1
|
Simon B, Ispolatov Y, Doebeli M. Evolutionary branching in multi-level selection models. J Math Biol 2024; 89:52. [PMID: 39384624 DOI: 10.1007/s00285-024-02145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
We study a model of group-structured populations featuring individual-level birth and death events, and group-level fission and extinction events. Individuals play games within their groups, while groups play games against other groups. Payoffs from individual-level games affect birth rates of individuals, and payoffs from group-level games affect group extinction rates. We focus on the evolutionary dynamics of continuous traits with particular emphasis on the phenomenon of evolutionary diversification. Specifically, we consider two-level processes in which individuals and groups play continuous snowdrift or prisoner's dilemma games. Individual game strategies evolve due to selection pressure from both the individual and group level interactions. The resulting evolutionary dynamics turns out to be very complex, including branching and type-diversification at one level or the other. We observe that a weaker selection pressure at the individual level results in more adaptable groups and sometimes group-level branching. Stronger individual-level selection leads to more effective adaptation within each group while preventing the groups from adapting according to the group-level games.
Collapse
|
2
|
Padovano F, Villa C. The development of drug resistance in metastatic tumours under chemotherapy: An evolutionary perspective. J Theor Biol 2024; 595:111957. [PMID: 39369787 DOI: 10.1016/j.jtbi.2024.111957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
We present a mathematical model of the evolutionary dynamics of a metastatic tumour under chemotherapy, comprising non-local partial differential equations for the phenotype-structured cell populations in the primary tumour and its metastasis. These equations are coupled with a physiologically-based pharmacokinetic model of drug administration and distribution, implementing a realistic delivery schedule. The model is carefully calibrated from the literature, focusing on BRAF-mutated melanoma treated with Dabrafenib as a case study. By means of long-time asymptotic and global sensitivity analyses, as well as numerical simulations, we explore the impact of cell migration from the primary to the metastatic site, physiological aspects of the tumour tissues and drug dose on the development of chemoresistance and treatment efficacy. Our findings provide a possible explanation for empirical evidence indicating that chemotherapy may foster metastatic spread and that metastases may be less impacted by the chemotherapeutic agent.
Collapse
|
3
|
Esser M, Kraut A. A general multi-scale description of metastable adaptive motion across fitness valleys. J Math Biol 2024; 89:46. [PMID: 39354121 PMCID: PMC11445367 DOI: 10.1007/s00285-024-02143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/28/2024] [Accepted: 08/31/2024] [Indexed: 10/04/2024]
Abstract
We consider a stochastic individual-based model of adaptive dynamics on a finite trait graph G = ( V , E ) . The evolution is driven by a linear birth rate, a density dependent logistic death rate and the possibility of mutations along the directed edges in E. We study the limit of small mutation rates for a simultaneously diverging population size. Closing the gap between Bovier et al. (Ann Appl Probab 29(6):3541-358, 2019) and Coquille et al. (Electron J Probab 26:1-37, 2021) we give a precise description of transitions between evolutionary stable conditions (ESC), where multiple mutations are needed to cross a valley in the fitness landscape. The system shows a metastable behaviour on several divergent time scales, corresponding to the widths of these fitness valleys. We develop the framework of a meta graph that is constituted of ESCs and possible metastable transitions between them. This allows for a concise description of the multi-scale jump chain arising from concatenating several jumps. Finally, for each of the various time scales, we prove the convergence of the population process to a Markov jump process visiting only ESCs of sufficiently high stability.
Collapse
|
4
|
Bandyopadhyay R, Chattopadhyay J. The impact of harvesting on the evolutionary dynamics of prey species in a prey-predator systems. J Math Biol 2024; 89:38. [PMID: 39240340 DOI: 10.1007/s00285-024-02137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
Matsuda and Abrams (Theor Popul Biol 45(1):76-91, 1994) initiated the exploration of self-extinction in species through evolution, focusing on the advantageous position of mutants near the extinction boundary in a prey-predator system with evolving foraging traits. Previous models lacked theoretical investigation into the long-term effects of harvesting. In our model, we introduce constant-effort prey and predator harvesting, along with individual logistic growth of predators. The model reveals two distinct evolutionary outcomes: (i) Evolutionary suicide, marked by a saddle-node bifurcation, where prey extinction results from the invasion of a lower forager mutant; and (ii) Evolutionary reversal, characterized by a subcritical Hopf bifurcation, leading to cyclic prey evolution. Employing an innovative approach based on Gröbner basis computation, we identify various bifurcation manifolds, including fold, transcritical, cusp, Hopf, and Bogdanov-Takens bifurcations. These contrasting scenarios emerge from variations in harvesting parameters while keeping other factors constant, rendering the model an intriguing subject of study.
