1
|
Gong H, Li S, Chen F, Li Y, Chen C, Cai C. High-sensitivity detection of glycoproteins by high-density boric acid modified metal-organic framework surface molecularly imprinted polymers resonant light scattering sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124813. [PMID: 39018673 DOI: 10.1016/j.saa.2024.124813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Glycoproteins are difficult to be detected by imprinting strategy due to their low natural abundance, high flexible conformation and large size. Herein, a high-density boric acid modified metal-organic framework (MOF) surface molecularly imprinted polymer (SMIP) resonant light scattering sensor was constructed for the high-sensitivity detection of target glycoproteins. A MOF with large specific surface area was selected as the substrate material to support the boric acid group with high loading density (4.66 %). The introduction of the boric acid group in the SMIP provided a high-affinity binding site for the recognition and binding of glycoproteins. Shallow surface cavities with rapid mass transfer (equilibrium time 20 min) were thus formed by surface imprinting. Furthermore, high sensitivity (limit of detection 15 pM) was achieved at physiological pH (7.4), which was conducive to the detection of glycoproteins with low natural abundance in complex biological samples and maintaining physiological activity.
Collapse
|
2
|
Aykal MB, Gecin MN, Sogut I, Kar F, Taskin AC. Effects of Boric acid as Maternal Feed Additives on the Development and Sex Ratio of Mouse pups. Biol Trace Elem Res 2024; 202:5572-5579. [PMID: 38342845 PMCID: PMC11502565 DOI: 10.1007/s12011-024-04099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Boron is primarily used in industrial applications, with recent interest revolving around its effects on metabolism. In this study, we administered boric acid (BA), which has positive effects on reproduction, in conjunction with feed supplementation to serve as a model for experimental animal development and breeding. The pregnancy performance, offspring development, and biochemical effects of mice given feed supplemented with BA at concentrations of 0 (control group), 250, and 500 ppm (BA groups) were investigated. A total of 18 female Balb-C mice were utilized for pregnancy. The mice were given the BA-supplemented feed during a period encompassing three weeks of pregnancy and three weeks of lactation. The numbers and weights of offspring born in cages on days 19-21 were determined. Blood and tissue samples were collected from the offspring during the third week postnatal, and the malondialdehyde (MDA) and total antioxidant and oxidant status (TAS, TOS, and OSI) levels were determined. A significant increase in female offspring was observed in the groups born to mice fed with BA compared to the control group. Positive development in organ weights was observed in the 250-ppm BA group. The 250-ppm group exhibited a significant increase in TAS compared to the control group, while TOS and MDA levels showed a decrease. Also, the levels of BA groups were found to decrease in both the OSI index serum and organ samples compared to the control group. Thus, the use of 250-ppm BA demonstrated positive effects on female offspring production, organ development, and antioxidant levels.
Collapse
|
3
|
Çöl B, Kürkçü MS, Di Bek E. Genome-Wide Screens Identify Genes Responsible for Intrinsic Boric Acid Resistance in Escherichia coli. Biol Trace Elem Res 2024; 202:5771-5793. [PMID: 38466471 PMCID: PMC11502571 DOI: 10.1007/s12011-024-04129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/24/2024] [Indexed: 03/13/2024]
Abstract
Boric acid (BA) has antimicrobial properties and is used to combat bacterial infections, including Enterobacteria. However, the molecular mechanisms and cellular responses to BA are still unknown. This genomics study aims to provide new information on the genes and molecular mechanisms related to the antimicrobial effect of BA in Escherichia coli. The Keio collection of E. coli was used to screen 3985 single-gene knockout strains in order to identify mutant strains that were sensitive or hypersensitive to BA at certain concentrations. The mutant strains were exposed to different concentrations of BA ranging from 0 to 120 mM in LB media. Through genome-wide screens, 92 mutants were identified that were relatively sensitive to BA at least at one concentration tested. The related biological processes in the particular cellular system were listed. This study demonstrates that intrinsic BA resistance is the result of various mechanisms acting together. Additionally, we identified eighteen out of ninety-two mutant strains (Delta_aceF, aroK, cheZ, dinJ, galS, garP, glxK, nohA, talB, torR, trmU, trpR, yddE, yfeS, ygaV, ylaC, yoaC, yohN) that exhibited sensitivity using other methods. To increase sensitivity to BA, we constructed double and triple knockout mutants of the selected sensitive mutants. In certain instances, engineered double and triple mutants exhibited significantly amplified effects. Overall, our analysis of these findings offers further understanding of the mechanisms behind BA toxicity and intrinsic resistance in E. coli.
Collapse
|
4
|
Semerci Sevimli T, Ghorbani A, Demir Cevizlidere B, Altuğ B, Sevimli M. Boric Acid Affects the Expression of DNA Double-Strand Break Repair Factors in A549 Cells and A549 Cancer Stem Cells: An In Vitro Study. Biol Trace Elem Res 2024; 202:5017-5024. [PMID: 38367174 PMCID: PMC11442501 DOI: 10.1007/s12011-024-04082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/27/2024] [Indexed: 02/19/2024]
Abstract
DNA double-strand break (DSB) repair genes interact with tumor stemness- and resistance-associated processes in cancer stem cells (CSCs). Therefore, targeting DNA DSB genes in cancer treatment is important for the CSC phenotype. Although the anti-cancer effect of boric acid (BA) has been studied, its effect on DNA DSB is unclear. Moreover, no studies investigate BA's effects on DNA DSB of lung cancer stem cells (LC-SCs). To fill the gap, we aimed to assess the effects of BA on A549 cancer stem cells. CSCs were isolated from human non-small cell lung cancer cells (A549) and characterized by flow cytometry. Different concentrations of BA (at doses ranging from 1 to 100 mM) were applied to cancer stem cells. Cytotoxic activities were determined using the cell viability assay (MTT assay) at 24 and 48 h. Expression levels of DNA DSB genes that BRCA1, BRCA2, RAD51, KU70/80, ATM, and XRCC4 were evaluated by RT-qPCR. Additionally, immunofluorescence staining analysis was exploited for caspase-3 and E-cadherin. ATM expression increased significantly (p < 0.001). No significant change was observed in the expression of other genes. Moreover, BA up-regulated caspase-3 and E-cadherin expression. Consequently, we can say that BA affects DNA DSB and the apoptotic abilities of LC-SCs.
