1
|
Gamara J, Davis L, Leong AZ, Pagé N, Rollet-Labelle E, Zhao C, Hongu T, Funakoshi Y, Kanaho Y, Aoudji F, Pelletier M, Bourgoin SG. Corrigendum to "Arf6 regulates energy metabolism in neutrophils" [Free Radic Biol Med. 172 (2021) 550-561]. Free Radic Biol Med 2022; 179:420. [PMID: 34782201 DOI: 10.1016/j.freeradbiomed.2021.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Lee S, Ishitsuka A, Kuroki T, Lin YH, Shibuya A, Hongu T, Funakoshi Y, Kanaho Y, Nagata K, Kawaguchi A. Arf6 exacerbates allergic asthma through cell-to-cell transmission of ASC inflammasomes. JCI Insight 2021; 6:e139190. [PMID: 34423792 PMCID: PMC8410019 DOI: 10.1172/jci.insight.139190] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the airways associated with excess production of Th2 cytokines and lung eosinophil accumulation. This inflammatory response persists in spite of steroid administration that blocks autocrine/paracrine loops of inflammatory cytokines, and the detailed mechanisms underlying asthma exacerbation remain unclear. Here, we show that asthma exacerbation is triggered by airway macrophages through a prion-like cell-to-cell transmission of extracellular particulates, including ASC protein, that assemble inflammasomes and mediate IL-1β production. OVA-induced allergic asthma and associated IL-1β production were alleviated in mice with small GTPase Arf6-deficient macrophages. The extracellular ASC specks were slightly engulfed by Arf6–/– macrophages, and the IL-1β production was reduced in Arf6–/– macrophages compared with that in WT macrophages. Furthermore, pharmacological inhibition of the Arf6 guanine nucleotide exchange factor suppressed asthma-like allergic inflammation in OVA-challenged WT mice. Collectively, the Arf6-dependent intercellular transmission of extracellular ASC specks contributes to the amplification of allergic inflammation and subsequent asthma exacerbation.
Collapse
|
3
|
Gamara J, Davis L, Leong AZ, Pagé N, Rollet-Labelle E, Zhao C, Hongu T, Funakoshi Y, Kanaho Y, Aoudji F, Pelletier M, Bourgoin SG. Arf6 regulates energy metabolism in neutrophils. Free Radic Biol Med 2021; 172:550-561. [PMID: 34245858 DOI: 10.1016/j.freeradbiomed.2021.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
The small GTPase Arf6 regulates many cellular processes, including cytoskeletal remodeling, receptor endocytosis, and pathogen phagocytosis. Arf6 silencing in neutrophil (PMN)-like cells is well-known to inhibit chemotactic peptide-mediated activation of phospholipase D, the oxidative burst, and β2 integrin-dependent adhesion. In conditional knockout (cKO) mice, the migration to inflammatory sites of Arf6-deficient PMNs was diminished and associated with reduced cell surface expression of β2 integrins. In this study we assessed the impact of Arf6 depletion on the functions and gene expression profile of PMNs isolated from the mouse air pouch. Numerous genes involved in response to oxygen levels, erythrocyte and myeloid differentiation, macrophage chemotaxis, response to chemicals, apoptosis, RNA destabilization, endosome organization, and vesicle transport were differentially expressed in PMNs cKO for Arf6. Lpar6 and Lacc-1 were the most up-regulated and down-regulated genes, respectively. The deletion of Arf6 also decreased Lacc-1 protein level in PMNs, and silencing of Arf6 in THP-1 monocytic cells delayed LPS-mediated Lacc-1 expression. We report that fMLP or zymosan-induced glycolysis and oxygen consumption rate were both decreased in air pouch PMNs but not in bone marrow PMNs of Arf6 cKO mice. Reduced oxygen consumption correlated with a decrease in superoxide and ROS production. Deletion of Arf6 in PMNs also reduced phagocytosis and interfered with apoptosis. The data suggest that Arf6 regulates energy metabolism, which may contribute to impaired phagocytosis, ROS production, and apoptosis in PMN-Arf6 cKO. This study provides new information on the functions and the inflammatory pathways influenced by Arf6 in PMNs.