Collapse
|
5
|
Khrennikov A, Iryama S, Basieva I, Sato K. Quantum-like environment adaptive model for creation of phenotype. Biosystems 2024; 242:105261. [PMID: 38964651 DOI: 10.1016/j.biosystems.2024.105261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
The textbook conceptualization of phenotype creation, "genotype (G) + environment (E) + genotype & environment interactions (GE) ↦ phenotype (Ph)", is modeled with open quantum systems theory (OQST) or more generally with adaptive dynamics theory (ADT). The model is quantum-like, i.e., it is not about quantum physical processes in biosystems. Generally such modeling is about applications of the quantum formalism and methodology outside of physics. Macroscopic biosystems, in our case genotypes and phenotypes, are treated as information processors which functioning matches the laws of quantum information theory. Phenotypes are the outputs of the E-adaptation processes described by the quantum master equation, Gorini-Kossakowski-Sudarshan-Lindblad equation (GKSL). Its stationary states correspond to phenotypes. We highlight the class of GKSL dynamics characterized by the camel-like graphs of (von Neumann) entropy: in the process of E-adaptation phenotype's state entropy (disorder) first increases and then falls down - a stable and well-ordered phenotype is created. Traits, an organism's phenotypic characteristics, are modeled within the quantum measurement theory, as generally unsharp observables given by positive operator valued measures (POVMs. This paper is also a review on the methods and mathematical apparatus of quantum information biology.
Collapse
|
6
|
Northrup GR, White A, Parratt SR, Rozins C, Laine AL, Boots M. The evolutionary dynamics of hyperparasites. J Theor Biol 2024; 582:111741. [PMID: 38280543 DOI: 10.1016/j.jtbi.2024.111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 01/29/2024]
Abstract
Evolutionary theory has typically focused on pairwise interactions, such as those between hosts and parasites, with relatively little work having been carried out on more complex interactions including hyperparasites: parasites of parasites. Hyperparasites are common in nature, with the chestnut blight fungus virus CHV-1 a well-known natural example, but also notably include the phages of important human bacterial diseases. We build a general modeling framework for the evolution of hyperparasites that highlights the central role that the ability of a hyperparasite to be transmitted with its parasite plays in their evolution. A key result is that hyperparasites which transmit with their parasite hosts (hitchhike) will be selected for lower virulence, trending towards hypermutualism or hypercommensalism. We examine the impact on the evolution of hyperparasite systems of a wide range of host and parasite traits showing, for example, that high parasite virulence selects for higher hyperparasite virulence resulting in reductions in parasite virulence when hyperparasitized. Furthermore, we show that acute parasite infection will also select for increased hyperparasite virulence. Our results have implications for hyperparasite research, both as biocontrol agents and for their role in shaping community ecology and evolution and moreover emphasize the importance of understanding evolution in the context of multitrophic interactions.
Collapse
|
7
|
Blath J, Paul T, Tóbiás A, Wilke Berenguer M. The impact of dormancy on evolutionary branching. Theor Popul Biol 2024; 156:66-76. [PMID: 38325756 DOI: 10.1016/j.tpb.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
In this paper, we investigate the consequences of dormancy in the 'rare mutation' and 'large population' regime of stochastic adaptive dynamics. Starting from an individual-based micro-model, we first derive the Polymorphic Evolution Sequence of the population, based on a previous work by Baar and Bovier (2018). After passing to a second 'small mutations' limit, we arrive at the Canonical Equation of Adaptive Dynamics, and state a corresponding criterion for evolutionary branching, extending a previous result of Champagnat and Méléard (2011). The criterion allows a quantitative and qualitative analysis of the effects of dormancy in the well-known model of Dieckmann and Doebeli (1999) for sympatric speciation. In fact, quite an intuitive picture emerges: Dormancy enlarges the parameter range for evolutionary branching, increases the carrying capacity and niche width of the post-branching sub-populations, and, depending on the model parameters, can either increase or decrease the 'speed of adaptation' of populations. Finally, dormancy increases diversity by increasing the genetic distance between subpopulations.
