1
|
Xu H, Ye J, Zhang KX, Hu Q, Cui T, Tong C, Wang M, Geng H, Shui KM, Sun Y, Wang J, Hou X, Zhang K, Xie R, Yin Y, Chen N, Chen JY. Chemoproteomic profiling unveils binding and functional diversity of endogenous proteins that interact with endogenous triplex DNA. Nat Chem 2024; 16:1811-1821. [PMID: 39223307 DOI: 10.1038/s41557-024-01609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Triplex DNA structures, formed when a third DNA strand wraps around the major groove of DNA, are key molecular regulators and genomic threats. However, the regulatory network governing triplex DNA dynamics remains poorly understood. Here we reveal the binding and functional repertoire of proteins that interact with triplex DNA through chemoproteomic profiling in living cells. We develop a chemical probe that exhibits exceptional specificity towards triplex DNA. By employing a co-binding-mediated proximity capture strategy, we enrich triplex DNA interactome for quantitative proteomics analysis. This enables the identification of a comprehensive list of proteins that interact with triplex DNA, characterized by diverse binding properties and regulatory mechanisms in their native chromatin context. As a demonstration, we validate DDX3X as an ATP-independent triplex DNA helicase to unwind substrates with a 5' overhang to prevent DNA damage. Overall, our study provides a valuable resource for exploring the biology and translational potential of triplex DNA.
Collapse
|
2
|
Wang L, Yang H, Munyaradzia HB, Zhu W, Dong ZJ. The mRNA and protein datasets after cold stress of red tilapia. Sci Data 2024; 11:1177. [PMID: 39477964 PMCID: PMC11525570 DOI: 10.1038/s41597-024-04025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
The cold stress during overwintering is considered the bottleneck of red tilapia industry. In this study, the water temperature (WT) was reduced by 2 °C per day from 20 °C to 8 °C in the cold (C) group. Then transcriptome of brain(B), gill(G), liver(L) and skin(S) tissues and proteome of G, L and S tissues were performed in C and Normal (N) (WT: 20 °C) group. 24 transcriptomes were completed, and 168.8 Gb data were obtained, with more than 5.89 Gb clean data of each sample. A total of 30499 annotation results were obtained with 3199, 4697, 4393, and 3382 differentially expressed mRNAs in NB_vs_CB, NG_vs_CG, NL_vs_CL, NS_vs_CS. 18 DIA proteomes were performed, and 6341 proteins were obtained with 178, 500 and 166 differentially expressed proteins in NG_vs_CG, NL_vs_CL, NS_vs_CS. Our datasets can be reused for key genes and proteins identification, omics joint analysis and regulatory mechanism analysis of low temperature or cold stress in fish, which will help understanding the regulatory mechanism and facilitate the molecular selective breeding of cold-resistant varieties of fish.
Collapse
|
3
|
Cheng J, Yu R, Sun L, He K, Ji T, Yang M, Zhang Z, Hu X, Niu H, Yang X, Chen P, Chen G, Xiao J, Huang F, Lu X, Cai H, Yuan H, Miao B, Ding H. A nonvolatile magnon field effect transistor at room temperature. Nat Commun 2024; 15:9314. [PMID: 39472444 PMCID: PMC11522597 DOI: 10.1038/s41467-024-53524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Information industry is one of the major drivers of the world economy. Its rapid growth, however, leads to severe heat problem which strongly hinders further development. This calls for a non-charge-based technology. Magnon, capable of transmitting spin information without electron movement, holds tremendous potential in post-Moore era. Given the cornerstone role of the field effect transistor in modern electronics, creating its magnonic equivalent is highly desired but remains a challenge. Here, we demonstrate a nonvolatile three-terminal lateral magnon field effect transistor operating at room temperature. The device consists of a ferrimagnetic insulator (Y3Fe5O12) deposited on a ferroelectric material [Pb(Mg1/3Nb2/3)0.7Ti0.3O3 or Pb(Zr0.52Ti0.48)O3], with three Pt stripes patterned on Y3Fe5O12 as the injector, gate, and detector, respectively. The magnon transport in Y3Fe5O12 can be regulated by the gate voltage pulses in a nonvolatile manner with a high on/off ratio. Our findings provide a solid foundation for designing energy-efficient magnon-based devices.