Collapse
|
4
|
Sumiyoshi M, Kotani Y, Ikuta Y, Suzue K, Ozawa M, Katakai T, Yamada T, Abe T, Bando K, Koyasu S, Kanaho Y, Watanabe T, Matsuda S. Arf1 and Arf6 Synergistically Maintain Survival of T Cells during Activation. THE JOURNAL OF IMMUNOLOGY 2020; 206:366-375. [PMID: 33310872 DOI: 10.4049/jimmunol.2000971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022]
Abstract
ADP-ribosylation factor (Arf) family consisting of six family members, Arf1-Arf6, belongs to Ras superfamily and orchestrates vesicle trafficking under the control of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins. It is well established that brefeldin A, a potent inhibitor of ArfGEFs, blocks cytokine secretion from activated T cells, suggesting that the Arf pathway plays important roles in T cell functions. In this study, because Arf1 and Arf6 are the best-characterized members among Arf family, we established T lineage-specific Arf1-deficient, Arf6-deficient, and Arf1/6 double-deficient mice to understand physiological roles of the Arf pathway in the immune system. Contrary to our expectation, Arf deficiency had little or no impact on cytokine secretion from the activated T cells. In contrast, the lack of both Arf1 and Arf6, but neither Arf1 nor Arf6 deficiency alone, rendered naive T cells susceptible to apoptosis upon TCR stimulation because of imbalanced expression of Bcl-2 family members. We further demonstrate that Arf1/6 deficiency in T cells alleviates autoimmune diseases like colitis and experimental autoimmune encephalomyelitis, whereas Ab response under Th2-polarizing conditions is seemingly normal. Our findings reveal an unexpected role for the Arf pathway in the survival of T cells during TCR-induced activation and its potential as a therapeutic target in the autoimmune diseases.
Collapse
|
5
|
Kim Nguyen NT, Ohbayashi N, Kanaho Y, Funakoshi Y. TBC1D24 regulates recycling of clathrin-independent cargo proteins mediated by tubular recycling endosomes. Biochem Biophys Res Commun 2020; 528:220-226. [PMID: 32475639 DOI: 10.1016/j.bbrc.2020.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/02/2020] [Indexed: 11/19/2022]
Abstract
Many plasma membrane proteins enter cells by clathrin-independent endocytosis (CIE). Rab family small GTPases play pivotal roles in CIE and following intracellular trafficking of cargo proteins. Here, we provide evidence that TBC1D24, which contains an atypical Rab GAP domain, facilitates formation of tubular recycling endosomes (TREs) that are a hallmark of the CIE cargo trafficking pathway in HeLa cells. Overexpression of TBC1D24 in HeLa cells dramatically increased TREs loaded with CIE cargo proteins, while deletion of TBC1D24 impaired TRE formation and delayed the recycling of CIE cargo proteins back to the plasma membrane. We also found that TBC1D24 binds to Rab22A, through which TBC1D24 regulates TRE-mediated CIE cargo recycling. These findings provide insight into regulatory mechanisms for CIE cargo trafficking.
Collapse
|
6
|
Dan K, Takada A, Kanaho Y, Kusumi Y, Banno H. Inhibitory effect of black raspberry extract on AGE accumulation and degradation, and ROS production in HUVEC cells. FUNCTIONAL FOODS IN HEALTH AND DISEASE 2020. [DOI: 10.31989/ffhd.v10i6.671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background: A critical event in age-related diseases involves the glycation of various proteins in the animal body to generate advanced glycation end products (AGEs). We have previously found that black raspberry extract (BRE) has effects on age-related diseases. From this observation, we expected that berry extracts, specifically BRE, would have positive effects on AGE-stimulated cell events that link to age-related diseases.Objective: To discuss the potency of berry extracts against diseases attributable to the AGE-dependent changes of cellular events, in this study, we examined the effects of berry extracts on the cellular events changed upon AGE stimulation of human umbilical vein endothelial cells (HUVECs) through AGE receptors.Methods: After HUVECs were incubated with AGE-BSA in the presence of serially diluted berry extracts, mRNA and protein levels of AGE receptors, intracellular AGE accumulation, and ROS production in the cell were determined by qRT-PCR and Western blotting, ELISA, and staining with the fluorescent probe, respectively.Results: Although concentration-dependent effects of berry extracts tested on mRNA levels of AGE receptors in HUVECs were not clear, mRNA level of the AGE receptor RAGE that is involved in the intracellular ROS production was increased by Blabina, which contains BRE, and the well-known anti-glycation compound aminoguanidine (AGD). In contrast, the protein expression level of RAGE was decreased by BRE and Blabina, but not by AGD. It was also found that BRE and Blabina suppressed AGE-BSA-stimulated ROS production in HUVECs. The extent of inhibition in the RAGE protein expression by BRE and Blabina was correlated well with the ROS generation measured in these samples.Conclusions: The results obtained in this study demonstrate that BRE has the most potent inhibitory effect on ROS accumulation in the cell, probably due to the suppression in the expression level of the RAGE protein. These observations suggest that black raspberry could be a potential nutraceutical to prevent various age-related diseases.Keywords: AGEs; RAGE; ROS; black raspberry; HUVECs.