Collapse
|
5
|
Turkez H, Tozlu OO, Arslan ME, Baba C, Saracoglu MM, Yıldız E, Tatar A, Mardinoglu A. Boric Acid and Borax Protect Human Lymphocytes from Oxidative Stress and Genotoxicity Induced by 3-Monochloropropane-1,2-diol. Biol Trace Elem Res 2024; 202:5006-5016. [PMID: 38216793 PMCID: PMC11442522 DOI: 10.1007/s12011-024-04060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
3-chloro-1,2-propanediol (3-MCPD) is a member of the group of pollutants known as chloropropanols and is considered a genotoxic carcinogen. Due to the occurrence of 3-MCPD, which cannot be avoided in multiplexed food processes, it is necessary to explore novel agents to reduce or prevent the toxicity of 3-MCPD. Many recent studies on boron compounds reveal their superior biological roles such as antioxidant, anticancer, and antigenotoxic properties. In the current investigation, we have evaluated in vitro cytotoxic, oxidative, and genotoxic damage potential of 3-MCPD on human whole blood cultures and the alleviating effect of boric acid (BA) and borax (BX) for 72 h. In our in vitro experiments, we have treated blood cells with BA and BX (2.5, 5, and 10 mg/L) and 3-MCPD (at IC50 of 11.12 mg/l) for 72 h to determine the cytotoxic damage potential by using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and lactate dehydrogenase (LDH) release assays. Oxidative damage was assessed using total antioxidant capacity (TAC) and malondialdehyde (MDA) levels. Genotoxicity evaluations were performed using chromosome aberrations (CAs) and 8-hydroxy deoxyguanosine (8-OHdG) assays. The result of our experiments showed that the 3-MCPD compound induced cytotoxicity, oxidative stress, and genotoxicity in a clear concentration-dependent manner. BA and BX reduced cytotoxicity, oxidative stress, and genotoxicity induced by 3-MCPD. In conclusion, BA and BX are safe and non-genotoxic under the in vitro conditions and can alleviate cytotoxic, oxidative, and genetic damage induced by 3-MCPD in the human blood cells. Our findings suggest that dietary boron supplements may offer a novel strategy for mitigating hematotoxicity induced by xenobiotics, including 3-MCPD.
Collapse
|
6
|
Taskin AC, Kocabay A, Gul S, Sahin GN, Karahuseyinoglu S, Kavakli IH, Sogut I. Boric acid supplementation promotes the development of in vitro-produced mouse embryos by related pluripotent and antioxidant genes. ZYGOTE 2024:1-6. [PMID: 39431373 DOI: 10.1017/s0967199424000261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Boric acid (BA) is an important mineral for plants, animals and humans that assists metabolic function and has both positive and negative effects on biological systems. The present study aimed to investigate the effects of different concentrations of BA added to the culture media, the quality and in vitro development potential of mouse embryos. Superovulated C57Bl6/6j female mice were sacrificed ∼18 hours after human chorionic gonadotropin (hCG) injection. Single-cell-stage embryos were collected from the oviduct, divided into experiment groups and cultured in embryo medium with supplemented BA+ in 5% CO2 at 37 °C until 96 hours at the blastocyst stage. The blastocyst development rates of 0, 1.62 × 10-1, 1.62 × 10-2, 1.62 × 10-3 and 1.62 × 10-4 µM BA were 51.52%, 73.47%, 77.36% and 81.13%, respectively. The in vitro development rates were significantly higher in the 1.62 × 10-3 (p < 0.05) and 1.62 × 10-4 µM BA groups than in the control group (p < 0.001). These results indicated that low BA doses influenced embryo development by positively affecting in vitro development rates, embryo cell numbers, biochemical parameters and development at the molecular level by pluripotent and antioxidant genes. Therefore, BA seems to play an important role on in vitro embryo development.
Collapse
|
7
|
Kotan G, Uysal BA. Effects of boric acid combined with injectable platelet rich fibrin on the mineralized nodule formation and the viability of human dental pulp stem cells. Tissue Cell 2024; 90:102508. [PMID: 39128193 DOI: 10.1016/j.tice.2024.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND The present study aimed to evaluate the viability of human dental pulp stem cells (hDPSCs) exposed to boric acid (BA) and injectable platelet-rich fibrin (I-PRF). MATERIALS AND METHODS hDPSCs were isolated from impacted third molars. Nine milliliters of whole blood was transferred to I-PRF tubes and centrifuged at 700 rpm for 3 minutes. A BA solution was prepared by dissolving BA in a 0.1 g/ml stock solution. The cells were divided into four groups: control, I-PRF, BA, and BA + I-PRF. Cell viability was evaluated using flow cytometry. Mineralized calcium nodules were observed using Alizarin Red staining. The data were analyzed using two-way analysis of variance and Tukey's HSD test (p<0.05). RESULTS The highest percentage of viable cells was in the I-PRF group, and the lowest percentage of viable cells was in the BA group at all times. Larger calcium nodules were observed in the BA group compared to the other groups. CONCLUSION The use of I-PRF with or without BA had a positive effect on cell viability. BA and I-PRF affected the formation of mineralized calcium nodules. I-PRF and BA may be used in combination because these substances minimally reduce cell viability and promote mineralized nodule formation.