Collapse
|
4
|
Ran P, Qiu A, Liu T, Wang F, Tian B, Xiang B, Li J, Lv Y, Ding M. Universal high-efficiency electrocatalytic olefin epoxidation via a surface-confined radical promotion. Nat Commun 2024; 15:8877. [PMID: 39406721 PMCID: PMC11480342 DOI: 10.1038/s41467-024-53049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Production of epoxides via selective oxidation of olefins affords a fundamental source of key intermediates for the industrial manufacture of diverse chemical stocks and materials. Current oxidation strategy generally works under harsh conditions including high temperature, high pressure, and/or request for potentially hazardous oxidants, leading to substantial challenges in sustainability and energy efficiency. To this end, direct electrocatalytic epoxidation poses as a promising solution to these issues, yet their industrial applications are limited by the low selectivity, low yield, and poor stability of the electrocatalysts. Here we report a universal electrochemical epoxidation approach via a kinetically confined surface radical pathway. High epoxidation efficiency can be achieved under mild working conditions (e.g., >99% selectivity, >80% yield and >80% Faraday efficiency for cyclohexene-to-cyclohexene oxide conversion), which can be extended to broad scope of olefin substrates. The catalytic performance originated from a surface bimolecular (L-H) reaction mechanism involving formation and surface confinement of bromine radicals due to kinetic restriction, which effectively activates inert C=C bonds while avoiding the homogenous radical side reactions. With the use of renewable energy and water as green oxygen source, successful implementation of this approach will pave the way for more sustainable chemical production and manufacturing.
Collapse
|
5
|
Zhu H, Lv X, Wu Y, Wang W, Wu Y, Yan S, Chen Y. Carbonate-carbonate coupling on platinum surface promotes electrochemical water oxidation to hydrogen peroxide. Nat Commun 2024; 15:8846. [PMID: 39397014 PMCID: PMC11471758 DOI: 10.1038/s41467-024-53134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
Water electro-oxidation to form H2O2 is an important way to produce H2O2 which is widely applied in industry. However, its mechanism is under debate and HO(ads), hydroxyl group adsorbed onto the surface of the electrode, is regarded as an important intermediate. Herein, we study the mechanism of water oxidation to H2O2 at Pt electrode using in-situ Raman spectroscopy and differential electrochemical mass spectroscopy and find peroxide bond mainly originated from the coupling of two CO32- via a C2O62- intermediate. By quantifying the 18O isotope in the product, we find that 93% of H2O2 was formed via the CO32- coupling route and 7% of H2O2 is from OH(ads)-CO3•- route. The OH(ads)-OH(ads) coupling route has a negligible contribution. The comparison of various electrodes shows that the strong adsorption of CO3(ads) at the electrode surface is essential. Combining with a commercial cathode catalyst to produce H2O2 during oxygen reduction, we assemble a flow cell in which the cathode and anode simultaneously produce H2O2. It shows a Faradaic efficiency of 150% of H2O2 at 1 A cm-2 with a cell voltage of 2.3 V.
Collapse
|
6
|
Wang Z, Tang Y, Liu S, Zhao L, Li H, He C, Duan C. Energy transfer-mediated multiphoton synergistic excitation for selective C(sp 3)-H functionalization with coordination polymer. Nat Commun 2024; 15:8813. [PMID: 39394220 PMCID: PMC11470074 DOI: 10.1038/s41467-024-53115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Activation and selective oxidation of inert C(sp3)-H bonds remain one of the most challenging tasks in current synthetic chemistry due to the inherent inertness of C(sp3)-H bonds. In this study, inspired by natural monooxygenases, we developed a coordination polymer with naphthalenediimide (NDI)-based ligands and binuclear iron nodes. The mixed-valence FeIIIFeII species and chlorine radicals (Cl•) are generated via ligand-to-metal charge transfer (LMCT) between FeIII and chlorine ions. These Cl• radicals abstract a hydrogen atom from the inert C(sp3)-H bond of alkanes via hydrogen atom transfer (HAT). In addition, NDI converts oxygen to 1O2 via energy transfer (EnT), which then coordinates to FeII, forming an FeIV = O intermediate for the selective oxidation of C(sp3)-H bonds. This synthetic platform, which combines photoinduced EnT, LMCT and HAT, provides a EnT-mediated parallel multiphoton excitation strategy with kinetic synergy effect for selective C(sp3)-H oxidation under mild conditions and a blueprint for designing coordination polymer-based photocatalysts for C(sp3)-H bond oxidation.