Collapse
|
7
|
Kinoshita-Kawada M, Hasegawa H, Hongu T, Yanagi S, Kanaho Y, Masai I, Mishima T, Chen X, Tsuboi Y, Rao Y, Yuasa-Kawada J, Wu JY. Explant Culture of the Embryonic Mouse Spinal Cord and Gene Transfer by ex vivo Electroporation. Bio Protoc 2019; 9:e3373. [PMID: 33654869 DOI: 10.21769/bioprotoc.3373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 11/02/2022] Open
Abstract
Developing axons change responsiveness to guidance cues during the journey to synapse with target cells. Axon crossing at the ventral midline serves as a model for studying how axons accomplish such a switch in their response. Although primary neuron culture has been a versatile technique for elucidating various developmental mechanisms, many in vivo characteristics of neurons, such as long axon-extending abilities and axonal compartments, are not thoroughly preserved. In explant cultures, such properties of differentiated neurons and tissue architecture are maintained. To examine how the midline repellent Slit regulated the distribution of the Robo receptor in spinal cord commissural axons upon midline crossing and whether Robo trafficking machinery was a determinant of midline crossing, novel explant culture systems were developed. We have combined an "open-book" spinal cord explant method with that devised for flat-mount retinae. Here we present our protocol for explant culture of embryonic mouse spinal cords, which allows flexible manipulation of experimental conditions, immunostaining of extending axons and quantitative analysis of individual axons. In addition, we present a modified method that combines ex vivo electroporation and "closed-book" spinal cord explant culture. These culture systems provide new platforms for detailed analysis of axon guidance, by adapting gene knockdown, knockout and genome editing.
Collapse
|
8
|
Kinoshita-Kawada M, Hasegawa H, Hongu T, Yanagi S, Kanaho Y, Masai I, Mishima T, Chen X, Tsuboi Y, Rao Y, Yuasa-Kawada J, Wu JY. A crucial role for Arf6 in the response of commissural axons to Slit. Development 2019; 146:dev172106. [PMID: 30674481 PMCID: PMC6382006 DOI: 10.1242/dev.172106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/14/2019] [Indexed: 12/23/2022]
Abstract
A switch in the response of commissural axons to the repellent Slit is crucial for ensuring that they cross the ventral midline only once. However, the underlying mechanisms remain to be elucidated. We have found that both endocytosis and recycling of Robo1 receptor are crucial for modulating Slit sensitivity in vertebrate commissural axons. Robo1 endocytosis and its recycling back to the cell surface maintained the stability of axonal Robo1 during Slit stimulation. We identified Arf6 guanosine triphosphatase and its activators, cytohesins, as previously unknown components in Slit-Robo1 signalling in vertebrate commissural neurons. Slit-Robo1 signalling activated Arf6. The Arf6-deficient mice exhibited marked defects in commissural axon midline crossing. Our data showed that a Robo1 endocytosis-triggered and Arf6-mediated positive-feedback strengthens the Slit response in commissural axons upon their midline crossing. Furthermore, the cytohesin-Arf6 pathways modulated this self-enhancement of the Slit response before and after midline crossing, resulting in a switch that reinforced robust regulation of axon midline crossing. Our study provides insights into endocytic trafficking-mediated mechanisms for spatiotemporally controlled axonal responses and uncovers new players in the midline switch in Slit responsiveness of commissural axons.
Collapse
|
9
|
Lin YC, Chen CC, Chen WM, Lu KY, Shen TL, Jou YC, Shen CH, Ohbayashi N, Kanaho Y, Huang YL, Lee H. LPA 1/3 signaling mediates tumor lymphangiogenesis through promoting CRT expression in prostate cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1305-1315. [PMID: 30053596 DOI: 10.1016/j.bbalip.2018.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid growth factor which is present in high levels in serum and platelets. LPA binds to its specific G-protein-coupled receptors, including LPA1 to LPA6, thereby regulating various physiological functions, including cancer growth, angiogenesis, and lymphangiogenesis. Our previous study showed that LPA promotes the expression of the lymphangiogenic factor vascular endothelial growth factor (VEGF)-C in prostate cancer (PCa) cells. Interestingly, LPA has been shown to regulate the expression of calreticulin (CRT), a multifunctional chaperone protein, but the roles of CRT in PCa progression remain unclear. Here we investigated the involvement of CRT in LPA-mediated VEGF-C expression and lymphangiogenesis in PCa. Knockdown of CRT significantly reduced LPA-induced VEGF-C expression in PC-3 cells. Moreover, LPA promoted CRT expression through LPA receptors LPA1 and LPA3, reactive oxygen species (ROS) production, and phosphorylation of eukaryotic translation initiation factor 2α (eIF2α). Tumor-xenografted mouse experiments further showed that CRT knockdown suppressed tumor growth and lymphangiogenesis. Notably, clinical evidence indicated that the LPA-producing enzyme autotaxin (ATX) is related to CRT and that CRT level is highly associated with lymphatic vessel density and VEGF-C expression. Interestingly, the pharmacological antagonist of LPA receptors significantly reduced the lymphatic vessel density in tumor and lymph node metastasis in tumor-bearing nude mice. Together, our results demonstrated that CRT is critical in PCa progression through the mediation of LPA-induced VEGF-C expression, implying that targeting the LPA signaling axis is a potential therapeutic strategy for PCa.