Collapse
|
8
|
Bolat İ, Bolat M, Kiliçlioğlu M, Okur S, Gölgeli A, Gözegir B, Çomakli S, Yildirim S, Sağlam YS, Warda M. Investigation of the Effects of Boric Acid against Post Operative Testicular Adhesion Caused by Experimental Laporotomy in Rats. Biol Trace Elem Res 2024:10.1007/s12011-024-04400-4. [PMID: 39340598 DOI: 10.1007/s12011-024-04400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 09/30/2024]
Abstract
Post-operative intra-abdominal adhesions, significantly affecting testicular tissue, are a prevalent and serious complication following laparoscopic surgery. This study investigated the efficacy of boric acid, known for its antioxidant, anti-inflammatory, and anti-apoptotic properties, in preventing post-operative testicular adhesions. Forty rats, were divided into four groups: control, laparoscopy (LA), boric acid (BA), and LA + BA. Following laparoscopic surgery, BA treatment was administered for seven days. While the adhesion score was around 3 in the LA group, it was 1 or below in the LA + BA group. Testicular tissues were examined by histopathological and biochemical methods. In testis tissues, in the LA group, malondialdehyde (MDA) levels increased while superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) levels decreased; these parameters normalized with BA treatment. Additionally, the LA group exhibited reduced levels of IL-10, Bcl-2, Kisspeptin-1, and GnRH, alongside elevated levels of inflammatory markers IL-1β, IL-6, TNF-α, JNK, BAX, and Caspase 3. BA treatment significantly restored these levels to normal. In conclusion, oxidative stress, inflammation, and apoptosis in testicular tissues were associated with post-operative testicular adhesions. BA demonstrated potential as an anti-adhesive agent, reducing testicular adhesions and normalizing biochemical and histological parameters following laparoscopic surgery.
Collapse
|
9
|
Bayir Y, Erkayman B, Albayrak A, Palabiyik-Yücelik ŞS, Can S, Hanci H, Tunç F, Halici H, Civelek MS, Sevim M, Yurdgülü EE, Metin Ö. Boric acid and zinc borate doped graphene hydrogels designed for burn treatment: In vitro viability-biocompatibility tests and microbiological analysis. J Biomater Appl 2024:8853282241268673. [PMID: 39302915 DOI: 10.1177/08853282241268673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Boron, an essential element for human, can be a key factor in wound healing. For this reason, in this study, role of boron products (boric acid and zinc borate) and boron product doped new synthesized graphene hydrogels was investigated for burn healing via in vitro viability-biocompatibility tests and microbiological analysis. It has been determined that boric acid and zinc borate are effective against microbial agents that are frequently seen in burns. In L929 mouse fibroblast cell line, BA, ZB and graphene hydrogels did not show any toxic effects, either alone or doped Graphene Hydrogel forms, except at very high doses. These substances showed antioxidant properties by protecting cells against H2O2 damage. The migration test performed on boron products also confirms the protective effect of boron products. In this study, the synthesis of graphene hydrogels was made for the first time, and their characterization was completed with appropriate instrumental analyses. The results of the biocompatibility tests of graphene hydrogels show that they are at least 96% biocompatible.
Collapse
|
10
|
Sevimli TS, Ghorbani A, Gakhiyeva F, Cevizlidere BD, Sevimli M. Boric Acid Alters the Expression of DNA Double Break Repair Genes in MCF-7-Derived Breast Cancer Stem Cells. Biol Trace Elem Res 2024; 202:3980-3987. [PMID: 38087035 DOI: 10.1007/s12011-023-03987-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/28/2023] [Indexed: 07/18/2024]
Abstract
Breast cancer pathology ranks second in mortality among women worldwide due to the resistance of cancer stem cells in tumor tissue to radiotherapy and chemotherapy and their effective DNA damage response system (DDR). Targeting the expression of DNA double-strand break (DSB) repair genes in breast cancer stem cells (BC-SCs) is essential for facilitating their elimination with conventional therapies. This study aims to investigate the effects of boric acid (BA) on the expression of DNA DSB repair genes in BC-SCs, which has not been studied in the literature before. BS-SCs were isolated by the MACS method and characterized by flow cytometry. The effects of BA on BC-SCs' DNA DSB repair genes were deciphered by cell viability assay, inverted microscopy, and RT-qPCR. While the expression of the BRCA1 and BRCA2 was upregulated, the expression of the ATM (p < 0.001), RAD51 (p < 0.001), and KU70 (p < 0.001) was downregulated in dose-treated BC-SCs (p < 0.001) to the qPCR results. Consequently, BA affects some of the DNA DSB repair genes of breast cancer stem cells. Findings from this study could provide new insights into the potential therapeutic application of BA in BC-SC elimination and cancer intervention.