Collapse
|
8
|
Buckingham LJ, Ashby B. Separation of evolutionary timescales in coevolving species. J Theor Biol 2024; 579:111688. [PMID: 38096978 DOI: 10.1016/j.jtbi.2023.111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Many coevolutionary processes, including host-parasite and host-symbiont interactions, involve one species or trait which evolves much faster than the other. Whether or not a coevolutionary trajectory converges depends on the relative rates of evolutionary change in the two species, and so current adaptive dynamics approaches generally either determine convergence stability by considering arbitrary (often comparable) rates of evolutionary change or else rely on necessary or sufficient conditions for convergence stability. We propose a method for determining convergence stability in the case where one species is expected to evolve much faster than the other. This requires a second separation of timescales, which assumes that the faster evolving species will reach its evolutionary equilibrium (if one exists) before a new mutation arises in the more slowly evolving species. This method, which is likely to be a reasonable approximation for many coevolving species, both provides straightforward conditions for convergence stability and is less computationally expensive than traditional analysis of coevolution models, as it reduces the trait space from a two-dimensional plane to a one-dimensional manifold. In this paper, we present the theory underlying this new separation of timescales and provide examples of how it could be used to determine coevolutionary outcomes from models.
Collapse
|
9
|
González-Forero M. A mathematical framework for evo-devo dynamics. Theor Popul Biol 2024; 155:24-50. [PMID: 38043588 DOI: 10.1016/j.tpb.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Natural selection acts on phenotypes constructed over development, which raises the question of how development affects evolution. Classic evolutionary theory indicates that development affects evolution by modulating the genetic covariation upon which selection acts, thus affecting genetic constraints. However, whether genetic constraints are relative, thus diverting adaptation from the direction of steepest fitness ascent, or absolute, thus blocking adaptation in certain directions, remains uncertain. This limits understanding of long-term evolution of developmentally constructed phenotypes. Here we formulate a general, tractable mathematical framework that integrates age progression, explicit development (i.e., the construction of the phenotype across life subject to developmental constraints), and evolutionary dynamics, thus describing the evolutionary and developmental (evo-devo) dynamics. The framework yields simple equations that can be arranged in a layered structure that we call the evo-devo process, whereby five core elementary components generate all equations including those mechanistically describing genetic covariation and the evo-devo dynamics. The framework recovers evolutionary dynamic equations in gradient form and describes the evolution of genetic covariation from the evolution of genotype, phenotype, environment, and mutational covariation. This shows that genotypic and phenotypic evolution must be followed simultaneously to yield a dynamically sufficient description of long-term phenotypic evolution in gradient form, such that evolution described as the climbing of a fitness landscape occurs in "geno-phenotype" space. Genetic constraints in geno-phenotype space are necessarily absolute because the phenotype is related to the genotype by development. Thus, the long-term evolutionary dynamics of developed phenotypes is strongly non-standard: (1) evolutionary equilibria are either absent or infinite in number and depend on genetic covariation and hence on development; (2) developmental constraints determine the admissible evolutionary path and hence which evolutionary equilibria are admissible; and (3) evolutionary outcomes occur at admissible evolutionary equilibria, which do not generally occur at fitness landscape peaks in geno-phenotype space, but at peaks in the admissible evolutionary path where "total genotypic selection" vanishes if exogenous plastic response vanishes and mutational variation exists in all directions of genotype space. Hence, selection and development jointly define the evolutionary outcomes if absolute mutational constraints and exogenous plastic response are absent, rather than the outcomes being defined only by selection. Moreover, our framework provides formulas for the sensitivities of a recurrence and an alternative method to dynamic optimization (i.e., dynamic programming or optimal control) to identify evolutionary outcomes in models with developmentally dynamic traits. These results show that development has major evolutionary effects.
Collapse
|
10
|
Avila P, Lehmann L. Life history and deleterious mutation rate coevolution. J Theor Biol 2023; 573:111598. [PMID: 37598761 DOI: 10.1016/j.jtbi.2023.111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
The cost of germline maintenance gives rise to a trade-off between lowering the deleterious mutation rate and investing in life history functions. Therefore, life history and the mutation rate coevolve, but this coevolution is not well understood. We develop a mathematical model to analyse the evolution of resource allocation traits, which simultaneously affect life history and the deleterious mutation rate. First, we show that the invasion fitness of such resource allocation traits can be approximated by the basic reproductive number of the least-loaded class; the expected lifetime production of offspring without deleterious mutations born to individuals without deleterious mutations. Second, we apply the model to investigate (i) the coevolution of reproductive effort and germline maintenance and (ii) the coevolution of age-at-maturity and germline maintenance. This analysis provides two resource allocation predictions when exposure to environmental mutagens is higher. First, selection favours higher allocation to germline maintenance, even if it comes at the expense of life history functions, and leads to a shift in allocation towards reproduction rather than survival. Second, life histories tend to be faster, characterised by individuals with shorter lifespans and smaller body sizes at maturity. Our results suggest that mutation accumulation via the cost of germline maintenance can be a major force shaping life-history traits.