Collapse
|
10
|
Kandori S, Kojima T, Matsuoka T, Yoshino T, Sugiyama A, Nakamura E, Shimazui T, Funakoshi Y, Kanaho Y, Nishiyama H. Phospholipase D2 promotes disease progression of renal cell carcinoma through the induction of angiogenin. Cancer Sci 2018; 109:1865-1875. [PMID: 29660846 PMCID: PMC5989877 DOI: 10.1111/cas.13609] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/01/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
A hallmark of clear cell renal cell carcinoma (ccRCC) is the presence of intracellular lipid droplets (LD) and it is assumed that phosphatidic acid (PA) produced by phospholipase D (PLD) plays some role in the LD formation. However, little is known about the significance of PLD in ccRCC. In this study, we examined the expression levels of PLD in ccRCC. The classical mammalian isoforms of PLD are PLD1 and PLD2, and the levels of both mRNA were higher at the primary tumor sites than in normal kidney tissues. Similarly, both PLD were significantly abundant in tumor cells as determined by analysis using immunohistochemical staining. Importantly, a higher level of PLD was significantly associated with a higher tumor stage and grade. Because PLD2 knockdown effectively suppressed the cell proliferation and invasion of ccRCC as compared with PLD1 in vitro, we examined the effect of PLD2 in vivo. Notably, shRNA-mediated knockdown of PLD2 suppressed the growth and invasion of tumors in nude mouse xenograft models. Moreover, the higher expression of PLD2 was significantly associated with poorer prognosis in 67 patients. As for genes relating to the tumor invasion of PLD2, we found that angiogenin (ANG) was positively regulated by PLD2. In fact, the expression levels of ANG were elevated in tumor tissues as compared with normal kidney and the inhibition of ANG activity with a neutralizing antibody significantly suppressed tumor invasion. Overall, we revealed for the first time that PLD2-produced PA promoted cell invasion through the expression of ANG in ccRCC cells.
Collapse
|
11
|
Ngo Thai Bich V, Hongu T, Miura Y, Katagiri N, Ohbayashi N, Yamashita-Kanemaru Y, Shibuya A, Funakoshi Y, Kanaho Y. Physiological function of phospholipase D2 in anti-tumor immunity: regulation of CD8 + T lymphocyte proliferation. Sci Rep 2018; 8:6283. [PMID: 29674728 PMCID: PMC5908902 DOI: 10.1038/s41598-018-24512-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 03/23/2018] [Indexed: 12/21/2022] Open
Abstract
Two major phospholipase D (PLD) isozymes in mammals, PLD1 and PLD2, hydrolyze the membrane phospholipid phosphatidylcholine to choline and the lipid messenger phosphatidic acid. Although their roles in cancer cells have been well studied, their functions in tumor microenvironment have not yet been clarified. Here, we demonstrate that PLD2 in cytotoxic CD8+ T cells plays a crucial role in anti-tumor immunity by regulating their cell proliferation. We found that growth of tumors formed by subcutaneously transplanted cancer cells is enhanced in Pld2-knockout mice. Interestingly, this phenotype was found to be at least in part attributable to the ablation of Pld2 from bone marrow cells. The number of CD8+ T cells, which induce cancer cell death, significantly decreased in the tumor produced in Pld2-knockout mice. In addition, CD3/CD28-stimulated proliferation of primary cultured splenic CD8+ T cells is markedly suppressed by Pld2 ablation. Finally, CD3/CD28-dependent activation of Erk1/2 and Ras is inhibited in Pld2-deleted CD8+ T cells. Collectively, these results indicate that PLD2 in CD8+ T cells plays a key role in their proliferation through activation of the Ras/Erk signaling pathway, thereby regulating anti-tumor immunity.
