned to normal after GSK treatment. Consistent with augmented endothelial anticoagulant activity, pristane treatment increased tail bleeding in B6 mice. CONCLUSION Pristane treatment promotes lung endothelial injury and DAH in B6 mice by activating the MEK1/2-ERK1/2 pathway and impairing hemostasis. The hereditary factors determining susceptibility to lung injury and bleeding in pristane-induced lupus are relevant to the pathophysiology of life-threatening DAH in systemic lupus erythematosus and may help to optimize therapy.
Collapse
|
2
|
Zhuang H, Han S, Harris NS, Reeves WH. MEK1/2 and ERK1/2 mediated lung endothelial injury and altered hemostasis promote diffuse alveolar hemorrhage in murine lupus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.593006. [PMID: 38766226 PMCID: PMC11100673 DOI: 10.1101/2024.05.07.593006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Objective About 3% of lupus patients develop severe diffuse alveolar hemorrhage (DAH) with pulmonary vasculitis. B6 mice with pristane-induced lupus also develop DAH, but BALB/c mice are resistant. DAH is independent of TLR signaling and other inflammatory pathways. This study examined the role of the mitogen-activated protein kinase pathway (MEK1/2-ERK1/2, JNK, p38). Methods B6 and BALB/c mice were treated with pristane ± inhibitors of MEK1/2 (trametinib/GSK1120212, "GSK"), ERK1/2 (SCH772984, "SCH"), JNK, or p38. Effects on lung hemorrhage and hemostasis were determined. Results GSK and SCH abolished DAH, whereas JNK and p38 inhibitors were ineffective. Apoptotic cells were present in lung from pristane-treated mice, but not mice receiving pristane+GSK and endothelial dysfunction was normalized. Expression of the ERK1/2-regulated transcription factor Egr1 increased in pristane-treated B6, but not BALB/c, mice and was normalized by GSK. Pristane also increased expression of the anticoagulant genes Tfpi (tissue factor pathway inhibitor) and Thbd (thrombomodulin) in B6 mice. The ratio of tissue factor ( F3 ) to Tfpi increased in B6 (but not BALB/c) mice and was normalized by GSK. Circulating Thbd protein increased in B6 mice and returned to normal after GSK treatment. Consistent with augmented endothelial anticoagulant activity, pristane treatment increased tail bleeding in B6 mice. Conclusion Pristane treatment promotes lung endothelial injury and DAH in B6 mice by activating the MEK1/2-ERK1/2 pathway and impairing hemostasis. The hereditary factors determining susceptibility to lung injury and bleeding in pristane-induced lupus are relevant to the pathophysiology of life-threatening DAH in SLE and may help to optimize therapy.
Collapse
|
3
|
Chen J, Liu C, Chernatynskaya AV, Newby B, Brusko TM, Xu Y, Barra JM, Morgan N, Santarlas C, Reeves WH, Tse HM, Leiding JW, Mathews CE. NADPH Oxidase 2-Derived Reactive Oxygen Species Promote CD8+ T Cell Effector Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:258-270. [PMID: 38079221 PMCID: PMC10752859 DOI: 10.4049/jimmunol.2200691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2023] [Indexed: 12/30/2023]
Abstract
Oxidants participate in lymphocyte activation and function. We previously demonstrated that eliminating the activity of NADPH oxidase 2 (NOX2) significantly impaired the effectiveness of autoreactive CD8+ CTLs. However, the molecular mechanisms impacting CD8+ T cell function remain unknown. In the present study, we examined the role of NOX2 in both NOD mouse and human CD8+ T cell function. Genetic ablation or chemical inhibition of NOX2 in CD8+ T cells significantly suppressed activation-induced expression of the transcription factor T-bet, the master transcription factor of the Tc1 cell lineage, and T-bet target effector genes such as IFN-γ and granzyme B. Inhibition of NOX2 in both human and mouse CD8+ T cells prevented target cell lysis. We identified that superoxide generated by NOX2 must be converted into hydrogen peroxide to transduce the redox signal in CD8+ T cells. Furthermore, we show that NOX2-generated oxidants deactivate the tumor suppressor complex leading to activation of RheB and subsequently mTOR complex 1. These results indicate that NOX2 plays a nonredundant role in TCR-mediated CD8+ T cell effector function.
Collapse
|
4
|
Zhuang H, Hudson E, Han S, Arja RD, Hui W, Lu L, Reeves WH. Microvascular lung injury and endoplasmic reticulum stress in systemic lupus erythematosus-associated alveolar hemorrhage and pulmonary vasculitis. Am J Physiol Lung Cell Mol Physiol 2022; 323:L715-L729. [PMID: 36255715 PMCID: PMC9744657 DOI: 10.1152/ajplung.00051.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022] Open
Abstract
Human COPA mutations affecting retrograde Golgi-to-endoplasmic reticulum (ER) protein transport cause diffuse alveolar hemorrhage (DAH) and ER stress ("COPA syndrome"). Patients with SLE also can develop DAH. C57BL/6 (B6) mice with pristane-induced lupus develop monocyte-dependent DAH indistinguishable from human DAH, whereas BALB/c mice are resistant. We examined Copa and ER stress in pristane-induced lupus. Copa expression, ER stress, vascular injury, and apoptosis were assessed in mice and COPA was quantified in blood from patients with SLE. Copa mRNA and protein expression were impaired in B6 mice with pristane-induced DAH, but not in pristane-treated BALB/c mice. An ER stress response (increased Hsp5a/BiP, Ddit3/CHOP, Eif2a, and spliced Xbp1) was seen in lungs from pristane-treated B6, but not BALB/c, mice. Resistance of BALB/c mice to DAH was overcome by treating them with low-dose thapsigargin plus pristane. CB6F1 mice did not develop DAH or ER stress, suggesting that susceptibility was recessive. Increased pulmonary expression of von Willebrand factor (Vwf), a marker of endothelial injury, and the chemokine Ccl2 in DAH suggested that pristane promotes lung microvascular injury and monocyte recruitment. Consistent with that possibility, lung endothelial cells and infiltrating bone marrow-derived cells from pristane-treated B6 mice expressed BiP and showed evidence of apoptosis (annexin-V and activated caspase-3 staining). COPA expression also was low in patients with SLE with lung involvement. Pristane-induced DAH may be initiated by endothelial injury, resulting in ER stress, apoptosis of lung endothelial cells, and recruitment of myeloid cells that propagate lung injury. The pathogenesis of DAH in SLE and COPA syndrome may overlap.