Collapse
|
7
|
Pan JT, Zhu BH, Ma LL, Chen W, Zhang GY, Tang J, Liu Y, Wei Y, Zhang C, Zhu ZH, Zhu WG, Li G, Lu YQ, Clark NA. Nonlinear geometric phase coded ferroelectric nematic fluids for nonlinear soft-matter photonics. Nat Commun 2024; 15:8732. [PMID: 39384797 PMCID: PMC11464912 DOI: 10.1038/s41467-024-53040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
Simultaneous manipulation of multiple degrees of freedom of light lies at the heart of photonics. Nonlinear wavefront shaping offers an exceptional way to achieve this goal by converting incident light into beams of new frequencies with spatially varied phase, amplitude, and angular momenta. Nevertheless, the reconfigurable control over structured light fields for advanced multimode nonlinear photonics remains a grand challenge. Here, we propose the concept of nonlinear geometric phase in an emerging ferroelectric nematic fluid, of which the second-order nonlinear susceptibility carries spin-dependent nonlinearity phase. A case study with photopatterned q-plates demonstrates the generation of second-harmonic optical vortices with spin-locked topological charges by using cascaded linear and nonlinear optical spin-orbit interactions. Furthermore, we present the dynamic tunability of second-harmonic structured light through temperature, electric field, and twisted elastic force. The proposed strategy opens new avenues for reconfigurable nonlinear photonics, with potential applications in optical communications, quantum computing, high-resolution imaging, etc.
Collapse
|
8
|
Meng X, Wang Z, Yang Q, Liu Y, Gao Y, Chen H, Li A, Li R, Wang J, Sun G. Intracellular C5aR1 inhibits ferroptosis in glioblastoma through METTL3-dependent m6A methylation of GPX4. Cell Death Dis 2024; 15:729. [PMID: 39368999 PMCID: PMC11455874 DOI: 10.1038/s41419-024-06963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 10/07/2024]
Abstract
Glioblastoma (GBM) is the most common primary intracranial malignant tumor. Recent literature suggests that induction of programmed death has become a mainstream cancer treatment strategy, with ferroptosis being the most widely studied mode. Complement C5a receptor 1 (C5aR1) is associated with both tumorigenesis and tumor-related immunity. However, knowledge regarding the role of C5aR1 in GBM progression is limited. In the present study, we observed significant upregulation of C5aR1 in glioma tissue. In addition, C5aR1 expression was found to be closely associated with patient prognosis and survival. Subsequent experimental verification demonstrated that C5aR1 promoted the progression of GBM mainly by suppressing ferroptosis induction, inhibiting the accumulation of lipid peroxides, and stabilizing the expression of the core antiferroptotic factor glutathione peroxidase 4 (GPX4). Aberrant N6-methyladenosine (m6A) modification of GPX4 mRNA contributes significantly to epigenetic tumorigenesis, and here, we report that selective methyltransferase-like 3 (METTL3)-dependent m6A methylation of GPX4 plays a key role in C5AR1 knockdown-induced ferroptosis induction. Mechanistically, ERK1/2 signaling pathway activation increases the METTL3 protein abundance in GBM cells. This activation then increases the stability of METTL3-mediated m6A modifications on GPX4, enabling it to fulfill its transcriptional function. More importantly, in an intracranial xenograft mouse model, PMX205, a C5aR1 inhibitor, promoted alterations in ferroptosis in GBM cells and inhibited GBM progression. In conclusion, our findings suggest that C5aR1 inhibits ferroptosis in GBM cells and promotes MettL3-dependent GPX4 expression through ERK1/2, thereby promoting glioma progression. Our study reveals a novel mechanism by which the intracellular complement receptor C5aR1 suppresses ferroptosis induction and promotes GBM progression. These findings may facilitate the identification of a potential therapeutic target for glioma.
Collapse
|
9
|
Liu L, Ji Y, Bianchi M, Hus SM, Li Z, Balog R, Miwa JA, Hofmann P, Li AP, Zemlyanov DY, Li Y, Chen YP. A metastable pentagonal 2D material synthesized by symmetry-driven epitaxy. NATURE MATERIALS 2024; 23:1339-1346. [PMID: 39191980 DOI: 10.1038/s41563-024-01987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Most two-dimensional (2D) materials experimentally studied so far have hexagons as their building blocks. Only a few exceptions, such as PdSe2, are lower in energy in pentagonal phases and exhibit pentagons as building blocks. Although theory has predicted a large number of pentagonal 2D materials, many of these are metastable and their experimental realization is difficult. Here we report the successful synthesis of a metastable pentagonal 2D material, monolayer pentagonal PdTe2, by symmetry-driven epitaxy. Scanning tunnelling microscopy and complementary spectroscopy measurements are used to characterize this material, which demonstrates well-ordered low-symmetry atomic arrangements and is stabilized by lattice matching with the underlying Pd(100) substrate. Theoretical calculations, along with angle-resolved photoemission spectroscopy, reveal monolayer pentagonal PdTe2 to be a semiconductor with an indirect bandgap of 1.05 eV. Our work opens an avenue for the synthesis of pentagon-based 2D materials and gives opportunities to explore their applications such as multifunctional nanoelectronics.