Collapse
|
11
|
Fan R, Geritz SAH. Evolution of pathogens with cross-immunity in response to healthcare interventions. J Theor Biol 2023; 572:111575. [PMID: 37423484 DOI: 10.1016/j.jtbi.2023.111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Cross-immunity, as an evolutionary driver, can contribute to pathogen evolution, particularly pathogen diversity. Healthcare interventions aimed at reducing disease severity or transmission are commonly used to control diseases and can also induce pathogen evolution. Understanding pathogen evolution in the context of cross-immunity and healthcare interventions is crucial for infection control. This study starts by modelling cross-immunity, the extent of which is determined by strain traits and host characteristics. Given that all hosts have the same characteristics, full cross-immunity between residents and mutants occurs when mutation step sizes are small enough. Cross-immunity can be partial when the step size is large. The presence of partial cross-immunity reduces pathogen load and shortens the infectious period inside hosts, reducing transmission between hosts and improving host population survival and recovery. This study focuses on how pathogens evolve through small and large mutational steps and how healthcare interventions affect pathogen evolution. Using the theory of adaptive dynamics, we found that when mutational steps are small (only full cross-immunity is present), pathogen diversity cannot occur because it maximises the basic reproduction number. This results in intermediate values for both pathogen growth and clearance rates. However, when large mutational steps are allowed (with full and partial cross-immunity present), pathogens can evolve into multiple strains and induce pathogen diversity. The study also shows that different healthcare interventions can have varying effects on pathogen evolution. Generally, low levels of intervention are more likely to induce strain diversity, while high levels are more likely to result in strain reduction.
Collapse
|
12
|
Hamilton's rule, the evolution of behavior rules and the wizardry of control theory. J Theor Biol 2022; 555:111282. [PMID: 36179799 DOI: 10.1016/j.jtbi.2022.111282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/14/2023]
Abstract
This paper formalizes selection on a quantitative trait affecting the evolution of behavior (or development) rules through which individuals act and react with their surroundings. Combining Hamilton's marginal rule for selection on scalar traits and concepts from optimal control theory, a necessary first-order condition for the evolutionary stability of the trait in a group-structured population is derived. The model, which is of intermediate level of complexity, fills a gap between the formalization of selection on evolving traits that are directly conceived as actions (no phenotypic plasticity) and selection on evolving traits that are conceived as strategies or function valued actions (complete phenotypic plasticity). By conceptualizing individuals as open deterministic dynamical systems expressing incomplete phenotypic plasticity, the model captures selection on a large class of phenotypic expression mechanisms, including developmental pathways and learning under life-history trade-offs. As an illustration of the results, a first-order condition for the evolutionary stability of behavior response rules from the social evolution literature is re-derived, strengthened, and generalized. All results of the paper also generalize directly to selection on multidimensional quantitative traits affecting behavior rule evolution, thereby covering neural and gene network evolution.
Collapse
|
13
|
Pásztor L. Population regulation and adaptive dynamics of cross-feeding. Biol Futur 2022; 73:393-403. [PMID: 36550237 DOI: 10.1007/s42977-022-00147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
The particular importance of evolutionary studies in microbial experimental systems is that starting from the level of the metabolism of individual cells, the adaptive dynamics can be followed step by step by biochemical, genetic, and population dynamical tools. Moreover, the coincidence of evolutionary and ecological time scales helps to clarify the mutual role of ecological and evolutionary principles in predicting adaptive dynamics in general. Ecological principles define the ecological conditions under which adaptive branching can occur. This paper overviews and interprets the results of empirical and modeling studies of the evolution of metabolic cross-feeding in glucose-limited E.coli chemostats and batch cultures in the context of theories of robust coexistence and adaptive dynamics. Empirical results consistently demonstrate that the interactions between cells are mediated by the changing metabolite concentrations in the cultures and modeling confirms that these changes may control the adaptive dynamics of the clones. In consequence, the potential results of evolution can be predicted at the functional level by evolutionary flux balance analysis (evoFBA), while the genetic changes are more contingent. evoFBA follows the scheme of adaptive dynamics theory by calculating the feedback environment that changes during the evolutionary process and provides a promising tool to further investigate adaptive divergence in small microbial communities. Three general conclusions close the paper.