Collapse
|
11
|
Semerci Sevimli T, Sevimli M, Ghorbani A, Şahintürk V, Qomi Ekenel E, Ertem T, Demir Cevizlidere B, Altuğ B, Tomsuk Ö, Uysal O, Güneş Bağış S, Avci H, Çemrek F, Ahmadova Z. The analysis of boric acid effect on epithelial-mesenchymal transition of CD133 + CD117 + lung cancer stem cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6791-6802. [PMID: 38536434 PMCID: PMC11422429 DOI: 10.1007/s00210-024-03062-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/18/2024] [Indexed: 09/25/2024]
Abstract
Targeting lung cancer stem cells (LC-SCs) for metastasis may be an effective strategy against lung cancer. This study is the first on epithelial-mesenchymal transition (EMT) properties of boric acid (BA) in LC-SCs. LC-SCs were isolated using the magnetic cell sorting (MACS) method. Tumor-sphere formation and flow cytometry confirmed CSC phenotype. The cytotoxic effect of BA was measured by MTT analysis, and the effect of BA on EMT was examined by migration analysis. The expression levels of ZEB1, SNAIL1, ITGA5, CDH1, ITGB1, VIM, COL1A1, and LAMA5 genes were analyzed by RT-qPCR. E-cadherin, Collagen-1, MMP-3, and Vimentin expressions were analyzed immunohistochemically. Boric acid slightly reduced the migration of cancer cells. Increased expression of transcription factor SNAIL (p < 0.001), but not ZEB1, was observed in LC-SCs. mRNA expression levels of ITGB1 (p < 0.01), ITGA5 (p < 0.001), COL1A1 (p < 0.001), and LAMA5 (p < 0.001) increased; CDH1 and VIM decreased in LC-SCs. Moreover, while E-cadherin (p < 0.001) and Collagen-1 (p < 0.01) immunoreactivities significantly increased, MMP-3 (p < 0.001) and Vimentin (p < 0.01) immunoreactivities decreased in BA-treated LC-SCs. To conclude, the current study provided insights into the efficacy and effects of BA against LC-SCs regarding proliferation, EMT, and cell death for future studies.
Collapse
|
12
|
Kocabay A, Taskin AC. Boric Acid Improved Cryopreserved Mouse Embryo Development. Biol Trace Elem Res 2024; 202:4101-4105. [PMID: 38049706 DOI: 10.1007/s12011-023-03990-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Boric acid (BA) is an essential trace element that is required to support the metabolic pathways in plants, humans, and animals. The present study investigates the in vitro development and quality of single-cell mouse embryos in a BA-added culture medium after cryopreservation using the solid-surface vitrification method. For this purpose, the pronuclear-stage embryos derived from superovulated C57Bl/6j mouse strains and the one-cell embryos were then cryopreserved using the solid-surface vitrification (SSV) method. After thawing, the embryos were cultured in a BA-added medium at 37 °C in a 5% CO2 environment until the blastocyst stage. The resulting in vitro development rates of the embryos in the control group, SSV group, and SSV + 1.62 × 10-4 μM BA group were 68.11% (36/59), 40.16% (16/48), and 64.92% (28/48) respectively, indicating that the BA supported the in vitro development of the embryos cryopreserved using the SSV method. Our results suggest that the addition of boric acid to the culture media increased the development rate of the embryos that were vitrified using the SSV method.
Collapse
|
13
|
Wu YC, Yu CH. A Computational Study of Reactions with Boric Acid Aimed to Promote the Utilization of Lignin. Chemistry 2024:e202401789. [PMID: 39158118 DOI: 10.1002/chem.202401789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
For exploring the reaction between the hydroxyl groups of lignin and boric acid under the alkaline condition, we study three proposed mechanisms for the formation of the anionic borate diester (ABDE) using the salicyl alcohol anion as the model compound by the density functional theory. ABDE has high flame retardancy and is a potentially practical application of lignin. The catalysis of sodium cation is found to enhance the deprotonation of the water cluster. The deprotonated product, hydroxide anion, is essential to the critical step, which is the cleavage of B-O bonds of the boric acid molecule, in reaction mechanisms. The energy profiles of the mechanisms show that the reaction between lignin and boric acid may start from the hydroxymethyl moieties of lignin since it requires less energy for the aforementioned critical step than from the phenol moieties of lignin. Moreover, the hydroxide anions compete with the hydroxymethyl groups in lignin for the formation of B-O bonds by forming tetrahydroxyborate anion (TBA) which requires very high activation energies to further react to the desired product ABDE. The optimal condition is to enhance the catalytic effect of sodium cations and meanwhile to control the formation of TBA.
Collapse
|
14
|
Hacioglu C, Tuncer C. Boric acid Increases Susceptibility to Chemotherapy by Targeting the Ferritinophagy Signaling Pathway in TMZ Resistant Glioblastoma Cells. Biol Trace Elem Res 2024; 202:3574-3587. [PMID: 37906374 DOI: 10.1007/s12011-023-03930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
Glioblastoma (GBM) is a common and highly lethal form of brain cancer. Temozolomide (TMZ) is the primary chemotherapy used for GBM, but it has limited effectiveness, with about half of the patients developing resistance. Iron regulatory proteins (IRPs) modulate genes involved in iron metabolism, while the nuclear receptor coactivator 4 (NCOA4) controls iron metabolism through a process called ferritinophagy. In this study, we investigated whether boric acid increases chemosensitivity mediated by ferritinophagy via the NCOA4 and IRP2 signaling pathways in TMZ-resistant GBM cells. First, we generated TMZ-resistant GBM cells (A172-R and T98G-R cells). Next, we investigated the effects of boric acid on cell viability, proliferation, cell cycle, and cell morphology in these cells. Additionally, following boric acid treatment, we analyzed the expression and protein levels of various biochemical markers in these cells. Boric acid treatment in A172-R and T98G-R cells suppressed cell viability and proliferation, arrested these cells in the G1/G0 cell cycle, and induced morphological differences. Boric acid increased NCOA4, IRP2, iron, and malondialdehyde (MDA) levels in A172-R and T98G-R cells, while glutathione (GSH) and glutathione peroxidase 4 (GPx4) levels decreased. Moreover, boric acid treatment increased intracellular iron levels and lipid peroxidation by inducing NCOA4 and IRP2 expression levels in TMZ-resistant cells. According to our results, boric acid may regulate chemosensitivity in A172-R and T98G-R cells mediated by NCOA4 and IRP2. In conclusion, the manipulative effects of boric acid on the ferritinophagy pathway hold the potential to sensitize TMZ-resistant GBM cells to chemotherapy.