Collapse
|
10
|
Liu X, Shan J, Cao T, Zhu L, Ma J, Wang G, Shi Z, Yang Q, Ma M, Liu Z, Yan S, Wang L, Dai Y, Xiong J, Chen F, Wang B, Pan C, Wang Z, Cheng B, He Y, Luo X, Lin J, Liang SJ, Miao F. On-device phase engineering. NATURE MATERIALS 2024; 23:1363-1369. [PMID: 38664497 DOI: 10.1038/s41563-024-01888-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/03/2024] [Indexed: 08/15/2024]
Abstract
In situ tailoring of two-dimensional materials' phases under external stimulus facilitates the manipulation of their properties for electronic, quantum and energy applications. However, current methods are mainly limited to the transitions among phases with unchanged chemical stoichiometry. Here we propose on-device phase engineering that allows us to realize various lattice phases with distinct chemical stoichiometries. Using palladium and selenide as a model system, we show that a PdSe2 channel with prepatterned Pd electrodes can be transformed into Pd17Se15 and Pd4Se by thermally tailoring the chemical composition ratio of the channel. Different phase configurations can be obtained by precisely controlling the thickness and spacing of the electrodes. The device can be thus engineered to implement versatile functions in situ, such as exhibiting superconducting behaviour and achieving ultralow-contact resistance, as well as customizing the synthesis of electrocatalysts. The proposed on-device phase engineering approach exhibits a universal mechanism and can be expanded to 29 element combinations between a metal and chalcogen. Our work highlights on-device phase engineering as a promising research approach through which to exploit fundamental properties as well as their applications.
Collapse
|
11
|
Zhang Y, Deng Y, Zhai Y, Li Y, Li Y, Li J, Gu Y, Li S. A bispecific nanosystem activates endogenous natural killer cells in the bone marrow for haematologic malignancies therapy. NATURE NANOTECHNOLOGY 2024; 19:1558-1568. [PMID: 39043825 DOI: 10.1038/s41565-024-01736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 05/20/2024] [Indexed: 07/25/2024]
Abstract
Haematologic malignancies commonly arise from the bone marrow lesion, yet there are currently no effective targeted therapies against tumour cells in this location. Here we constructed a bone-marrow-targeting nanosystem, CSF@E-Hn, which is based on haematopoietic-stem-cell-derived nanovesicles adorned with gripper ligands (aPD-L1 and aNKG2D) and encapsulated with colony-stimulating factor (CSF) for the treatment of haematologic malignancies. CSF@E-Hn targets the bone marrow and, thanks to the gripper ligands, pulls together tumour cells and natural killer cells, activating the latter for specific tumour cell targeting and elimination. The therapeutic efficacy was validated in mice bearing acute myeloid leukaemia and multiple myeloma. The comprehensive assessment of the post-treatment bone marrow microenvironment revealed that the integration of CSF into a bone-marrow-targeted nanosystem promoted haematopoietic stem cell differentiation, boosted memory T cell generation and maintained bone homoeostasis, with long-term prevention of relapse. Our nanosystem represents a promising strategy for the treatment of haematologic malignancies.
Collapse
MESH Headings
- Animals
- Mice
- Killer Cells, Natural/immunology
- Killer Cells, Natural/drug effects
- Bone Marrow/drug effects
- Bone Marrow/pathology
- Humans
- Hematologic Neoplasms/therapy
- Hematologic Neoplasms/drug therapy
- Hematologic Neoplasms/pathology
- Cell Line, Tumor
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Nanoparticles/chemistry
- Hematopoietic Stem Cells/drug effects
- Multiple Myeloma/drug therapy
- Multiple Myeloma/pathology
- Multiple Myeloma/immunology
- Female
Collapse
|
12
|
Min L, Zhou Y, Sun H, Guo L, Wang M, Cao F, Tian W, Li L. Carrier dynamic identification enables wavelength and intensity sensitivity in perovskite photodetectors. LIGHT, SCIENCE & APPLICATIONS 2024; 13:280. [PMID: 39343785 PMCID: PMC11439907 DOI: 10.1038/s41377-024-01636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Deciphering the composite information within a light field through a single photodetector, without optical and mechanical structures, is challenging. The difficulty lies in extracting multi-dimensional optical information from a single dimension of photocurrent. Emerging photodetectors based on information reconstruction have potential, yet they only extract information contained in the photoresponse current amplitude (responsivity matrix), neglecting the hidden information in response edges driven by carrier dynamics. Herein, by adjusting the thickness of the absorption layer and the interface electric field strength in the perovskite photodiode, we extend the transport and relaxation time of carriers excited by photons of different wavelengths, maximizing the spectrum richness of the edge waveform in the light-dark transition process. For the first time, without the need for extra optical and electrical components, the reconstruction of two-dimensional information of light intensity and wavelength has been achieved. With the integration of machine learning algorithms into waveform data analysis, a wide operation spectrum range of 350-750 nm is available with a 100% accuracy rate. The restoration error has been lowered to less than 0.1% for light intensity. This work offers valuable insights for advancing perovskite applications in areas such as wavelength identification and spectrum imaging.