Collapse
|
14
|
Lion S, Gandon S. Evolution of class-structured populations in periodic environments. Evolution 2022; 76:1674-1688. [PMID: 35657205 PMCID: PMC9541870 DOI: 10.1111/evo.14522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/17/2022] [Indexed: 01/22/2023]
Abstract
What is the influence of periodic environmental fluctuations on life-history evolution? We present a general theoretical framework to understand and predict the long-term evolution of life-history traits under a broad range of ecological scenarios. Specifically, we investigate how periodic fluctuations affect selection when the population is also structured in distinct classes. This analysis yields time-varying selection gradients that clarify the influence of the fluctuations of the environment on the competitive ability of a specific life-history mutation. We use this framework to analyse the evolution of key life-history traits of pathogens. We examine three different epidemiological scenarios and we show how periodic fluctuations of the environment can affect the evolution of virulence and transmission as well as the preference for different hosts. These examples yield new and testable predictions on pathogen evolution, and illustrate how our approach can provide a better understanding of the evolutionary consequences of time-varying environmental fluctuations in a broad range of scenarios.
Collapse
|
15
|
Yang Y, Ma C, Zu J. Coevolutionary dynamics of host-pathogen interaction with density-dependent mortality. J Math Biol 2022; 85:15. [PMID: 35877051 PMCID: PMC9309463 DOI: 10.1007/s00285-022-01782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/08/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022]
Abstract
This study explores the coevolutionary dynamics of host-pathogen interaction based on a susceptible-infected population model with density-dependent mortality. We assume that both the host's resistance and the pathogen's virulence will adaptively evolve, but there are inevitable costs in terms of host birth rate and disease-related mortality rate. Particularly, it is assumed that both the host resistance and pathogen virulence can affect the transmission rate. By using the approach of adaptive dynamics and numerical simulation, we find that the finally coevolutionary outcome depends on the strength of host-pathogen asymmetric interaction, the curvature of trade-off functions, and the intensity of density-dependent natural mortality. To be specific, firstly, we find that if the strengths of host-pathogen asymmetric interaction and disease-related mortality are relatively weak, or the density-dependent natural mortality is relatively strong, then the host resistance and pathogen virulence will evolve to a continuously stable strategy. However, if the strength of host-pathogen asymmetric interaction and disease-related mortality becomes stronger, then the host resistance and pathogen virulence will evolve periodically. Secondly, we find that if the intensities of both the birth rate trade-off function and the density-dependent natural mortality are relatively weak, but the strength of host-pathogen asymmetric interaction becomes relatively strong, then the evolution of host resistance will have a relatively strongly accelerating benefit, the evolutionary branching of host resistance will first arise. However, if the strength of host-pathogen asymmetric interaction is relatively weak, but the intensity of the trade-off function of disease-related mortality becomes relatively strong, then the evolution of pathogen virulence will have a relatively strongly decelerating cost, and the evolutionary branching of pathogen virulence will first arise. Thirdly, after the evolutionary branching of host resistance and pathogen virulence, we further study the coevolutionary dynamics of two-hosts-one-pathogen interaction and one-host-two-pathogens interaction. We find that if the evolutionary branching of host resistance arises firstly, then the finally evolutionary outcome contains a dimorphic host and a monomorphic pathogen population. If the evolutionary branching of pathogen virulence arises firstly, then the finally evolutionary outcome may contain a monomorphic host and a dimorphic pathogen population.
Collapse
|
16
|
Müller J, Tellier A. Life-History traits and the replicator equation. Math Biosci 2022; 349:108826. [PMID: 35489522 DOI: 10.1016/j.mbs.2022.108826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/10/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Due to the relevance for conservation biology, there is an increasing interest to extend evolutionary genomics models to plant, animal or microbial species. However, this requires to understand the effect of life-history traits absent in humans on genomic evolution. In this context, it is fundamentally of interest to generalize the replicator equation, which is at the heart of most population genomics models. However, as the inclusion of life-history traits generates models with a large state space, the analysis becomes involving. We focus, here, on quiescence and seed banks, two features common to many plant, invertebrate and microbial species. We develop a method to obtain a low-dimensional replicator equation in the context of evolutionary game theory, based on two assumptions: (1) the life-history traits are per se neutral, and (2) frequency-dependent selection is weak. We use the results to investigate the evolution and maintenance of cooperation based on the Prisoner's dilemma and the snowdrift game. We first consider the generalized replicator equation, and then refine the investigation using adaptive dynamics. It turns out that, depending on the structure and timing of the quiescence/dormancy life-history trait, cooperation in a homogeneous population can be stabilized. We finally discuss and highlight the relevance of these results for plant, invertebrate and microbial communities.