Collapse
|
5
|
Han S, Zhuang H, Arja RD, Reeves WH. A novel monocyte differentiation pattern in pristane-induced lupus with diffuse alveolar hemorrhage. eLife 2022; 11:e76205. [PMID: 36264674 PMCID: PMC9584606 DOI: 10.7554/elife.76205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Pristane causes chronic peritoneal inflammation resulting in lupus, which in C57BL/6 mice is complicated by lung microvascular injury and diffuse alveolar hemorrhage (DAH). Mineral oil (MO) also causes inflammation, but not lupus or DAH. Since monocyte depletion prevents DAH, we examined the role of monocytes in the disease. Impaired bone marrow (BM) monocyte egress in Ccr2-/- mice abolished DAH, confirming the importance of monocyte recruitment to the lung. Circulating Ly6Chi monocytes from pristane-treated mice exhibited increased annexin-V staining in comparison with MO-treated controls without evidence of apoptosis, suggesting that pristane alters the distribution of phosphatidylserine in the plasma membrane before or shortly after monocyte egress from the BM. Plasma membrane asymmetry also was impaired in Nr4a1-regulated Ly6Clo/- 'patrolling' monocytes, which are derived from Ly6Chi precursors. Patrolling Ly6Clo/- monocytes normally promote endothelial repair, but their phenotype was altered in pristane-treated mice. In contrast to MO-treated controls, Nr4a1-regulated Ly6Clo/- monocytes from pristane-treated mice were CD138+, expressed more TremL4, a protein that amplifies TLR7 signaling, and exuberantly produced TNFα in response to TLR7 stimulation. TremL4 expression on these novel CD138+ monocytes was regulated by Nr4a1. Thus, monocyte CD138, high TremL4 expression, and annexin-V staining may define an activated/inflammatory subtype of patrolling monocytes associated with DAH susceptibility. By altering monocyte development, pristane exposure may generate activated Ly6Chi and Ly6Clo/- monocytes, contributing to lung microvascular endothelial injury and DAH susceptibility.
Collapse
|
6
|
Dada L, Succari L, Vittor AY, Clapp WL, Zhuang H, Saikaly SK, Auerbach J, Han S, Mehrad B, Reeves WH. Microscopic Polyangiitis With Diffuse Alveolar Hemorrhage and Glomerulonephritis Complicating Acute Influenza Infection. J Clin Rheumatol 2021; 27:S618-S619. [PMID: 33843777 PMCID: PMC8463638 DOI: 10.1097/rhu.0000000000001730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Zhuang H, Han S, Lu L, Reeves WH. Myxomavirus serpin alters macrophage function and prevents diffuse alveolar hemorrhage in pristane-induced lupus. Clin Immunol 2021; 229:108764. [PMID: 34089860 PMCID: PMC10619960 DOI: 10.1016/j.clim.2021.108764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/19/2021] [Accepted: 05/31/2021] [Indexed: 01/19/2023]
Abstract
C57BL/6 mice with pristane-induced lupus develop macrophage-dependent diffuse alveolar hemorrhage (DAH), which is blocked by treatment with liver X receptor (LXR) agonists and is exacerbated by low IL-10 levels. Serp-1, a myxomavirus-encoded serpin that impairs macrophage activation and plasminogen activation, blocks DAH caused by MHV68 infection. We investigated whether Serp-1 also could block DAH in pristane-induced lupus. Pristane-induced DAH was prevented by treatment with recombinant Serp-1 and macrophages from Serp1-treated mice exhibited an anti-inflammatory M2-like phenotype. Therapy activated LXR, promoting M2 polarization and expression of Kruppel-like factor-4 (KLH4), which upregulates IL-10. In contrast, deficiency of tissue plasminogen activator or plasminogen activator inhibitor had little effect on DAH. We conclude that Serp-1 blocks pristane-induced lung hemorrhage by enhancing LXR-regulated M2 macrophage polarization and KLH4-regulated IL-10 production. In view of the similarities between DAH in pristane-treated mice and SLE patients, Serp-1 may represent a potential new therapy for this severe complication of SLE.