Collapse
|
13
|
Hou C, Gao H, Yang X, Xue G, Zuo X, Li Y, Li D, Lu B, Ren H, Liu H, Sun L. A piezoresistive-based 3-axial MEMS tactile sensor and integrated surgical forceps for gastrointestinal endoscopic minimally invasive surgery. MICROSYSTEMS & NANOENGINEERING 2024; 10:141. [PMID: 39327456 PMCID: PMC11427553 DOI: 10.1038/s41378-024-00774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/19/2024] [Indexed: 09/28/2024]
Abstract
In robotic-assisted surgery (RAS), traditional surgical instruments without sensing capability cannot perceive accurate operational forces during the task, and such drawbacks can be largely intensified when sophisticated tasks involving flexible and slender arms with small end-effectors, such as in gastrointestinal endoscopic surgery (GES). In this study, we propose a microelectromechanical system (MEMS) piezoresistive 3-axial tactile sensor for GES forceps, which can intuitively provide surgeons with online force feedback during robotic surgery. The MEMS fabrication process facilitates sensor chips with miniaturized dimensions. The fully encapsulated tactile sensors can be effortlessly integrated into miniature GES forceps, which feature a slender diameter of just 3.5 mm and undergo meticulous calibration procedures via the least squares method. Through experiments, the sensor's ability to accurately measure directional forces up to 1.2 N in the Z axis was validated, demonstrating an average relative error of only 1.18% compared with the full-scale output. The results indicate that this tactile sensor can provide effective 3-axial force sensing during surgical operations, such as grasping and pulling, and in ex vivo testing with a porcine stomach. The compact size, high precision, and integrability of the sensor establish solid foundations for clinical application in the operating theater.
Collapse
|
14
|
Guan K, Li Y, Liu L, Sun F, Wang Y, Zheng Z, Zhou W, Zhang C, Cai Z, Wang X, Feng S, Zhang T. Atomic Nb-doping of WS 2 for high-performance synaptic transistors in neuromorphic computing. MICROSYSTEMS & NANOENGINEERING 2024; 10:132. [PMID: 39327437 PMCID: PMC11427458 DOI: 10.1038/s41378-024-00779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/20/2024] [Indexed: 09/28/2024]
Abstract
Owing to the controllable growth and large-area synthesis for high-density integration, interest in employing atomically thin two-dimensional (2D) transition-metal dichalcogenides (TMDCs) for synaptic transistors is increasing. In particular, substitutional doping of 2D materials allows flexible modulation of material physical properties, facilitating precise control in defect engineering for eventual synaptic plasticity. In this study, to increase the switch ratio of synaptic transistors, we selectively performed experiments on WS2 and introduced niobium (Nb) atoms to serve as the channel material. The Nb atoms were substitutionally doped at the W sites, forming a uniform distribution across the entire flakes. The synaptic transistor devices exhibited an improved switch ratio of 103, 100 times larger than that of devices prepared with undoped WS2. The Nb atoms in WS2 play crucial roles in trapping and detrapping electrons. The modulation of channel conductivity achieved through the gate effectively simulates synaptic potentiation, inhibition, and repetitive learning processes. The Nb-WS2 synaptic transistor achieves 92.30% recognition accuracy on the Modified National Institute of Standards and Technology (MNIST) handwritten digit dataset after 125 training iterations. This study's contribution extends to a pragmatic and accessible atomic doping methodology, elucidating the strategies underlying doping techniques for channel materials in synaptic transistors.
Collapse
|
15
|
Shao C, Yu X, Ji Y, Xu J, Yan Y, Hu Y, Li Y, Huang W, Li Y. Perfluoroalkyl-modified covalent organic frameworks for continuous photocatalytic hydrogen peroxide synthesis and extraction in a biphasic fluid system. Nat Commun 2024; 15:8023. [PMID: 39271689 PMCID: PMC11399338 DOI: 10.1038/s41467-024-52405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
H2O2 photosynthesis represents an appealing approach for sustainable and decentralized H2O2 production. Unfortunately, current reactions are mostly carried out in laboratory-scale single-phase batch reactors, which have a limited H2O2 production rate (<100 μmol h-1) and cannot operate in an uninterrupted manner. Herein, we propose continuous H2O2 photosynthesis and extraction in a biphasic fluid system. A superhydrophobic covalent organic framework photocatalyst with perfluoroalkyl functionalization is rationally designed and prepared via the Schiff-base reaction. When applied in a home-built biphasic fluid photo-reactor, the superhydrophobicity of our photocatalyst allows its selective dispersion in the oil phase, while formed H2O2 is spontaneously extracted to the water phase. Through optimizing reaction parameters, we achieve continuous H2O2 photosynthesis and extraction with an unprecedented production rate of up to 968 μmol h-1 and tunable H2O2 concentrations from 2.2 to 38.1 mM. As-obtained H2O2 solution could satisfactorily meet the general demands of household disinfection and wastewater treatments.