Collapse
|
17
|
Boldin B. The importance of ecological dynamics in evolutionary processes: a host-bacteriophage model revisited. J Theor Biol 2022; 539:111057. [PMID: 35181286 DOI: 10.1016/j.jtbi.2022.111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
A recent study of adaptive dynamics of lysis propensity in temperate phages suggested that full lysogeny emerges as the outcome of bacteriophage evolution in a simple host-phage system. The conclusion is based on the premise that mutant strains necessarily appear in equilibrium host-phage environments. Revisiting the model, we show that the ecological system exhibits richer asymptotic dynamics and that, in a certain parameter regime, evolution may in fact drive lysis propensity towards an evolutionary singularity in which a non-zero proportion of phages initiate infection in a lytic cycle. These singularities act as points of evolutionary diversification, leading to periodic coexistence of two distinct phage strains on the evolutionary time-scale. One of the two strains in the dimorphic evolutionary singularity is fully lysogenic (in the sense that cell infection always leads to lysogeny), while the other is partially lytic. Our study thus highlights the importance of ecological interactions as a driver of evolution.
Collapse
|
18
|
Cai Y. Evolutionary coexistence in a metacommunity: Competition-colonization trade-off, ownership effects, environmental fluctuations. J Theor Biol 2022; 533:110944. [PMID: 34717931 DOI: 10.1016/j.jtbi.2021.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 10/20/2022]
Abstract
We study the adaptive dynamics of the colonization rate of species living in a patchy habitat when there is a trade-off with the competitive strength for individual patches. To that end, we formulate a continuous-time competition-colonization model that also includes ownership effects as well as random disturbance affecting the mortality rate. We find that intermediate disturbance (as measured by the fluctuation intensity of the mortality rate), a strong competition-colonization trade-off, and a weak ownership effect are necessary conditions for evolutionary branching and hence for the emergence of polymorphisms (i.e., coexistence) by small evolutionary steps. Specifically, concerning ownership we find that with low-intermediate disturbance, a weak ownership advantage favours evolutionary branching while ownership disadvantage does not. This asymmetry disappears at the higher-intermediate disturbance. Moreover, at a low-intermediate disturbance, the effect of the strength of the competition-colonization trade-off on evolutionary branching is non-monotonic disappears because the possibility of branching disappears again when the trade-off is too strong. We also find that there can be multiple evolutionary attractors for polymorphic populations, each with its own basin of attraction. With small but non-zero random evolutionary steps and depending on the initial polymorphic condition just after branching, a coevolutionary trajectory may come arbitrarily close to the shared boundary of two such basins and may even jump from one side to the other, which can lead to various kinds of long-term evolutionary dynamics, including evolutionary branching-extinction cycles.
Collapse
|
19
|
Virulence management: Closing the feedback loop between healthcare interventions and virulence evolution. J Theor Biol 2021; 531:110900. [PMID: 34530031 DOI: 10.1016/j.jtbi.2021.110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/22/2022]
Abstract
We study the evolution of virulence of an endemic pathogen in response to healthcare interventions which affect host recovery and pathogen transmission. By anticipating the evolutionary response of the pathogen we may develop effective long-term management strategies for controlling the impact of the endemic on the society. To that end, we use standard Adaptive Dynamics techniques in an SIS model. The recovery rate and the transmission rate, both of which can be affected by healthcare interventions, are used as evolutionary control variables. The effect of interventions may be density-independent (self-help based on healthcare instructions) or density-dependent (when assistance of a healthcare worker is required). We consider the evolutionary response of the pathogen both to abrupt changes and to gradual changes in the level of healthcare intervention. Healthcare intervention is optimised for three alternative objectives: minimisation of virulence, minimisation of the probability that an infected individual dies of the disease, and total eradication of the endemic. We find that the optimal strategy may depend on the objective. High levels of healthcare intervention may eradicate the pathogen, but this option may not be available for budgetary reasons or otherwise. Counterintuitively, to minimise virulence, one should keep healthcare interventions at a minimum, while to minimise the probability for an infected individual to die of the disease, both low and high levels of healthcare intervention suffice. Changes in the level of healthcare intervention should be implemented fast (not gradually) in order to avoid sudden changes in pathogen evolution and the possible emergence of multiple simultaneously coexisting pathogen strains.