Collapse
|
8
|
Han S, Zhuang H, Li M, Yang L, Lee PY, Nigrovic PA, Reeves WH. Reply. Arthritis Rheumatol 2020; 73:176-178. [PMID: 32776428 DOI: 10.1002/art.41478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 11/11/2022]
|
9
|
Han S, Zhuang H, Lee PY, Li M, Yang L, Nigrovic PA, Reeves WH. NF-E2-Related Factor 2 Regulates Interferon Receptor Expression and Alters Macrophage Polarization in Lupus. Arthritis Rheumatol 2020; 72:1707-1720. [PMID: 32500632 DOI: 10.1002/art.41383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 05/26/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Pristane-induced lupus is associated with nonresolving inflammation and deficiency of proresolving macrophages. Proresolving nonclassic macrophages (NCMs) are less responsive to type I interferon (IFN) than classic macrophages (CMs; which are proinflammatory), reflecting their relative expression levels of the type I IFN receptor (IFNAR). This study was undertaken to investigate the regulation of IFNAR expression in macrophages. METHODS We carried out gene expression profiling of purified CMs and NCMs from mice treated with pristane (which develop lupus) or mineral oil (non-lupus controls). Macrophage differentiation and IFNAR expression were examined in mice treated with NF-E2-related factor 2 (Nrf2) activators and inhibitors and in Nrf2-deficient mice. Nrf2 activity was also assessed in blood cells from patients with systemic lupus erythematosus (SLE). Significant differences were determined by Student's t-test. RESULTS RNA sequencing revealed increased expression of genes regulated by the transcription factor Nrf2 in NCMs from mineral oil-treated versus pristane-treated mice and in NCMs versus CMs. The Nrf2 activator CDDO-imidazole (CDDO-Im) decreased CMs (P < 0.0001) and promoted the development of proresolving NCMs (P = 0.06), whereas the Nrf2 inhibitor brusatol increased CMs (P < 0.05) and decreased NCMs (P < 0.001). CDDO-Im decreased Ifnar1 (P < 0.001) and IFN-stimulated gene (ISG) expression in macrophages and alleviated oxidative stress (P < 0.05), whereas brusatol had the opposite effect (P < 0.01). Moreover, Ifnar1 and ISG expression levels were higher in Nrf2-knockout mice than controls (P < 0.05). As seen in mice with lupus, SLE patients showed evidence of low Nrf2 activity. CONCLUSION Our findings indicate that Nrf2 activation favors the resolution of chronic inflammation in lupus. Since autoantibody production and lupus nephritis depend on IFNAR signaling, the ability of Nrf2 activators to repolarize macrophages and reduce the INF signature suggests that these agents may warrant consideration for treating lupus.
Collapse
|
10
|
Han S, Zhuang H, Lee PY, Li M, Yang L, Nigrovic PA, Reeves WH. Differential Responsiveness of Monocyte and Macrophage Subsets to Interferon. Arthritis Rheumatol 2020; 72:100-113. [PMID: 31390156 PMCID: PMC6935410 DOI: 10.1002/art.41072] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Peripheral blood mononuclear cells (PBMCs) in systemic lupus erythematosus (SLE) patients exhibit a gene expression program (interferon [IFN] signature) that is attributed to overproduction of type I IFNs by plasmacytoid dendritic cells. Type I IFNs have been thought to play a role in the pathogenesis of SLE. This study was undertaken to examine an unexpected influence of monocyte/macrophages on the IFN signature. METHODS Proinflammatory (classic) and antiinflammatory (nonclassic) monocyte/macrophages were sorted from mice and analyzed by RNA sequencing and quantitative polymerase chain reaction (qPCR). Type I IFN-α/β/ω receptor (IFNAR-1) expression was determined by qPCR and flow cytometry. Macrophages were stimulated in vitro with IFNα, and pSTAT1was measured. RESULTS Transcriptional profiling of peritoneal macrophages from mice with pristane-induced SLE unexpectedly indicated a strong IFN signature in classic, but not nonclassic, monocyte/macrophages exposed to the same type I IFN concentrations. Ifnar1 messenger RNA and IFNAR surface staining were higher in classic monocyte/macrophages versus nonclassic monocyte/macrophages (P < 0.0001 and P < 0.05, respectively, by Student's t-test). Nonclassic monocyte/macrophages were also relatively insensitive to IFNα-driven STAT1 phosphorylation. Humans exhibited a similar pattern: higher IFNAR expression (P < 0.0001 by Student's t-test) and IFNα-stimulated gene expression (P < 0.01 by paired Wilcoxon's rank sum test) in classic monocyte/macrophages and lower levels in nonclassic monocyte/macrophages. CONCLUSION This study revealed that the relative abundance of different monocyte/macrophage subsets helps determine the magnitude of the IFN signature. Responsiveness to IFNα signaling reflects differences in IFNAR expression in classic (high IFNAR) compared to nonclassic (low IFNAR) monocyte/macrophages. Thus, the IFN signature depends on both type I IFN production and the responsiveness of monocyte/macrophages to IFNAR signaling.