Collapse
|
12
|
Ganesan R, Henkels KM, Wrenshall LE, Kanaho Y, Di Paolo G, Frohman MA, Gomez-Cambronero J. Oxidized LDL phagocytosis during foam cell formation in atherosclerotic plaques relies on a PLD2-CD36 functional interdependence. J Leukoc Biol 2018; 103:867-883. [PMID: 29656494 DOI: 10.1002/jlb.2a1017-407rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 12/22/2022] Open
Abstract
The uptake of cholesterol carried by low-density lipoprotein (LDL) is tightly controlled in the body. Macrophages are not well suited to counteract the cellular consequences of excess cholesterol leading to their transformation into "foam cells," an early step in vascular plaque formation. We have uncovered and characterized a novel mechanism involving phospholipase D (PLD) in foam cell formation. Utilizing bone marrow-derived macrophages from genetically PLD deficient mice, we demonstrate that PLD2 (but not PLD1)-null macrophages cannot fully phagocytose aggregated oxidized LDL (Agg-Ox-LDL), which was phenocopied with a PLD2-selective inhibitor. We also report a role for PLD2 in coupling Agg-oxLDL phagocytosis with WASP, Grb2, and Actin. Further, the clearance of LDL particles is mediated by both CD36 and PLD2, via mutual dependence on each other. In the absence of PLD2, CD36 does not engage in Agg-Ox-LDL removal and when CD36 is blocked, PLD2 cannot form protein-protein heterocomplexes with WASP or Actin. These results translated into humans using a GEO database of microarray expression data from atheroma plaques versus normal adjacent carotid tissue and observed higher values for NFkB, PLD2 (but not PLD1), WASP, and Grb2 in the atheroma plaques. Human atherectomy specimens confirmed high presence of PLD2 (mRNA and protein) as well as phospho-WASP in diseased arteries. Thus, PLD2 interacts in macrophages with Actin, Grb2, and WASP during phagocytosis of Agg-Ox-LDL in the presence of CD36 during their transformation into "foam cells." Thus, this study provides new molecular targets to counteract vascular plaque formation and atherogenesis.
Collapse
|
13
|
Dan K, Takada A, Kanaho Y, Kusumi Y, Banno H. Anti-aging effects of black raspberry extract on cataract, alopecia, skin whitening, and weight loss. FUNCTIONAL FOODS IN HEALTH AND DISEASE 2018. [DOI: 10.31989/ffhd.v8i1.389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background: To maintain good health, it is important to eliminate extra reactive oxygen generated in the body. Furthermore, ingesting foods containing antioxidants is beneficial. The oxygen radical absorbance capacity (ORAC) values for black raspberry extract (BRE), blueberry extract (BBE), and raspberry extract (RBE) are 62, 66, and 49 µM Trolox equivalents (TE)/g respectively. These values are higher than those for typical antioxidant foods that have been discovered so far (3–30 µM TE/g). Our aim was to find new functionality from the food with the high ORAC value. Therefore, we have prepared these four berry extracts and examined whether they have anti-aging effects and if those effects correlate with their antioxidant activities.Methods: We studied the following effects of 4 berry extracts: 1) lens cell protective effects; 2) effects against alopecia; 3) induction of uncoupling protein-1 (UCP1), a regulator of fat and energy consumption in adipocytes, and stimulation of irisin secretion from skeletal muscle cells; and 4) inhibitory effects on melanocyte tyrosinase activity. The evaluation method was based on below; 1) a-crystallin, type 17 collagen, heat shock protein 47 (HSP47), UCP1 and Irisin - mRNA by qRT-PCR, 2) the amount of the UCP1 and Irisin protein by ELISA. 3) Inhibition of tyrosinase activity was measured by dopachrome production using L-tyrosine.Results: In lens cells, a-crystallin mRNA expression was induced 1 hour after treatment of the cell with Blabina (a powdered formulation containing BRE) and BRE. The extracts of all four berry species promoted the growth of follicle dermal papilla cells by 3-20% in a concentration-dependent manner. These berry extracts were also discovered to markedly induce the expression of mRNAs of type 17 collagen and HSP47 in the hair follicle stem cell and elevate the expression levels of UCP1 mRNA and its protein in adipocytes in a concentration-dependent manner. BRE and Blabina inhibited 5a-reductase in follicle dermal papilla cells and tyrosinase activity in melanocytes at the concentrations which inhibited dopachrome production by at least 50%. Finally, Blabina was discovered to stimulate the irisin secretion from skeletal muscles.Conclusion: These results suggest that berry extracts, particularly BRE, have anti-aging effects through their higher antioxidant activities.Keywords: Anti-aging; antioxidant; alopecia; black raspberry; weight loss; oxygen radical, absorbance capacity; skin whitening
Collapse
|
14
|
Ohbayashi N, Fukuda M, Kanaho Y. Rab32 subfamily small GTPases: pleiotropic Rabs in endosomal trafficking. J Biochem 2017; 162:65-71. [DOI: 10.1093/jb/mvx027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/21/2017] [Indexed: 11/13/2022] Open
|
15
|
Yamauchi Y, Miura Y, Kanaho Y. Machineries regulating the activity of the small GTPase Arf6 in cancer cells are potential targets for developing innovative anti-cancer drugs. Adv Biol Regul 2016; 63:115-121. [PMID: 27776975 DOI: 10.1016/j.jbior.2016.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
Abstract
The Small GTPase ADP-ribosylation factor 6 (Arf6) functions as the molecular switch in cellular signaling pathways by cycling between GDP-bound inactive and GTP-bound active form, which is precisely regulated by two regulators, guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Numerous studies have shown that these machineries play critical roles in tumor angiogenesis/growth and cancer cell invasion/metastasis through regulating the cycling of Arf6. Here, we summarize accumulating knowledge for involvement of Arf6 GEFs/GAPs and small molecule inhibitors of Arf6 signaling/cycling in cancer progression, and discuss possible strategies for developing innovative anti-cancer drugs targeting Arf6 signaling/cycling.