Collapse
|
15
|
Hilal B, Eldem A, Oz T, Pehlivan M, Pirim I. Boric Acid Affects Cell Proliferation, Apoptosis, and Oxidative Stress in ALL Cells. Biol Trace Elem Res 2024; 202:3614-3622. [PMID: 38015327 DOI: 10.1007/s12011-023-03958-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a type of acute lymphoblastic leukemia from early T-cell progenitors. Interest grows in creating less toxic agents and therapies for chemo-resistant T-ALL cancer. Recently, elemental boron has special properties useful in the creation of new drugs. Studies have revealed the cytotoxic properties of boric acid (BA) on cancer, but not fully understood. We aimed to investigate the effect of BA on cell proliferation, apoptosis, and oxidative stress in the Jurkat cells. The effects of BA on cell viability were determined by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay for 24-48-72 h. The impact of BA on apoptosis was analyzed by acridine orange/ethidium bromide. Expression of apoptosis regulatory genes (Bcl-2, Bax, Caspase-3-8-9) and apoptotic miRNA (miR-21) was used by real-time quantitative polymerase chain reaction (RT-qPCR). The total oxidant status (TOS), total antioxidant status (TAS), and the oxidative stress index (OSI) value were calculated for oxidative stress. We determined the cytotoxic activity of BA on Jurkat cells by using XTT and defined the IC50 concentration (802.7 μg/mL) of BA. The findings clearly show that BA inhibited Jurkat cell proliferation dose-dependently. BA induced apoptosis through downregulated anti-apoptotic genes, and upregulated pro-apoptotic genes. Additionally, we found that BA significantly reduced the expression of miR-21 (p<0.001). Our findings demonstrated that different doses of BA increased TAS levels while decreasing TOS levels in Jurkat cells. Our study suggests that BA might be potential anti-cancer agent candidate in ALL via inhibition of cell proliferation, induced apoptosis, and reducing the amounts of anti-oxidants in cells.
Collapse
|
16
|
Ben-David D, Cohen Y, Zohar I, Maor Y, Schwartz O. The impact of Boric Acid tubes on quantitative urinary bacterial cultures in hospitalized patients. Eur J Clin Microbiol Infect Dis 2024; 43:1639-1644. [PMID: 38916642 PMCID: PMC11271362 DOI: 10.1007/s10096-024-04874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION The accuracy of urine culture results can be affected by pre-analytical factors such as transport delays and storage conditions. The objectives of this study were to analyze urine collection practices and assess the impact of introducing boric acid tubes for urine collection on quantitative urinary bacterial cultures of hospitalized patients in medical wards. METHODS A quasi-experimental pre-post study conducted in an acute care facility. In the pre-intervention phase (2020-2021), urine samples were transported without preservatives at room temperature. In 2022 (post-intervention), we transitioned to boric acid transport tubes, evaluating its effect on significant bacterial growth (≥ 105 CFU/ml). Bivariate and multivariate analyses identified predictors of culture positivity. RESULTS Throughout the duration of the study, a total of 12,660 urine cultures were analyzed. Date and time documentation was complete for 38.3% of specimens. Culture positivity was higher with longer processing times: positivity was 21.3% (220/1034) when specimens were processed within 4 h, 28.4% (955/3364) when processed in 4-24 h, and 32.9% (137/417) when processed after 24 h (p < 0.0001). For 4-24-hour processing, positivity decreased from 30.4% (704/2317) pre-intervention to 24.0% (251/1047) post-intervention (p < 0.001), with no significant changes in < 4 or ≥ 24-hour specimens. Stratified analysis by processing time revealed that the intervention was associated with reduced positivity only in cultures processed within 4-24 h (OR 0.80, 95% CI 0.67-0.94; p = 0.008). CONCLUSION The introduction of boric acid transport tubes predominantly influenced cultures transported within a 4-24-hour window. This presents an opportunity to improve urine tract infection diagnostic practices in healthcare settings.