Collapse
|
11
|
Lee PY, Nelson-Maney N, Huang Y, Levescot A, Wang Q, Wei K, Cunin P, Li Y, Lederer JA, Zhuang H, Han S, Kim EY, Reeves WH, Nigrovic PA. High-dimensional analysis reveals a pathogenic role of inflammatory monocytes in experimental diffuse alveolar hemorrhage. JCI Insight 2019; 4:129703. [PMID: 31391335 DOI: 10.1172/jci.insight.129703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/27/2019] [Indexed: 12/24/2022] Open
Abstract
Diffuse alveolar hemorrhage (DAH) is a life-threatening pulmonary complication associated with systemic lupus erythematosus, vasculitis, and stem cell transplant. Little is known about the pathophysiology of DAH, and no targeted therapy is currently available. Pristane treatment in mice induces systemic autoimmunity and lung hemorrhage that recapitulates hallmark pathologic features of human DAH. Using this experimental model, we performed high-dimensional analysis of lung immune cells in DAH by mass cytometry and single-cell RNA sequencing. We found a large influx of myeloid cells to the lungs in DAH and defined the gene expression profile of infiltrating monocytes. Bone marrow-derived inflammatory monocytes actively migrated to the lungs and homed adjacent to blood vessels. Using 3 models of monocyte deficiency and complementary transfer studies, we established a central role of inflammatory monocytes in the development of DAH. We further found that the myeloid transcription factor interferon regulatory factor 8 is essential to the development of both DAH and type I interferon-dependent autoimmunity. These findings collectively reveal monocytes as a potential treatment target in DAH.
Collapse
|
12
|
Han S, Zhuang H, Lee P, Yang L, Reeves WH. II-10 Role of macrophage-driven autoinflammation in SLE. Innate Immun 2018. [DOI: 10.1136/lupus-2018-lsm.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Han S, Zhuang H, Shumyak S, Wu J, Xie C, Li H, Yang LJ, Reeves WH. Liver X Receptor Agonist Therapy Prevents Diffuse Alveolar Hemorrhage in Murine Lupus by Repolarizing Macrophages. Front Immunol 2018; 9:135. [PMID: 29456535 PMCID: PMC5801423 DOI: 10.3389/fimmu.2018.00135] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
The generation of CD138+ phagocytic macrophages with an alternative (M2) phenotype that clear apoptotic cells from tissues is defective in lupus. Liver X receptor-alpha (LXRα) is an oxysterol-regulated transcription factor that promotes reverse cholesterol transport and alternative (M2) macrophage activation. Conversely, hypoxia-inducible factor 1-α (HIF1α) promotes classical (M1) macrophage activation. The objective of this study was to see if lupus can be treated by enhancing the generation of M2-like macrophages using LXR agonists. Peritoneal macrophages from pristane-treated mice had an M1 phenotype, high HIFα-regulated phosphofructokinase and TNFα expression (quantitative PCR, flow cytometry), and low expression of the LXRα-regulated gene ATP binding cassette subfamily A member 1 (Abca1) and Il10 vs. mice treated with mineral oil, a control inflammatory oil that does not cause lupus. Glycolytic metabolism (extracellular flux assays) and Hif1a expression were higher in pristane-treated mice (M1-like) whereas oxidative metabolism and LXRα expression were higher in mineral oil-treated mice (M2-like). Similarly, lupus patients’ monocytes exhibited low LXRα/ABCA1 and high HIF1α vs. controls. The LXR agonist T0901317 inhibited type I interferon and increased ABCA1 in lupus patients’ monocytes and in murine peritoneal macrophages. In vivo, T0901317 induced M2-like macrophage polarization and protected mice from diffuse alveolar hemorrhage (DAH), an often fatal complication of lupus. We conclude that end-organ damage (DAH) in murine lupus can be prevented using an LXR agonist to correct a macrophage differentiation abnormality characteristic of lupus. LXR agonists also decrease inflammatory cytokine production by human lupus monocytes, suggesting that these agents may be have a role in the pharmacotherapy of lupus.
Collapse
|
14
|
Zhuang H, Han S, Li Y, Kienhöfer D, Lee P, Shumyak S, Meyerholz R, Rosadzinski K, Rosner D, Chan A, Xu Y, Segal M, Sobel E, Yang LJ, Hoffmann MH, Reeves WH. A Novel Mechanism for Generating the Interferon Signature in Lupus: Opsonization of Dead Cells by Complement and IgM. Arthritis Rheumatol 2017; 68:2917-2928. [PMID: 27274010 DOI: 10.1002/art.39781] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/01/2016] [Indexed: 01/05/2023]
Abstract
OBJECTIVE In vitro studies suggest that the type I interferon (IFN) signature seen in most lupus patients results from Fcγ receptor-mediated uptake of nucleic acid-containing immune complexes by plasmacytoid dendritic cells and engagement of endosomal Toll-like receptors. The aim of this study was to reexamine the pathogenesis of the IFN signature in vivo. METHODS Lupus was induced in mice by injecting pristane. Some mice were treated with normal immunoglobulin or with cobra venom factor to deplete complement. The IFN signature was evaluated by polymerase chain reaction. The IFN signature also was determined in C4-deficient patients and control subjects. RESULTS Wild-type C57BL/6 mice with pristane-induced lupus developed a strong IFN signature, which was absent in immunoglobulin-deficient (μMT), C3-/- , and CD18-/- mice. Intravenous infusion of normal IgM, but not IgG, restored the IFN signature in μMT mice, and the IFN signature in wild-type mice was inhibited by depleting complement, suggesting that opsonization by IgM and complement is involved in IFN production. Consistent with that possibility, the levels of "natural" IgM antibodies reactive with dead cells were increased in pristane-treated wild-type mice compared with untreated controls, and in vivo phagocytosis of dead cells was impaired in C3-deficient mice. To examine the clinical relevance of these findings, we identified 10 C4-deficient patients with lupus-like disease and compared them with 152 C4-intact patients and 21 healthy controls. In comparison with C4-intact patients, C4-deficient patients had a different clinical/serologic phenotype and lacked the IFN signature. CONCLUSION These studies define previously unrecognized roles of natural IgM, complement, and complement receptors in generating the IFN signature in lupus.