Collapse
|
16
|
Hongu T, Yamauchi Y, Funakoshi Y, Katagiri N, Ohbayashi N, Kanaho Y. Pathological functions of the small GTPase Arf6 in cancer progression: Tumor angiogenesis and metastasis. Small GTPases 2016; 7:47-53. [PMID: 26909552 PMCID: PMC4905277 DOI: 10.1080/21541248.2016.1154640] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although several lines of evidence have shown that the small GTPase ADP-ribosylation factor 6 (Arf6) plays pivotal roles in cancer progression of several types of cancers, little is known about the functions of Arf6 in tumor microenvironment. We demonstrated that Arf6 in vascular endothelial cells (VECs) plays a crucial role in tumor angiogenesis and growth using endothelial cell-specific Arf6 conditional knockout mice into which B16 melanoma and Lewis lung carcinoma cells were implanted. It was also found that Arf6 in VECs positively regulates hepatocyte growth factor (HGF)-induced β1 integrin recycling, which is a critical event for tumor angiogenesis by promoting cell migration. Importantly, pharmacological inhibition of HGF-induced Arf6 activation significantly suppresses tumor angiogenesis and growth in mice, suggesting that Arf6 signaling would be a potential target for anti-angiogenic therapy. In this manuscript, we summarize the multiple roles of Arf6 in cancer progression, particularly in cancer cell invasion/metastasis and our recent findings on tumor angiogenesis, and discuss a possible approach to develop innovative anti-cancer drugs.
Collapse
|
17
|
Hongu T, Kanaho Y. [Versatile in vivo functions of the small GTPase Arf6]. SEIKAGAKU. THE JOURNAL OF JAPANESE BIOCHEMICAL SOCIETY 2016; 88:78-85. [PMID: 27025010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
18
|
Mukai H, Muramatsu A, Mashud R, Kubouchi K, Tsujimoto S, Hongu T, Kanaho Y, Tsubaki M, Nishida S, Shioi G, Danno S, Mehruba M, Satoh R, Sugiura R. PKN3 is the major regulator of angiogenesis and tumor metastasis in mice. Sci Rep 2016; 6:18979. [PMID: 26742562 PMCID: PMC4705536 DOI: 10.1038/srep18979] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 12/02/2015] [Indexed: 01/13/2023] Open
Abstract
PKN, a conserved family member related to PKC, was the first protein kinase identified as a target of the small GTPase Rho. PKN is involved in various functions including cytoskeletal arrangement and cell adhesion. Furthermore, the enrichment of PKN3 mRNA in some cancer cell lines as well as its requirement in malignant prostate cell growth suggested its involvement in oncogenesis. Despite intensive research efforts, physiological as well as pathological roles of PKN3 in vivo remain elusive. Here, we generated mice with a targeted deletion of PKN3. The PKN3 knockout (KO) mice are viable and develop normally. However, the absence of PKN3 had an impact on angiogenesis as evidenced by marked suppressions of micro-vessel sprouting in ex vivo aortic ring assay and in vivo corneal pocket assay. Furthermore, the PKN3 KO mice exhibited an impaired lung metastasis of melanoma cells when administered from the tail vein. Importantly, PKN3 knock-down by small interfering RNA (siRNA) induced a glycosylation defect of cell-surface glycoproteins, including ICAM-1, integrin β1 and integrin α5 in HUVECs. Our data provide the first in vivo genetic demonstration that PKN3 plays critical roles in angiogenesis and tumor metastasis, and that defective maturation of cell surface glycoproteins might underlie these phenotypes.