Collapse
|
17
|
Kar E, Kar F, Can B, Çakır Gündoğdu A, Özbayer C, Koçak FE, Şentürk H. Prophylactic and Therapeutic Efficacy of Boric Acid on Lipopolysaccharide-Induced Liver and Kidney Inflammation in Rats. Biol Trace Elem Res 2024; 202:3701-3713. [PMID: 37910263 DOI: 10.1007/s12011-023-03941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
In our study, we aimed to examine possible prophylactic (P) or therapeutic (T) effects of boric acid (BA) on lipopolysaccharide (LPS) induced liver and kidney damages. Thirty-two rats were divided into four groups as control, LPS, BAP+LPS, and LPS+BAT. BA was given orally to the rats one hour before the intraperitoneal LPS administration in the BAP+LPS group and one hour after the LPS administration in the LPS+BAT group. Malondialdehyde (MDA), myeloperoxidase (MPO), interleukin-6 (IL-6), IL-10, reduced glutathione (GSH), total oxidant and antioxidant status (TOS and TAS), semaphorin-3A (SEMA3A), cytochrome c (CYCS), and caspase-3 (CASP3) parameters were determined by ELISA method to monitor inflammation, oxidative stress, and apoptosis in the liver and kidney tissues of rats. In addition, alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea, creatinine (CREA), C-reactive protein (CRP), gamma glutamyl transferase (GGT), glucose (GLU), sodium (Na), potassium (K), and chlorine (Cl) biochemical parameters were measured in rat serums to monitor liver and kidney functions. Liver and kidney tissues were also examined histopathologically and immunohistochemically. All data were statistically analyzed. Our histological, biochemical, inflammatory, oxidative stress, and apoptotic findings showed that LPS causes serious damage to liver and kidney tissues. Boric acid application brought about significant improvements on the parameters. However, this improvement was seen in the BAP+LPS group, and the results of the LPS+BAT group were insufficient to improve. Our results showed that boric acid administration is effective on severe liver and kidney damage caused by LPS. It has been concluded that prophylactic application is more effective, while therapeutic application is insufficient.
Collapse
|
18
|
Lin JY, Huang YH. Enhanced boron removal via seed-induced crystal growth of barium perborate in sequential fluidized-bed crystallization. CHEMOSPHERE 2024; 361:142569. [PMID: 38852627 DOI: 10.1016/j.chemosphere.2024.142569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Chemical oxo-precipitation (COP) is an enhanced precipitation method for boron removal with the conversion of boric acid to perborate anions. When using barium-based precipitant, the boron can be effectively precipitated as barium perborates (BaPBs). The phase transformation of BaPBs from amorphous (A-BaPB, Ba(B(OH)3OOH)2) to crystalline (C-BaPB, BaB2(OO)2(OH)4) form is crucial for effective boron removal. However, scaling up this phase transformation of BaPBs is hindered by poor diffusion. This study aims to promote the growth of C-BaPB through seed-induced crystal growth, eliminating the need for phase transformation. By examining the relationship between crystal growth rate and supersaturation, surface spiral growth was identified as the rate-limiting step of the growth of micron-sized seeds near pHpzc. To enable continuous crystal growth, granular seeds of C-BaPB were prepared and employed as the medium for fluidized-bed crystallization (FBC). The system reached steady state 3 hydraulic retention times, achieving 90% boron removal. The effect of surface loading, ionic strength, and dosages on steady-state crystal growth rate was studied, revealing a shift of the rate-limiting step in FBC to diffusion. Lastly, the system that constituted of two FBCs in-series for sequential crystallization of A-BaPB and C-BaPB was demonstrated. The integrated system provided 97.8% of boron removal from synthetic wastewater containing 500 mg-B/L, with 92.3% of boron crystallized on the granular seeds of BaPBs.
Collapse
|
19
|
Hassan MN, Abdullah TS, Mou MB, Towsif HR. Analysis of the flame retardancy effect of boron-containing compound on polyester-cotton blended fabric. Heliyon 2024; 10:e34007. [PMID: 39071651 PMCID: PMC11277368 DOI: 10.1016/j.heliyon.2024.e34007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Flame-retardant finishing of textile materials is crucial for ensuring human safety and mitigating fire hazards. Though various textile fibers have inherent flame-resistant properties, cotton fiber has a higher affinity to burn. This research focused on developing non-durable FR treatments for cotton-rich polyester-cotton (T/C) blended products economically, using boron-containing compounds. Because of the high melting point use of borax on T/C fabric reduces the fabric's flammability. Boric acid was also used as an auxiliary substrate and Di-sodium hydrogen phosphate dihydrate was used for its cleaning and softening properties. Borax and boric acid create a layer of char when burned and stop the flame. We used the impregnation method for this finishing process. After the chemical finish on different types of T/C fabric, we completed different types of tests like 45 0 flame retardant, LOI, SEM, breaking strength, drapability, crease recovery, and water vapor transmission tests, and found the desired properties. It increased the flame retardancy and crease recovery properties but the slight reduction of the fabric strength was noticed in case of excessive coating. Water vapor transmission property also reduced gradually with the increase of chemical concentration. Since the chemicals are available in the local market and lower in cost than common FR chemicals, it is more economical.