Collapse
|
15
|
Han S, Zhuang H, Shumyak S, Wu J, Li H, Yang LJ, Reeves WH. A Novel Subset of Anti-Inflammatory CD138 + Macrophages Is Deficient in Mice with Experimental Lupus. THE JOURNAL OF IMMUNOLOGY 2017; 199:1261-1274. [PMID: 28696256 DOI: 10.4049/jimmunol.1700099] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/12/2017] [Indexed: 12/13/2022]
Abstract
Dead cells accumulating in the tissues may contribute to chronic inflammation. We examined the cause of impaired apoptotic cell clearance in human and murine lupus. Dead cells accumulated in bone marrow from lupus patients but not from nonautoimmune patients undergoing myeloablation, where they were efficiently removed by macrophages (MΦ). Impaired apoptotic cell uptake by MΦ also was seen in mice treated i.p. with pristane (develop lupus) but not mineral oil (MO) (do not develop lupus). The inflammatory response to both pristane and MO rapidly depleted resident (Tim4+) large peritoneal MΦ. The peritoneal exudate of pristane-treated mice contained mainly Ly6Chi inflammatory monocytes; whereas in MO-treated mice, it consisted predominantly of a novel subset of highly phagocytic MΦ resembling small peritoneal MΦ (SPM) that expressed CD138+ and the scavenger receptor Marco. Treatment with anti-Marco-neutralizing Abs and the class A scavenger receptor antagonist polyinosinic acid inhibited phagocytosis of apoptotic cells by CD138+ MΦ. CD138+ MΦ expressed IL-10R, CD206, and CCR2 but little TNF-α or CX3CR1. They also expressed high levels of activated CREB, a transcription factor implicated in generating alternatively activated MΦ. Similar cells were identified in the spleen and lung of MO-treated mice and also were induced by LPS. We conclude that highly phagocytic, CD138+ SPM-like cells with an anti-inflammatory phenotype may promote the resolution of inflammation in lupus and infectious diseases. These SPM-like cells are not restricted to the peritoneum and may help clear apoptotic cells from tissues such as the lung, helping to prevent chronic inflammation.
Collapse
|
16
|
Zhuang H, Han S, Lee PY, Khaybullin R, Shumyak S, Lu L, Chatha A, Afaneh A, Zhang Y, Xie C, Nacionales D, Moldawer L, Qi X, Yang LJ, Reeves WH. Pathogenesis of Diffuse Alveolar Hemorrhage in Murine Lupus. Arthritis Rheumatol 2017; 69:1280-1293. [PMID: 28217966 DOI: 10.1002/art.40077] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Diffuse alveolar hemorrhage (DAH) in lupus patients confers >50% mortality, and the cause is unknown. We undertook this study to examine the pathogenesis of DAH in C57BL/6 mice with pristane-induced lupus, a model of human lupus-associated DAH. METHODS Clinical/pathologic and immunologic manifestations of DAH in pristane-induced lupus were compared with those of DAH in humans. Tissue distribution of pristane was examined by mass spectrometry. Cell types responsible for disease were determined by in vivo depletion using clodronate liposomes and antineutrophil monoclonal antibodies (anti-Ly-6G). The effect of complement depletion with cobra venom factor (CVF) was examined. RESULTS After intraperitoneal injection, pristane migrated to the lung, causing cell death, small vessel vasculitis, and alveolar hemorrhage similar to that seen in DAH in humans. B cell-deficient mice were resistant to induction of DAH, but susceptibility was restored by infusing IgM. C3-/- and CD18-/- mice were also resistant, and DAH was prevented in wild-type mice by CVF. Induction of DAH was independent of Toll-like receptors, inflammasomes, and inducible nitric oxide. Mortality was increased in interleukin-10 (IL-10)-deficient mice, and pristane treatment decreased IL-10 receptor expression in monocytes and STAT-3 phosphorylation in lung macrophages. In vivo neutrophil depletion was not protective, while treatment with clodronate liposomes prevented DAH, which suggests that macrophage activation is central to DAH pathogenesis. CONCLUSION The pathogenesis of DAH involves opsonization of dead cells by natural IgM and complement followed by complement receptor-mediated lung inflammation. The disease is macrophage dependent, and IL-10 is protective. Complement inhibition and/or macrophage-targeted therapies may reduce mortality in lupus-associated DAH.