Collapse
|
20
|
Berardo C, Geritz S. Coevolution of the reckless prey and the patient predator. J Theor Biol 2021; 530:110873. [PMID: 34425133 DOI: 10.1016/j.jtbi.2021.110873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/26/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
The war of attrition in game theory is a model of a stand-off situation between two opponents where the winner is determined by its persistence. We model a stand-off between a predator and a prey when the prey is hiding and the predator is waiting for the prey to come out from its refuge, or when the two are locked in a situation of mutual threat of injury or even death. The stand-off is resolved when the predator gives up or when the prey tries to escape. Instead of using the asymmetric war of attrition, we embed the stand-off as an integral part of the predator-prey model of Rosenzweig and MacArthur derived from first principles. We apply this model to study the coevolution of the giving-up rates of the prey and the predator, using the adaptive dynamics approach. We find that the long term evolutionary process leads to three qualitatively different scenarios: the predator gives up immediately, while the prey never gives up; the predator never gives up, while the prey adopts any giving-up rate greater than or equal to a given positive threshold value; the predator goes extinct. We observe that some results are the same as for the asymmetric war of attrition, but others are quite different.
Collapse
|
21
|
Kortessis N, Chesson P. Character displacement in the presence of multiple trait differences: Evolution of the storage effect in germination and growth. Theor Popul Biol 2021; 140:54-66. [PMID: 34058244 DOI: 10.1016/j.tpb.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/30/2021] [Accepted: 05/20/2021] [Indexed: 11/15/2022]
Abstract
Ecological character displacement is a prominent hypothesis for the maintenance of ecological differences between species that are critical to stable coexistence. Models of character displacement often ascribe interspecific competitive interactions to a single character, but multiple characters contribute to competition, and their effects on selection can be nonadditive. Focusing on one character, we ask if other characters that affect competition alter evolutionary outcomes for the focal character. We address this question using the variable environment seed bank model for two species with two traits. The focal trait is the temporal pattern of germination, which is evolutionary labile. The other trait is the temporal pattern of plant growth, which is assumed fixed. We ask whether evolutionary divergence of germination patterns between species depends on species differences in plant growth. Patterns of growth can affect selection on germination patterns in two ways. First, cues present at germination can provide information about future growth. Second, germination and growth jointly determine the biomass of plants, which determines demand for resources. Germination and growth contribute to the selection gradient in distinct components, one density-independent and the other density-dependent. Importantly, the relative strengths of the components are key. When the density-dependent component is stronger, displacement in germination patterns between species is larger. Stronger cues at germination strengthen the density-independent component by increasing the benefits of germinating in years of favorable growth. But cues also affect the density-dependent component by boosting a species' biomass, and hence its competitive effect, in good years. Consequently, cues weaken character displacement when growth patterns are similar for two competitors, but favor displacement when growth patterns are species-specific. Understanding how these selection components change between contexts can help understand the origin and maintenance of species differences in germination patterns in temporally fluctuating environments.
Collapse
|
22
|
Evolution and Adaptation of Anti-predation Response of Prey in a Two-Patchy Environment. Bull Math Biol 2021; 83:59. [PMID: 33856571 DOI: 10.1007/s11538-021-00893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
When perceiving a risk from predators, a prey may respond by reducing its reproduction and decreasing or increasing (depending on the species) its mobility. We formulate a patch model to investigate the aforementioned fear effect which is indirect, in contrast to the predation as a direct effect, of the predator on the prey population. We consider not only cost but also benefit of anti-predation response of the prey, and explore their trade-offs together as well as the impact of the fear effect mediated dispersals of the prey. In the case of constant response level, if there is no dispersal and for some given response functions, the model indicates the existence of an evolutionary stable strategy which is also a convergence stable strategy for the response level; and if there is dispersal, the analysis of the model shows that it will enhance the co-persistence of the prey on both patches. Considering the trait as another variable, we continue to study the evolution of anti-predation strategy for the model with dispersal, which leads to a three-dimensional system of ordinary differential equations. We perform some numerical simulations, which demonstrate global convergence to a positive equilibrium with the response level evolving towards a positive constant level, implying the existence of an optimal anti-predation response level.