Collapse
|
19
|
Kim JD, Park KE, Ishida J, Kako K, Hamada J, Kani S, Takeuchi M, Namiki K, Fukui H, Fukuhara S, Hibi M, Kobayashi M, Kanaho Y, Kasuya Y, Mochizuki N, Fukamizu A. PRMT8 as a phospholipase regulates Purkinje cell dendritic arborization and motor coordination. SCIENCE ADVANCES 2015; 1:e1500615. [PMID: 26665171 PMCID: PMC4672763 DOI: 10.1126/sciadv.1500615] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/21/2015] [Indexed: 06/02/2023]
Abstract
The development of vertebrate neurons requires a change in membrane phosphatidylcholine (PC) metabolism. Although PC hydrolysis is essential for enhanced axonal outgrowth mediated by phospholipase D (PLD), less is known about the determinants of PC metabolism on dendritic arborization. We show that protein arginine methyltransferase 8 (PRMT8) acts as a phospholipase that directly hydrolyzes PC, generating choline and phosphatidic acid. We found that PRMT8 knockout mice (prmt8 (-/-)) displayed abnormal motor behaviors, including hindlimb clasping and hyperactivity. Moreover, prmt8 (-/-) mice and TALEN-induced zebrafish prmt8 mutants and morphants showed abnormal phenotypes, including the development of dendritic trees in Purkinje cells and altered cerebellar structure. Choline and acetylcholine levels were significantly decreased, whereas PC levels were increased, in the cerebellum of prmt8 (-/-) mice. Our findings suggest that PRMT8 acts both as an arginine methyltransferase and as a PC-hydrolyzing PLD that is essential for proper neurological functions.
Collapse
|
20
|
Okada R, Yamauchi Y, Hongu T, Funakoshi Y, Ohbayashi N, Hasegawa H, Kanaho Y. Activation of the Small G Protein Arf6 by Dynamin2 through Guanine Nucleotide Exchange Factors in Endocytosis. Sci Rep 2015; 5:14919. [PMID: 26503427 PMCID: PMC4621509 DOI: 10.1038/srep14919] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/09/2015] [Indexed: 12/27/2022] Open
Abstract
The small G protein Arf6 and the GTPase dynamin2 (Dyn2) play key roles in clathrin-mediated endocytosis (CME). However, their functional relationship remains obscure. Here, we show that Arf6 functions as a downstream molecule of Dyn2 in CME. Wild type of Dyn2 overexpressed in HeLa cells markedly activates Arf6, while a GTPase-lacking Dyn2 mutant does not. Of the Arf6-specific guanine nucleotide exchange factors, EFA6A, EFA6B, and EFA6D specifically interact with Dyn2. Furthermore, overexpression of dominant negative mutants or knockdown of EFA6B and EFA6D significantly inhibit Dyn2-induced Arf6 activation. Finally, overexpression of the binding region peptide of EFA6B for Dyn2 or knockdown of EFA6B and EFA6D significantly suppresses clathrin-mediated transferrin uptake. These results provide evidence for a novel Arf6 activation mechanism by Dyn2 through EFA6B and EFA6D in CME in a manner dependent upon the GTPase activity of Dyn2.
Collapse
|
21
|
Abstract
The small GTPase ADP-ribosylation factor 6 (Arf6) plays important roles in membrane dynamics-based neuronal cell events such as neurite outgrowth and spine formation. However, physiological functions of Arf6 in the nervous system at whole animal level have not yet been explored. We have recently generated conditional knockout mice lacking Arf6 in neurons or oligodendrocytes of central nervous system (CNS) or both cell lineages, and analyzed them. We found that ablation of Arf6 gene from neurons, but not from oligodendrocytes, caused the defect in axon myelination at the fimbria of hippocampus (Fim) and corpus callosum (CC). We also found that migration of oligodendrocyte precursor cells (OPCs) from the subventricular zone to the Fim and CC in mice lacking Arf6 in neurons was impaired. Finally, it was found that secretion of fibroblast growth factor-2 (FGF-2), a guidance factor for OPC migration, from hippocampi lacking Arf6 was impaired. Collectively, these findings demonstrate that Arf6 in neurons of the CNS plays an important role in OPC migration by regulating secretion of FGF-2 from neurons, thereby contributing to the axon myelination. Here, we discuss our current understanding of physiological functions of Arf6 in the nervous system.