Collapse
|
17
|
Zhang Y, Xie C, Wang H, Foss RM, Clare M, George EV, Li S, Katz A, Cheng H, Ding Y, Tang D, Reeves WH, Yang LJ. Irisin exerts dual effects on browning and adipogenesis of human white adipocytes. Am J Physiol Endocrinol Metab 2016; 311:E530-41. [PMID: 27436609 DOI: 10.1152/ajpendo.00094.2016] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/08/2016] [Indexed: 12/20/2022]
Abstract
To better understand the role of irisin in humans, we examined the effects of irisin in human primary adipocytes and fresh human subcutaneous white adipose tissue (scWAT). Human primary adipocytes derived from 28 female donors' fresh scWAT were used to examine the effects of irisin on browning and mitochondrial respiration, and preadipocytes were used to examine the effects of irisin on adipogenesis and osteogenesis. Cultured fragments of scWAT and perirenal brown fat were used for investigating signal transduction pathways that mediate irisin's browning effect by Western blotting to detect phosphorylated forms of p38, ERK, and STAT3 as well as uncoupling protein 1 (UCP1). Individual responses to irisin in scWAT were correlated with basal expression levels of brown/beige genes. Irisin upregulated the expression of browning-associated genes and UCP1 protein in both cultured primary mature adipocytes and fresh adipose tissues. It also significantly increased thermogenesis at 5 nmol/l by elevating cellular energy metabolism (OCR and ECAR). Treating human scWAT with irisin increased UCP1 expression by activating the ERK and p38 MAPK signaling. Blocking either pathway with specific inhibitors abolished irisin-induced UCP1 upregulation. However, our results showed that UCP1 in human perirenal adipose tissue was insensitive to irisin. Basal levels of brown/beige and FNDC5 genes correlated positively with the browning response of scWAT to irisin. In addition, irisin significantly inhibited adipogenic differentiation but promoted osteogenic differentiation. We conclude that irisin promotes "browning" of mature white adipocytes by increasing cellular thermogenesis, whereas it inhibits adipogenesis and promotes osteogenesis during lineage-specific differentiation. Our findings provide a rationale for further exploring the therapeutic use of irisin in obesity and exercise-associated bone formation.
Collapse
|
18
|
Zuo J, Williams AEG, Park YJ, Choi K, Chan AL, Reeves WH, Bubb MR, Lee YJ, Park K, Stewart CM, Cha S. Muscarinic type 3 receptor autoantibodies are associated with anti-SSA/Ro autoantibodies in Sjögren's syndrome. J Immunol Methods 2016; 437:28-36. [PMID: 27460476 DOI: 10.1016/j.jim.2016.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 01/05/2023]
Abstract
Anti-muscarinic type 3 receptor autoantibodies (anti-M3R) are reported as potential inhibitors of saliva secretion in Sjögren's syndrome (SjS). However, despite extensive efforts to establish an anti-M3R detection method, there is no clinical test available for these autoantibodies. The purpose of this study was to propose inclusion of anti-M3R testing for SjS diagnosis through investigation of their prevalence using a modified In-Cell Western (ICW) assay. A stable cell line expressing human M3R tagged with GFP (M3R-GFP) was established to screen unadsorbed and adsorbed plasma from primary SjS (n=24), rheumatoid arthritis (RA, n=18), systemic lupus erythematosus (SLE, n=18), and healthy controls (HC, n=23). Anti-M3R abundance was determined by screening for the intensity of human IgG interacting with M3R-GFP cells by ICW assay, as detected by an anti-human IgG IRDye800-conjugated secondary antibody and normalized to GFP. Method comparisons and receiver-operating-characteristic (ROC)-curve analyses were performed to evaluate the diagnostic value of our current approaches. Furthermore, clinical parameters of SjS were also analyzed in association with anti-M3R. Anti-M3R was significantly elevated in SjS plasma in comparison with HC, SLE, or RA (P<0.01). SjS anti-M3R intensities were greater than two-standard deviations above the HC mean for both unadsorbed (16/24, 66.67%) and adsorbed (18/24, 75%) plasma samples. Furthermore, anti-M3R was associated with anti-SjS-related-antigen A/Ro positivity (P=0.0353). Linear associations for anti-M3R intensity indicated positive associations with focus score (R(2)=0.7186, P<0.01) and negative associations with saliva flow rate (R(2)=0.3052, P<0.05). Our study strongly supports our rationale to propose inclusion of anti-M3R for further testing as a non-invasive serological marker for SjS diagnosis.
Collapse
|
19
|
Shumyak S, Yang LJ, Han S, Zhuang H, Reeves WH. "Lupoid hepatitis" in SLE patients and mice with experimental lupus. Clin Immunol 2016; 172:65-71. [PMID: 27430519 DOI: 10.1016/j.clim.2016.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/10/2016] [Indexed: 12/17/2022]
Abstract
The unusual subset of patients with severe hepatitis, hypergammaglobulinemia, arthritis, and LE cells in the blood reported by Henry Kunkel and others suggested to these investigators that "lupoid" hepatitis might share pathogenic mechanisms with SLE. More than half a century later, the etiology of autoimmune hepatitis remains unclear. The occurrence of autoimmune hepatitis in a small fraction (about 3%) of SLE patients in our lupus cohort and in two mouse models of SLE supports their conclusion that lupoid hepatitis may be share pathogenic mechanisms with SLE. The development of autoimmune hepatitis in mice with pristane-induced lupus provides an opportunity to further explore the potential link between these two autoimmune disorders.
Collapse
|
20
|
Barnes EV, Narain S, Naranjo A, Shuster J, Segal MS, Sobel ES, Armstrong AE, Santiago BE, Reeves WH, Richards HB. High sensitivity C-reactive protein in systemic lupus erythematosus: relation to disease activity, clinical presentation and implications for cardiovascular risk. Lupus 2016; 14:576-82. [PMID: 16175928 DOI: 10.1191/0961203305lu2157oa] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Measurement of high sensitivity C-reactive protein (hs-CRP), has been used in the assessment of disease activity in numerous rheumatic conditions including systemic lupus erythematosus (SLE). However, the utility of hs-CRP measurement in patients with lupus is uncertain. This study examined if hs-CRP can be used to assess disease activity, severity and cardiovascular risk in SLE. Serum samples from 601 visits of 213 SLE patients and 134 controls were analysed for hs-CRP by nephelometry. Detailed demographic data were obtained from all subjects and medication history and key laboratory parameters were collected. Disease activity was assessed using the SLEDAI. High sensitivity CRP was not associated with disease activity (SLEDAI), number of ACR SLE criteria or presence of any particular organ involvement. hs-CRP levels were significantly correlated with standard cardiovascular risk factors including body weight ( P = 0.0002), hypertension ( P = 0.001), and apolipoprotein A-I ( P < 0.0001). Interestingly an inverse correlation was seen between hs-CRP levels and antimalarial use ( P = 0.0018). Our results suggest that measurement of hs-CRP, though not valuable as marker of disease activity in SLE may be of some use in the assessment of cardiovascular risk. We speculate that antimalarials may help to reduce cardiovascular risk in patients with SLE.