Collapse
|
20
|
Semerci Sevimli T, Ghorbani A, Gakhiyeva F, Ebrahimi A, Ghorbanpoor H, Altuğ B, Ergen FB, Ahmadova Z, Soykan MN, Tufekcioglu E. Evaluation of Boric Acid Treatment on microRNA-127-5p and Metastasis Genes Orchestration of Breast Cancer Stem Cells. Biol Trace Elem Res 2024:10.1007/s12011-024-04274-6. [PMID: 38963646 DOI: 10.1007/s12011-024-04274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Coregulation of microRNAs (miRNAs) and cancer stem cells (CSCs) is very important in carcinogenesis. miR-127-5p is known to be downregulated in breast cancer. In this study, we aimed to investigate how boric acid (BA), known for its previously unstudied anti-cancer properties, would affect the expression of miR127-5p and genes responsible for breast cancer stem cells (BC-SCs) metastasis. BC-SCs were isolated from human breast cancer cells (MCF-7) by immunomagnetic cell separation and characterized with flow cytometry and sphere formation. The viability of BC-SCs and the determination of its IC50 value in response to boric acid (BA) were assessed via the MTT assay. Boric acid exhibited dose- and time-dependent inhibition of cell viability in cells. The IC50 doses of boric acid in MCF-7 cells and BC-SCs were 45.69 mM and 41.27 mM, respectively. The impact of BA on the expression of metastatic genes and miR127-5p was elucidated through RT-qPCR analysis. While the expression of the COL1A1 (p < 0.05) and VIM (p < 0.01) was downregulated, the expression of the miR-127-5p, ZEB1 (p < 0.01), CDH1 (p < 0.05), ITGB1 (p < 0.05), ITGA5 (p < 0.05), LAMA5 (p < 0.01), and SNAIL (p < 0.05), was up-regulated in dose-treated BC-SCs (p < 0.001) to the RT-qPCR results. Our findings suggest that boric acid could induce miR-127-5p expression. However, it cannot be said that it improves the metastasis properties of breast cancer stem cells.
Collapse
|
21
|
Bozkurt SB, Hakki SS, Nielsen FH. Boric acid alleviates periodontal inflammation induced by IL-1β in human gingival fibroblasts. J Trace Elem Med Biol 2024; 84:127466. [PMID: 38692230 DOI: 10.1016/j.jtemb.2024.127466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Boric acid (BA) has been found to have therapeutic effects on periodontal disease through beneficially affecting antibacterial, anti-viral, and anti-inflammatory actions. METHODS This study was conducted to determine the effect of BA on cell viability and on mRNA expressions of proinflammatory and anti-inflammatory cytokines and on oxidative stress enzymes induced by IL-1β (1 ng/mL) in Human Gingival Fibroblasts (HGF) cultured for 24 and 72 h in DMEM media. The BA concentrations added to the media were 0.09 %, 0.18 %, 0.37 %, and 0.75 %. RESULTS All of the BA concentrations increased the viability of cell cultured in DMEM media only, indicating that these concentrations were not toxic and actually beneficial to cell viability. The addition of 1 ng/m: of IL-1β decreased cell viability that was overcome by all concentrations of BA at both 24 and 72 h. The IL-1β addition to the media increased the expressions of the proinflammatory cytokines IL-1β, IL-6, IL-8, and IL-17; the anti-inflammatory cytokine IL-10; and the oxidative stress enzymes superoxide dismutase (SOD0 and glutathione peroxidase (GPX). The IL-1β induced increase mRNA expression of IL-1β was decreased at 24 h by the 0.37 % and 0.75 % BA additions to the media and decreased in a dose-dependent manner by all concentrations of BA at 72 h. The IL-1β induced increase in the expression of IL-6 was decreased in dose-dependent manner at 72 h by BA. All BA concentrations decreased the IL-1β induced expression of IL-8 at both 24 and 72 h. The induced increase in IL-17 by IL-1β was not significantly affected by the BA additions. The increase in the anti-inflammatory cytokine IL10 induced by IL-1β was increased further by all BA additions in dose dependent manner at both 24 and 72 h. The mRNA expressions of SOD and GPX increased by IL-1β were further increased by the 0.37 % and 0.75 % BA concentrations at 72 h. CONCLUSIONS These findings indicate that BA can significantly modulate the cytokines that are involved in inflammatory stress and reactive oxygen species action and thus could be an effective therapeutic agent in the treatment of periodontal disease.
Collapse
|
22
|
Öz M. Effects of Boric Acid on Oxidative Stress Parameters, Growth Performance and Blood Parameters of Rainbow Trout (Oncorhynchus Mykiss). Biol Trace Elem Res 2024:10.1007/s12011-024-04276-4. [PMID: 38913295 DOI: 10.1007/s12011-024-04276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Rainbow trout (Oncorhynchus mykiss) with a starting weight of 397.28 ± 3.21 g were fed different ratios (G1-0.00%, G2-0.010%, G3-0.025%, and G4-0.050%) of boric acid-supplemented feed for 140 days. The effects of dietary boric acid on oxidative stress parameters, growth performance, haematology and some biochemical parameters were investigated after the feeding period. The addition of boric acid to trout feed positively affected growth performance; the final weights of the groups were 928.15 ± 5.73 g, 955.87 ± 8.67 g, 994.24994,75 ± 7.46 g, and 976.80976,80 ± 6.26 g for the control group and the three experimental groups, respectively. The lowest feed conversation ratio (FCR) was 1.19 (G3) whereas the highest was 1.42 (G1). The lowest protein efficiency ratio was 1.63 (G1), while the highest was 1.95 (G3). In this study, it was observed that boric acid added to the feed changed muscle and blood oxidative stress parameters in rainbow trout, increased the growth performance of rainbow trout, and affected blood and biochemistry values.