Collapse
|
22
|
Teng S, Stegner D, Chen Q, Hongu T, Hasegawa H, Chen L, Kanaho Y, Nieswandt B, Frohman MA, Huang P. Phospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration. Mol Biol Cell 2014; 26:506-17. [PMID: 25428992 PMCID: PMC4310741 DOI: 10.1091/mbc.e14-03-0802] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Phospholipase D1 and its product, phosphatidic acid, facilitate muscle fiber regeneration in vivo and are required by mononuclear myocytes to fuse with nascent myotubes during second-phase myoblast fusion in vitro. Myoblast differentiation and fusion is a well-orchestrated multistep process that is essential for skeletal muscle development and regeneration. Phospholipase D1 (PLD1) has been implicated in the initiation of myoblast differentiation in vitro. However, whether PLD1 plays additional roles in myoblast fusion and exerts a function in myogenesis in vivo remains unknown. Here we show that PLD1 expression is up-regulated in myogenic cells during muscle regeneration after cardiotoxin injury and that genetic ablation of PLD1 results in delayed myofiber regeneration. Myoblasts derived from PLD1-null mice or treated with PLD1-specific inhibitor are unable to form mature myotubes, indicating defects in second-phase myoblast fusion. Concomitantly, the PLD1 product phosphatidic acid is transiently detected on the plasma membrane of differentiating myocytes, and its production is inhibited by PLD1 knockdown. Exogenous lysophosphatidylcholine, a key membrane lipid for fusion pore formation, partially rescues fusion defect resulting from PLD1 inhibition. Thus these studies demonstrate a role for PLD1 in myoblast fusion during myogenesis in which PLD1 facilitates the fusion of mononuclear myocytes with nascent myotubes.
Collapse
|
23
|
Shinkai Y, Yamanaka I, Duong HHT, Quynh NT, Kanaho Y, Kumagai Y. Garcinia vilersiana bark extract activates the Nrf2/HO-1 signaling pathway in RAW264.7 cells. J Toxicol Sci 2014; 38:875-8. [PMID: 24213006 DOI: 10.2131/jts.38.875] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Garcinia vilersiana is a traditional medicinal plant in Vietnam. The petroleum ether extract of stem bark of Garcinia vilersiana (GVE) was prepared to evaluate its potential to activate Nrf2, a transcription factor of antioxidant and detoxifying enzymes. Exposure of mouse macrophage RAW264.7 cells to GVE (0.625-2.5 µg/ml) resulted in a significant activation of Nrf2, as evaluated by nuclear accumulation of this transcription factor, and increased antioxidant response element (ARE) binding activity in a time- and concentration-dependent manner. As a result, GVE caused ARE-dependent up-regulation of heme oxygenase-1 (HO-1) in the cells. These results suggest that GVE contains components that have the ability to activate the Nrf2/ARE/HO-1 signaling pathway, leading to cellular protection.
Collapse
|
24
|
Funakoshi Y, Chou MM, Kanaho Y, Donaldson JG. TRE17/USP6 regulates ubiquitylation and trafficking of cargo proteins that enter cells by clathrin-independent endocytosis. J Cell Sci 2014; 127:4750-61. [PMID: 25179595 DOI: 10.1242/jcs.156786] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plasma membrane proteins that enter cells by clathrin-independent endocytosis (CIE) are sorted either to lysosomes for degradation or recycled back to the plasma membrane. Expression of some MARCH E3 ubiquitin ligases promotes trafficking of CIE cargo proteins to lysosomes by ubiquitylating the proteins. Here, we show that co-expression of the ubiquitin-specific protease TRE17/USP6 counteracts the MARCH-dependent targeting of CIE cargo proteins, but not that of transferrin receptor, to lysosomes, leading to recovery of the stability and cell surface level of the proteins. The ubiquitylation of CIE cargo proteins by MARCH8 was reversed by TRE17, suggesting that TRE17 leads to deubiquitylation of CIE cargo proteins. The effects of TRE17 were dependent on its deubiquitylating activity and expression of TRE17 alone led to a stabilization of surface major histocompatibility complex class I (MHCI) molecules, a CIE cargo, suggesting that deubiquitylation of endogenous CIE cargo proteins promotes their stability. This study demonstrates that cycles of ubiquitylation and deubiquitylation can determine whether CIE cargo proteins are degraded or recycled.
Collapse
|
25
|
Hongu T, Kanaho Y. Activation machinery of the small GTPase Arf6. Adv Biol Regul 2013; 54:59-66. [PMID: 24139303 DOI: 10.1016/j.jbior.2013.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 11/17/2022]
Abstract
The small GTPase ADP-ribosylation factor 6 (Arf6) plays pivotal roles in a wide variety of cellular events, including exocytosis, endocytosis, actin cytoskeleton reorganization and phosphoinositide metabolism, in various types of cells. To control such a wide variety of actions of Arf6, activation of Arf6 could be precisely controlled by its activators, guanine nucleotide exchange factors (GEFs), in spatial and temporal manners. In this manuscript, we summarize and discuss the characteristics of previously identified GEFs specific to Arf6 and activation machineries of Arf6.
Collapse
|