Collapse
|
21
|
Williams AEG, Choi K, Chan AL, Lee YJ, Reeves WH, Bubb MR, Stewart CM, Cha S. Sjögren's syndrome-associated microRNAs in CD14(+) monocytes unveils targeted TGFβ signaling. Arthritis Res Ther 2016; 18:95. [PMID: 27142093 PMCID: PMC4855899 DOI: 10.1186/s13075-016-0987-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/05/2016] [Indexed: 12/30/2022] Open
Abstract
Background Sjögren’s syndrome (SjS) monocytes have a pro-inflammatory phenotype, which may influence SjS pathogenesis. MicroRNAs (miRNAs) are small endogenously expressed molecules that can inhibit protein expression of their targeted genes and have important functions in regulating cell signaling responses. We profiled miRNAs in SjS monocytes to identify a SjS-specific miRNA profile and determine the potential roles of miRNAs in SjS pathogenesis. Methods Total RNA was extracted from healthy control (HC, n = 10), SjS (n = 18), systemic lupus erythematosus (SLE, n = 10), and rheumatoid arthritis (RA, n = 10) peripheral blood CD14+ monocytes for miRNA microarray analysis. To validate select miRNAs from the microarray analysis, the original cohort and a new cohort of monocyte RNA samples from HC (n = 9), SjS (n = 12), SLE (n = 8), and RA (n = 9) patients were evaluated by quantitative reverse transcription (RT)-PCR. Functional predictions of differentially expressed miRNAs were determined through miRNA target prediction database analyses. Statistical analyses performed included one-way analysis of variance with Bonferroni post tests, linear regression, and receiver operating characteristic curve analyses. Results MiRNAs were predominantly upregulated in SjS monocytes in comparison with controls. Quantitative RT-PCR confirmations supported co-regulation of miR-34b-3p, miR-4701-5p, miR-609, miR-300, miR-3162-3p, and miR-877-3p in SjS monocytes (13/30, 43.3 %) in comparison with SLE (1/17, 5.8 %) and RA (1/18, 5.6 %). MiRNA-target pathway predictions identified SjS-associated miRNAs appear to preferentially target the canonical TGFβ signaling pathway as opposed to pro-inflammatory interleukin-12 and Toll-like receptor/NFkB pathways. Conclusions Our results underscore a novel underlying molecular mechanism where SjS-associated miRNAs may collectively suppress TGFβ signaling as opposed to pro-inflammatory interleukin-12 and Toll-like receptor/NFκB pathways in SjS pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-0987-0) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Sukka-Ganesh B, Li Y, Reeves WH, Larkin J. Reduced Suppressor of Cytokine Signaling-1 levels in SLE patients correlates to enhanced STAT1 activation. THE JOURNAL OF IMMUNOLOGY 2016. [DOI: 10.4049/jimmunol.196.supp.124.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Systemic Lupus erythematosus (SLE) is a chronic inflammatory autoimmune disorder with unknown etiology. Although the specific events dictating SLE pathology remain unclear, abundant evidence indicates a critical role for dysregulated cytokine signaling in disease progression. Notably, the suppressor of cytokine signaling (SOCS) family of intracellular proteins, in particular the kinase inhibitory region (KIR) bearing SOCS1 and SOCS3, play a critical role in regulating cytokine signaling. Here in this foundational study, we test the hypothesis that regulation of cytokine signaling in SLE patients may be perturbed by a lack of KIR bearing SOCS1 and SOCS3. We analyzed 34 SLE patients, segregated by disease activity (SLEDAI) and prednisone treatment, in comparison with 11 healthy controls. Real time RT-PCR and Western blot analysis showed significant reductions in SOCS1 and SOCS3 in PMBC’s of SLE patients by both mRNA and protein expression when compared to controls. Notably, decreased SOCS1, but not SOCS3 protein levels in the SLE patients were inversely correlated to activation of STAT1, but not Erk 1/2 or Akt. Notably, the inverted SOCS1/pSTAT1 ratio correlated to significantly enhanced MHC class II levels amongst SLE patients. These studies represent a critical first step in implicating a role of SOCS1 and SOCS3 deficiencies in the progression of human SLE, providing impetus for the performance for a larger multi-centered examination. Finally, these studies point to the possibility that peptides, previously shown to mimic SOCS signaling and inhibit rodent autoimmune disease, may have efficacy in the treatment of human SLE.