Collapse
|
16
|
Xu C, Zhang Y, Ma L, Zhang G, Li C, Zhang C, Li Y, Zeng X, Li Y, Dong N. Valnemulin restores colistin sensitivity against multidrug-resistant gram-negative pathogens. Commun Biol 2024; 7:1122. [PMID: 39261709 PMCID: PMC11390741 DOI: 10.1038/s42003-024-06805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
Colistin is one of the last-resort antibiotics in treating infections caused by multidrug-resistant (MDR) pathogens. Unfortunately, the emergence of colistin-resistant gram-negative strains limit its clinical application. Here, we identify an FDA-approved drug, valnemulin (Val), exhibit a synergistic effect with colistin in eradicating both colistin-resistant and colistin-susceptible gram-negative pathogens both in vitro and in the mouse infection model. Furthermore, Val acts synergistically with colistin in eliminating intracellular bacteria in vitro. Functional studies and transcriptional analysis confirm that the combinational use of Val and colistin could cause membrane permeabilization, proton motive force dissipation, reduction in intracellular ATP level, and suppression in bacterial motility, which result in bacterial membrane disruption and finally cell death. Our findings reveal the potential of Val as a colistin adjuvant to combat MDR bacterial pathogens and treat recalcitrant infections.
Collapse
|
17
|
Pei R, Chang W, He L, Wang T, Zhao Y, Liang Y, Wang X. Main-group compounds selectively activate natural gas alkanes under room temperature and atmospheric pressure. Nat Commun 2024; 15:7943. [PMID: 39261473 PMCID: PMC11391052 DOI: 10.1038/s41467-024-52185-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
Most C-H bond activations of natural gas alkanes rely on transition metal complexes. Activations by using main-group systems have been reported but required heating or photo-irradiation under high atmospheric pressure with rather low regioselectivity. Here we report that Lewis acid-carbene adducts facilely undergo oxidative additions to C-H bonds of ethane, propane and n-butane with high selectivity under room temperature and atmospheric pressure. The Lewis acids can be moved by the addition of a base and the carbene-derived products can be easily converted into aldehydes. This work offers a route for main-group element compounds to selectively functionalise C-H bonds of natural gas alkanes and other small molecules.
Collapse
|
18
|
Sun Z, Zong J, Ren H, Lu C, Tu D, Poater J, Solà M, Shi Z, Yan H. Couple-close construction of non-classical boron cluster-phosphonium conjugates. Nat Commun 2024; 15:7934. [PMID: 39256342 PMCID: PMC11387837 DOI: 10.1038/s41467-024-51506-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
Heteropolycyclic molecular systems, which are essential components in the fields of materials and pharmacology, frequently consist of 2D extended organic aromatic rings. Here, we introduce a type of inorganic-organic hybrid 3D conjugates by merging an aromatic boron cluster with a phosphine and a π-conjugated unit. To achieve this, a couple-close synthetic strategy via B-H activation of nido-carboranes with alkynes has been developed, which leads to diverse boron cluster-extended phosphoniums in a twisted structure with high yields under mild conditions. Experimental and theoretical results reveal that the fusion between the boron cluster and the formed borophosphonium heterocycle facilitates electron delocalization throughout the structure. The unusual framework demonstrates distinct properties from bare boron clusters and pure aromatic ring-extended counterparts, such as improved thermal/chemical stability and photophysical properties. Thus, the boron cluster-based 3D conjugates expand the library of aromatic-based heterocyclics, showcasing great potential in functional materials.
Collapse
|
19
|
Zhang W, Cai S, Qin L, Feng Y, Ding M, Luo Z, Shan J, Di L. Alkaloids of Aconiti Lateralis Radix Praeparata inhibit growth of non-small cell lung cancer by regulating PI3K/Akt-mTOR signaling and glycolysis. Commun Biol 2024; 7:1118. [PMID: 39261597 PMCID: PMC11390937 DOI: 10.1038/s42003-024-06801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
Aconiti Lateralis Radix Praeparata (Fuzi in Chinese) is widely used in the clinical treatment of tumors. This study aims to explore the active fractions and underlying mechanisms of Fuzi in the treatment of non-small cell lung cancer (NSCLC). Fuzi alkaloids (FZA) is prepared and found to inhibit the growth of NSCLC both in vitro and in vivo significantly. A total of 53 alkaloids are identified in FZA by UPLC-Q-TOF-MS. Proteomics experiment show that 238 differentially expressed proteins regulated by FZA are involved in amino acid anabolism, pyrimidine metabolism and PI3K/Akt-mTOR signaling pathway. Metabolomics analyses identify 32 significant differential metabolites which are mainly involved in amino acid metabolism, TCA cycle and other pathways. Multi-omics research combined with molecular biological assays suggest that FZA might regulate glycolysis through PI3K/Akt-mTOR pathway to treat NSCLC. The study lays a foundation for the anti-cancer investigation of Fuzi and provides a possible scientific basis for its clinical application.