Collapse
|
23
|
Demircan B, Velioglu YS, Giuffrè AM. Effects of washing with boric acid solutions on residual boric acid content, microbiological load, and quality of fresh-cut spinach. Heliyon 2024; 10:e31974. [PMID: 38845991 PMCID: PMC11152976 DOI: 10.1016/j.heliyon.2024.e31974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/18/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Insufficient disinfection of fresh-cut spinach poses significant health risks, along with potential issues like odor, color changes, and softening during short-term storage. To address these challenges, boric acid solutions were explored as an alternative to chlorine washes, which are known to produce toxic compounds. Among various concentrations, 1 % boric acid exhibited the most effective microbial inactivation, leading to substantial reductions in total mesophilic aerobic bacteria, total yeast and mold, and Enterobacteriaceae counts, with reductions of 1.64, 1.38, and 1.77 logs, respectively. Additionally, washing spinach leaves with this solution for 1 min maintained quality parameters, with enhanced antioxidant activity (55.26 mg kg-1 Trolox equivalent), increased total phenolic content (1214.06 mg kg-1 gallic acid equivalent), retention of chlorophyll a (839.16 mg kg-1), chlorophyll b (539.61 mg kg-1) and ascorbic acid content (264.72 mg kg-1). Mechanical properties such as puncture strength (1.81 N) and puncture distance (52.78 mm) also showed favorable outcomes, alongside optimal moisture content at 89.81 %. Notably, residual boric acid content was lowest in spinach leaves (1252.49 mg kg-1) and highest in the wash water (53.88 mg kg-1) after treatment. Scanning electron microscopy images demonstrated maintained tissue integrity, while Hunter Lab readings indicated minimal color changes post-washing. Additionally, sensory evaluations and various physicochemical analyses further supported the efficacy of boric acid washing. Consequently, washing spinach leaves with a 1 % boric acid solution for 1 min yielded favorable results across multiple quality parameters. These findings suggest the potential of boric acid as a safe and effective alternative disinfectant in the fresh-cut produce industry, highlighting its practical implications for food safety and quality. Future research should focus on exploring long-term effects and optimizing washing protocols for broader applications.
Collapse
|
24
|
Çakır A, Şahin TN, Kahveci Ö. Assessing the efficacy of various irrigation solutions in dissolving organic tissue. Sci Rep 2024; 14:13861. [PMID: 38879635 PMCID: PMC11180171 DOI: 10.1038/s41598-024-64904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 06/19/2024] Open
Abstract
For successful root canal treatment, adequate chemomechanical instrumentation to eliminate microorganisms and pulp tissue is crucial. This study aims to assess the organic tissue dissolving activity of various irrigation solutions on bovine tooth pulp tissue. 40 extracted bovine mandibular anterior teeth (n = 10) were used for the study. Bovine pulp pieces (25 ± 5 mg) were placed in 1.5 ml Eppendorf tubes. Each tooth pulp sample was then covered with 1.5 ml of different irrigation solutions, dividing them into four groups: Group 1 with freshly prepared 5% Boric acid, Group 2 with 5% NaOCl, Group 3 with Irritrol, and Group 4 with Saline. Samples were left at room temperature for 30 min, then dried and reweighed. The efficacy of tissue dissolution ranked from highest to lowest was found to be NaOCl, Boric Acid, Irritrol, and saline (p < 0.05). It was observed that the decrease in the NaOCl group was greater than the decrease in the Irritrol and saline groups, and the decrease in the Boric acid group was significantly greater than the decrease in the saline group (p < 0.05). It also emphasizes the need for future studies to further investigate the effects of Irritrol and Boric Acid on tissue dissolution.
Collapse
|
25
|
Karaman E, Onder GO, Goktepe O, Karakas E, Mat OC, Bolat D, Koseoglu E, Tur K, Baran M, Ermis M, Balcioglu E, Yay A. Protective Effects of Boric Acid Taken in Different Ways on Experimental Ovarian İschemia and Reperfusion. Biol Trace Elem Res 2024; 202:2730-2743. [PMID: 37743417 DOI: 10.1007/s12011-023-03871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Ovarian ischemia is a gynecological emergency that occurs as a result of ovarian torsion, affects women of reproductive age, and reduces ovarian reserve. The current study was designed to investigate the effect of boric acid taken in different ways on histopathological changes, autophagy, oxidative stress, and DNA damage caused by ischemia and reperfusion in the ovary of adult female rats. We established seven groups of 70 adult female rats: untreated control, intraperitoneal boric acid group (IpBA), oral boric acid group (OBA), ischemia/reperfusion group (ischemia/2 h reperfusion; OIR), ischemia/reperfusion and local boric acid group (OIR + LBA), ischemia/reperfusion and intraperitoneal boric acid group (OIR + IpBA), and ischemia/reperfusion and oral boric acid group (OIR + OBA). On the 31st day of the experimental procedure, both ovaries were harvested for histologic (hematoxylen and eosin and Masson trichrom), biochemical (ELISA and AMH, MDA, SOD, and CAT analyses), and comet evaluation. In the OIR group, hemorrhage, edema, inflammation, and diminished follicle reserve were seen in the ovary. Boric acid treatment reduced the ovarian ischemia/reperfusion damage, and the follicles exhibited similar morphological features to the control group. Moreover, boric acid treatment decreased the levels of Hsp70, NF-KB, COX-2, and CD31, which increased as a result of OIR. On the other hand, SCF and AMH levels, which decreased as a result of OIR, increased with boric acid treatment. The levels of autophagy markers (Beclin-1, LC3, and p62) reached values close to those of the control group. According to the biochemical findings, it was concluded that boric acid is also effective on oxidative stress, and the AMH level was particularly high in the OIR + OBA group, consistent with the immunohistochemical staining result. In addition, it was observed that the DNA damage caused by OIR reached values close to those of the control group, especially in the OBA after OIR. This study showed the therapeutic effects of boric acid on OIR injuries; thus, boric acid may be a potential therapeutic agent for ovarian protection and fertility preservation in cases that may cause ovarian torsion.
Collapse
|