Collapse
|
23
|
Han S, Zhuang H, Xu Y, Lee P, Li Y, Wilson JC, Vidal O, Choi HS, Sun Y, Yang LJ, Reeves WH. Maintenance of autoantibody production in pristane-induced murine lupus. Arthritis Res Ther 2015; 17:384. [PMID: 26717913 PMCID: PMC4718029 DOI: 10.1186/s13075-015-0886-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 12/03/2015] [Indexed: 11/30/2022] Open
Abstract
Background Pristane-treated mice chronically produce high levels of anti-ribonucleoprotein/Smith (anti-Sm/RNP) and other lupus autoantibodies. The present study addressed how these autoantibody levels are maintained over time. Methods Lupus was induced in BALB/c mice using pristane. Naïve B cells, switched memory B cells, switched plasmablasts, and plasma cells were flow-sorted and total IgG and anti-U1A (RNP) autoantibodies were determined with ELISA. Results B cells with a switched “memory-like” (CD19+CD138−IgM−IgD−) (sMB) phenotype were increased in pristane-treated mice and expressed higher levels of Toll like receptor 7 (Tlr7) than cells with this phenotype from untreated mice. Flow-sorted sMB cells from pristane-treated mice did not secrete IgG spontaneously, but were hyper-responsive to both synthetic (R848) and natural (apoptotic cells) TLR7 ligands, resulting in increased IgG production in vitro. The flow-sorted sMB cells also could be driven by R848 to produce IgG anti-U1A autoantibodies. Production of IgG was strongly inhibited by both JSH-23 and SB203580, suggesting that the canonical NFκB and p38 MAPK pathways, respectively, contribute to the TLR7 ligand hyper-responsiveness of sMB from pristane-treated mice. Conclusions The switched memory B cell subset from pristane-treated mice is expanded and shows an increased propensity to undergo terminal (plasma cell) differentiation in response to synthetic and natural TLR7 ligands. The data suggest that the decreased clearance of apoptotic cells characteristic of pristane-treated mice might help maintain high serum levels of anti-RNP/Sm autoantibodies. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0886-9) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Xie C, Zhang Y, Tran TDN, Wang H, Li S, George EV, Zhuang H, Zhang P, Kandel A, Lai Y, Tang D, Reeves WH, Cheng H, Ding Y, Yang LJ. Irisin Controls Growth, Intracellular Ca2+ Signals, and Mitochondrial Thermogenesis in Cardiomyoblasts. PLoS One 2015; 10:e0136816. [PMID: 26305684 PMCID: PMC4549318 DOI: 10.1371/journal.pone.0136816] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/07/2015] [Indexed: 12/31/2022] Open
Abstract
Exercise offers short-term and long-term health benefits, including an increased metabolic rate and energy expenditure in myocardium. The newly-discovered exercise-induced myokine, irisin, stimulates conversion of white into brown adipocytes as well as increased mitochondrial biogenesis and energy expenditure. Remarkably, irisin is highly expressed in myocardium, but its physiological effects in the heart are unknown. The objective of this work is to investigate irisin’s potential multifaceted effects on cardiomyoblasts and myocardium. For this purpose, H9C2 cells were treated with recombinant irisin produced in yeast cells (r-irisin) and in HEK293 cells (hr-irisin) for examining its effects on cell proliferation by MTT [3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and on gene transcription profiles by qRT-PCR. R-irisin and hr-irisin both inhibited cell proliferation and activated genes related to cardiomyocyte metabolic function and differentiation, including myocardin, follistatin, smooth muscle actin, and nuclear respiratory factor-1. Signal transduction pathways affected by r-irisin in H9C2 cells and C57BL/6 mice were examined by detecting phosphorylation of PI3K-AKT, p38, ERK or STAT3. We also measured intracellular Ca2+ signaling and mitochondrial thermogenesis and energy expenditure in r-irisin-treated H9C2 cells. The results showed that r-irisin, in a certain concentration rage, could activate PI3K-AKT and intracellular Ca2+ signaling and increase cellular oxygen consumption in H9C2 cells. Our study also suggests the existence of irisin-specific receptor on the membrane of H9C2 cells. In conclusion, irisin in a certain concentration rage increased myocardial cell metabolism, inhibited cell proliferation and promoted cell differentiation. These effects might be mediated through PI3K-AKT and Ca2+ signaling, which are known to activate expression of exercise-related genes such as follistatin and myocardin. This work supports the value of exercise, which promotes irisin release.
Collapse
|
25
|
Zhuang H, Szeto C, Han S, Yang L, Reeves WH. Animal Models of Interferon Signature Positive Lupus. Front Immunol 2015; 6:291. [PMID: 26097482 PMCID: PMC4456949 DOI: 10.3389/fimmu.2015.00291] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/20/2015] [Indexed: 12/31/2022] Open
Abstract
Human lupus is strongly associated with a gene expression signature characterized by over-expression of Type I interferon-regulated genes. A strong interferon signature generally is not seen in the standard mouse models of lupus, despite considerable evidence for the involvement of toll-like receptor-driven interferon production. In contrast, pristane-induced lupus exhibits a prominent TLR7-dependent interferon signature. Importantly, genetic disorders with dysregulated interferon production in both human beings and mice cause severe autoinflammatory diseases but not the typical manifestations of lupus, suggesting that interferon over-production is insufficient to cause systemic lupus erythematosus itself. Single-gene models in mice suggest that lupus-like disease may result from abnormalities in B-cell activation and the clearance of dead cells. Pristane may mimic human systemic lupus erythematosus by causing synergistic abnormalities in interferon production along with defective clearance of apoptotic cells and over-active B-cell signaling.
Collapse
|