Collapse
|
20
|
Kou Y, Zhang S, Chen J, Shen Y, Zhang Z, Huang H, Ma Y, Xiang Y, Liao L, Zhou J, Cheng W, Zhou Y, Yang H, Liu Z, Wei Y, Wang H, Wang Y. A mouse protozoan boosts antigen-specific mucosal IgA responses in a specific lipid metabolism- and signaling-dependent manner. Nat Commun 2024; 15:7914. [PMID: 39256385 PMCID: PMC11387640 DOI: 10.1038/s41467-024-52336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
IgA antibodies play an important role in mucosal immunity. However, there is still no effective way to consistently boost mucosal IgA responses, and the factors influencing these responses are not fully understood. We observed that colonization with the murine intestinal symbiotic protozoan Tritrichomonas musculis (T.mu) boosted antigen-specific mucosal IgA responses in wild-type C57BL/6 mice. This enhancement was attributed to the accumulation of free arachidonic acid (ARA) in the intestinal lumen, which served as a signal to stimulate the production of antigen-specific mucosal IgA. When ARA was prevented from undergoing its downstream metabolic transformation using the 5-lipoxygenase inhibitor zileuton or by blocking its downstream biological signaling through genetic deletion of the Leukotriene B4 receptor 1 (Blt1), the T.mu-mediated enhancement of antigen-specific mucosal IgA production was suppressed. Moreover, both T.mu transfer and dietary supplementation of ARA augmented the efficacy of an oral vaccine against Salmonella infection, with this effect being dependent on Blt1. Our findings elucidate a tripartite circuit linking nutrients from the diet or intestinal microbiota, host lipid metabolism, and the mucosal humoral immune response.
Collapse
|
21
|
Zhou Z, Zhang Y, Xie Y, Huang T, Li Z, Chen P, Lu YQ, Yu S, Zhang S, Zheng G. Electrically tunable planar liquid-crystal singlets for simultaneous spectrometry and imaging. LIGHT, SCIENCE & APPLICATIONS 2024; 13:242. [PMID: 39245765 PMCID: PMC11381520 DOI: 10.1038/s41377-024-01608-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Conventional hyperspectral cameras cascade lenses and spectrometers to acquire the spectral datacube, which forms the fundamental framework for hyperspectral imaging. However, this cascading framework involves tradeoffs among spectral and imaging performances when the system is driven toward miniaturization. Here, we propose a spectral singlet lens that unifies optical imaging and computational spectrometry functions, enabling the creation of minimalist, miniaturized and high-performance hyperspectral cameras. As a paradigm, we capitalize on planar liquid crystal optics to implement the proposed framework, with each liquid-crystal unit cell acting as both phase modulator and electrically tunable spectral filter. Experiments with various targets show that the resulting millimeter-scale hyperspectral camera exhibits both high spectral fidelity ( > 95%) and high spatial resolutions ( ~1.7 times the diffraction limit). The proposed "two-in-one" framework can resolve the conflicts between spectral and imaging resolutions, which paves a practical pathway for advancing hyperspectral imaging systems toward miniaturization and portable applications.
Collapse
|
22
|
Bao K, Gu X, Song Y, Zhou Y, Chen Y, Yu X, Yuan W, Shi L, Zheng J, Hong M. TCF-1 and TOX regulate the memory formation of intestinal group 2 innate lymphoid cells in asthma. Nat Commun 2024; 15:7850. [PMID: 39245681 PMCID: PMC11381517 DOI: 10.1038/s41467-024-52252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/31/2024] [Indexed: 09/10/2024] Open
Abstract
Immune memory has been expanded to group 2 innate lymphoid cells (ILC2s), but the cellular and molecular bases remain incompletely understood. Based on house dust mite (HDM)-induced mice asthma models and human samples, we applied flow cytometry, parabiosis, in vivo imaging and adoptive transplantation to confirm the persistence, migration and function of CD45+lineage-CD90.2+NK1.1-NKp46-ST2-KLRG1+IL-17RB+ memory-like ILC2s (ml-ILC2s). Regulated by CCR9/CCL25 and S1P signaling, ml-ILC2s reside in the lamina propria of small intestines (siLP) in asthma remission, and subsequently move to airway upon re-encountering antigens or alarmins. Furthermore, ml-ILC2s possess properties of longevity, potential of rapid proliferation and producing IL-13, and display transcriptional characteristics with up-regulation of Tox and Tcf-7. ml-ILC2s transplantation restore the asthmatic changes abrogated by Tox and Tcf7 knockdown. Our data identify siLP ml-ILC2s as a memory-like subset, which promotes asthma relapse. Targeting TCF-1 and TOX might be promising for preventing asthma recurrence.