Collapse
|
23
|
Cai Y, Geritz SAH. The evolution of the irreversible transition from a free-swimming state to an immobile sessile state in aquatic invertebrates modelled in a chemostat. J Theor Biol 2021; 522:110681. [PMID: 33744310 DOI: 10.1016/j.jtbi.2021.110681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 11/25/2022]
Abstract
To better understand the environmental factors and ecological processes underlying the evolution of the irreversible transition from a free-swimming state to an immobile sessile state as seen in many aquatic invertebrates, we study the adaptive dynamics of the settling rate of a hypothetical microorganism onto the wall of a chemostat. The two states, floating or settled, differ in their nutrient ingestion, reproduction and death rate. We consider three different settling mechanisms involving competition for space on the wall: (i) purely exploitative competition where free-swimming individuals settle in vacant space only, (ii) mixed exploitative and interference competition where individuals attempt to settle in any place but fail and die if the space is already occupied, and (iii) mixed exploitative and interference competition, but now settling in occupied space is successful and the former occupant dies. In the simplified environment of the chemostat, the input concentration of nutrients and the dilution rate of the tank are the main environmental control variables. Using the theory of adaptive dynamics, we find that the settling mechanisms and environmental control variables have qualitatively different effects on the evolution of the settling rate in terms of the direction of evolution as well as on species diversity. In the case of purely exploitative competition a small change in the settings of the environmental control variables can lead to an abrupt reversal of the direction of evolution, while in the case of mixed exploitative and interference competition the effect is gradual. For all three settling mechanisms, periodic fluctuations in the nutrient input open the possibility of evolutionary branching leading to the long-term coexistence of an intermediate and an infinitely high settling rates (in the case of low-frequency fluctuations), and an intermediate and a zero settling rates (in the case of high-frequency fluctuations).
Collapse
|
24
|
Avila P, Priklopil T, Lehmann L. Hamilton's rule, gradual evolution, and the optimal (feedback) control of phenotypically plastic traits. J Theor Biol 2021; 526:110602. [PMID: 33508326 DOI: 10.1016/j.jtbi.2021.110602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Most traits expressed by organisms, such as gene expression profiles, developmental trajectories, behavioural sequences and reaction norms are function-valued traits (colloquially "phenotypically plastic traits"), since they vary across an individual's age and in response to various internal and/or external factors (state variables). Furthermore, most organisms live in populations subject to limited genetic mixing and are thus likely to interact with their relatives. We here formalise selection on genetically determined function-valued traits of individuals interacting in a group-structured population, by deriving the marginal version of Hamilton's rule for function-valued traits. This rule simultaneously gives a condition for the invasion of an initially rare mutant function-valued trait and its ultimate fixation in the population (invasion thus implies substitution). Hamilton's rule thus underlies the gradual evolution of function-valued traits and gives rise to necessary first-order conditions for their uninvadability (evolutionary stability). We develop a novel analysis using optimal control theory and differential game theory, to simultaneously characterise and compare the first-order conditions of (i) open-loop traits - functions of time (or age) only, and (ii) closed-loop (state-feedback) traits - functions of both time and state variables. We show that closed-loop traits can be represented as the simpler open-loop traits when individuals do not interact or when they interact with clonal relatives. Our analysis delineates the role of state-dependence and interdependence between individuals for trait evolution, which has implications to both life-history theory and social evolution.
Collapse
|
25
|
Martin CH, Gould KJ. Surprising spatiotemporal stability of a multi-peak fitness landscape revealed by independent field experiments measuring hybrid fitness. Evol Lett 2020; 4:530-544. [PMID: 33312688 PMCID: PMC7719547 DOI: 10.1002/evl3.195] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/23/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
The effect of the environment on fitness in natural populations is a fundamental question in evolutionary biology. However, experimental manipulations of both environment and phenotype at the same time are rare. Thus, the relative importance of the competitive environment versus intrinsic organismal performance in shaping the location, height, and fluidity of fitness peaks and valleys remains largely unknown. Here, we experimentally tested the effect of competitor frequency on the complex fitness landscape driving adaptive radiation of a generalist and two trophic specialist pupfishes, a scale-eater and molluscivore, endemic to hypersaline lakes on San Salvador Island (SSI), Bahamas. We manipulated phenotypes, by generating 3407 F4/F5 lab-reared hybrids, and competitive environment, by altering the frequency of rare transgressive hybrids between field enclosures in two independent lake populations. We then tracked hybrid survival and growth rates across these four field enclosures for 3-11 months. In contrast to competitive speciation theory, we found no evidence that the frequency of hybrid phenotypes affected their survival. Instead, we observed a strikingly similar fitness landscape to a previous independent field experiment, each supporting multiple fitness peaks for generalist and molluscivore phenotypes and a large fitness valley isolating the divergent scale-eater phenotype. These features of the fitness landscape were stable across manipulated competitive environments, multivariate trait axes, and spatiotemporal heterogeneity. We suggest that absolute performance constraints and divergent gene regulatory networks shape macroevolutionary (interspecific) fitness landscapes in addition to microevolutionary (intraspecific) competitive dynamics. This interplay between organism and environment underlies static and dynamic features of the adaptive landscape.
Collapse
|