Collapse
|
23
|
Zhao J, Kang M, Li H, Rong L, Wang Y, Xue Y, Yao Y, Fang Y. QRICH1 suppresses pediatric T-cell acute lymphoblastic leukemia by inhibiting GRP78. Cell Death Dis 2024; 15:646. [PMID: 39227586 PMCID: PMC11371816 DOI: 10.1038/s41419-024-07040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that commonly affects children and adolescents with a poor prognosis. The terminal unfolded protein response (UPR) is an emerging anti-cancer approach, although its role in pediatric T-ALL remains unclear. In our pediatric T-ALL cohort from different centers, a lower QRICH1 expression was found associated with a worse prognosis of pediatric T-ALL. Overexpression of QRICH1 significantly inhibited cell proliferation and stimulated apoptosis of T-ALL both in vitro and in vivo. Upregulation of QRICH1 significantly downregulated 78 KDa glucose-regulated protein (GRP78) and upregulated CHOP, thus activating the terminal UPR. Co-overexpression of GRP78 in T-ALL cells overexpressing QRICH1 partially reverted the inhibited proliferation and stimulated apoptosis. QRICH1 bound to the residues Asp212 and Glu155 of the nucleotide-binding domain (NBD) of GRP78, thereby inhibiting its ATP hydrolysis activity. In addition, QRICH1 was associated with endoplasmic reticulum (ER) stress in T-ALL, and overexpression of QRICH1 reversed drug resistance. Overall, low QRICH1 expression is an independent risk factor for a poor prognosis of pediatric T-ALL. By inhibiting GRP78, QRICH1 suppresses pediatric T-ALL.
Collapse
|
24
|
Dai W, Wu J, Shui Y, Wu Q, Wang J, Xia X. NF-κB-activated oncogene inhibition strategy for cancer gene therapy. Cancer Gene Ther 2024:10.1038/s41417-024-00828-x. [PMID: 39227689 DOI: 10.1038/s41417-024-00828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
NF-κB is a promising target for cancer treatment because of its overactivation in almost all cancers but countless NF-κB inhibitors rarely became clinical drugs due to side effects. In contrast to traditional cancer treatments aimed at inhibiting NF-κB activity, this study develop a novel approach termed HOPE, which focuses on activating the exogenous effector gene CRISPR-Cas13a within cancer cells, achieved by utilizing the NF-κB-specific promoter DMP previously constructed, then targets and suppresses the expression of oncogenes TERT, PLK1, KRAS and MYC at mRNA level. We evaluated the antitumour effects of HOPE in various cultured cells and confirmed it could induce obvious the death of cancer cells without affecting normal cells. By packaging HOPE into adeno-associated virus (AAV) and intravenously injected it to treat mice that were subcutaneously transplanted with colorectal cancer. This validated that rAAV-HOPE could significantly inhibit tumour growth without side effects. Based on the scRNA-seq data, we observed that HOPE could activate the immune system and decrease the proportion of cancer cells, particularly reducing the stemness of cancer cells. This study elucidates an important role of HOPE in inhibiting cancer cell growth both in vitro and in vivo, additionally provides a novel therapeutic technology for cancer gene therapy.
Collapse
|
25
|
Zeng D, Liu Z, Huang G, Wang Y, Zhu S. Regio-, stereo-, and enantioselective ipso- and migratory defluorinative olefin cross-coupling to access highly functionalized monofluoroalkenes. Nat Commun 2024; 15:7645. [PMID: 39223147 PMCID: PMC11368934 DOI: 10.1038/s41467-024-52054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Monofluoroalkenes serve as nonhydrolyzable mimetics of amides and are frequently encountered in drug candidates. Herein we report a regio-, enantio-, and stereoselective NiH-catalyzed ipso- and migratory defluorinative olefin cross-coupling employing readily available olefins and gem-difluoroalkenes under mild conditions. This approach enables the efficient synthesis of a broad array of structurally diverse monofluoroalkenes bearing a tertiary allylic stereogenic center. Mechanistically, the challenging migratory defluorinative olefin cross-coupling process is successfully realized through a ligand relay catalytic strategy, enabling the formal C(sp3)-H/C(sp2)-F activation with high levels of regio-, stereo-, and enantiocontrol.
Collapse
|