1
|
Tian H. Human-robot interaction in motor imagery: A system based on the STFCN for unilateral upper limb rehabilitation assistance. J Neurosci Methods 2024; 411:110240. [PMID: 39111412 DOI: 10.1016/j.jneumeth.2024.110240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/30/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Rehabilitation training based on the brain-computer interface of motor imagery (MI-BCI) can help restore the connection between the brain and movement. However, the performance of most popular MI-BCI system is coarse-level, which means that they are good at guiding the rehabilitation exercises of different parts of the body, but not for the individual component. NEW METHODS In this paper, we designed a fine-level MI-BCI system for unilateral upper limb rehabilitation assistance. Besides, due to the low discrimination of different sample classes in a single part, a classification algorithm called spatial-temporal filtering convolutional network (STFCN) was proposed that used spatial filtering and deep learning. COMPARISON WITH EXISTING METHODS Our STFCN outperforms popular methods in recent years using BCI IV 2a and 2b data sets. RESULTS To verify the effectiveness of our system, we recruited 6 volunteers and collected their data for a four-classification online experiments, resulting in an average accuracy of 62.7 %. CONCLUSION This fine-level MI-BCI system has good appli-cation prospects, and inspires more exploration of rehabilitation in a single part of the human body.
Collapse
|
2
|
Meenakshinathan J, Gupta V, Reddy TK, Behera L, Sandhan T. Session-independent subject-adaptive mental imagery BCI using selective filter-bank adaptive Riemannian features. Med Biol Eng Comput 2024; 62:3293-3310. [PMID: 38825665 DOI: 10.1007/s11517-024-03137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
The brain-computer interfaces (BCIs) facilitate the users to exploit information encoded in neural signals, specifically electroencephalogram (EEG), to control devices and for neural rehabilitation. Mental imagery (MI)-driven BCI predicts the user's pre-meditated mental objectives, which could be deployed as command signals. This paper presents a novel learning-based framework for classifying MI tasks using EEG-based BCI. In particular, our work focuses on the variation in inter-session data and the extraction of multi-spectral user-tailored features for robust performance. Thus, the goal is to create a calibration-free subject-adaptive learning framework for various mental imagery tasks not restricted to motor imagery alone. In this regard, critical spectral bands and the best temporal window are first selected from the EEG training trials of the subject based on the Riemannian user learning distance metric (Dscore) that checks for distinct and stable patterns. The filtered covariance matrices of the EEG trials in each spectral band are then transformed towards a reference covariance matrix using the Riemannian transfer learning, enabling the different sessions to be comparable. The evaluation of our proposed Selective Time-window and Multi-scale Filter-Bank with Adaptive Riemannian (STFB-AR) features on four public datasets, including disabled subjects, showed around 15% and 8% improvement in mean accuracy over baseline and fixed filter-bank models, respectively.
Collapse
|
3
|
Lee S, Kim M, Ahn M. Evaluation of consumer-grade wireless EEG systems for brain-computer interface applications. Biomed Eng Lett 2024; 14:1433-1443. [PMID: 39465107 PMCID: PMC11502727 DOI: 10.1007/s13534-024-00416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/18/2024] [Accepted: 08/07/2024] [Indexed: 10/29/2024] Open
Abstract
With the growing popularity of consumer-grade electroencephalogram (EEG) devices for health, entertainment, and cognitive research, assessing their signal quality is essential. In this study, we evaluated four consumer-grade wireless and dry-electrode EEG systems widely used for brain-computer interface (BCI) research and applications, comparing them with a research-grade system. We designed an EEG phantom method that reproduced µV-level amplitude EEG signals and evaluated the five devices based on their spectral responses, temporal patterns of event-related potential (ERP), and spectral patterns of resting-state EEG. We discovered that the consumer-grade devices had limited bandwidth compared with the research-grade device. A late component (e.g., P300) was detectable in the consumer-grade devices, but the overall ERP temporal pattern was distorted. Only one device showed an ERP temporal pattern comparable to that of the research-grade device. On the other hand, we confirmed that the activation of the alpha rhythm was observable in all devices. The results provide valuable insights for researchers and developers when it comes to selecting suitable EEG devices for BCI research and applications.
Collapse
|
4
|
Sun Y, Gao Y, Shen A, Sun J, Chen X, Gao X. Creating ionic current pathways: A non-implantation approach to achieving cortical electrical signals for brain-computer interface. Biosens Bioelectron 2024; 268:116882. [PMID: 39486261 DOI: 10.1016/j.bios.2024.116882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
This study introduces a novel method for acquiring brain electrical signals comparable to intracranial recordings without the health risks associated with implanted electrodes. We developed a technique using ultrasonic tools to create micro-holes in the skull and insert hollow implants, preventing natural healing. This approach establishes an artificial ionic current path (AICP) using tissue fluid, facilitating signal transmission from the cortex to the scalp surface. Experiments were conducted on pigs to validate the method's effectiveness. We synchronized our recordings with perforated electrocorticography (ECoG) for comparison. The AICP method yielded signal quality comparable to implanted ECoG in the low-frequency range, with a significant improvement in signal-to-noise ratio for evoked potentials. Our results demonstrate that this non-invasive technique can acquire high-quality brain signals, offering potential applications in neurophysiology, clinical research, and brain-computer interfaces. This innovative approach of utilizing tissue fluid as a natural conduction path opens new avenues for brain signal acquisition and analysis.
Collapse
|
5
|
V HM, Begum BS. Towards imagined speech: Identification of brain states from EEG signals for BCI-based communication systems. Behav Brain Res 2024; 477:115295. [PMID: 39428037 DOI: 10.1016/j.bbr.2024.115295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND The electroencephalogram (EEG) based brain-computer interface (BCI) system employing imagined speech serves as a mechanism for decoding EEG signals to facilitate control over external devices or communication with the external world at the moment the user desires. To effectively deploy such BCIs, it is imperative to accurately discern various brain states from continuous EEG signals when users initiate word imagination. NEW METHOD This study involved the acquisition of EEG signals from 15 subjects engaged in four states: resting, listening, imagined speech, and actual speech, each involving a predefined set of 10 words. The EEG signals underwent preprocessing, segmentation, spatio-temporal and spectral analysis of each state, and functional connectivity analysis using the phase locking value (PLV) method. Subsequently, five features were extracted from the frequency and time-frequency domains. Classification tasks were performed using four machine learning algorithms in both pair-wise and multiclass scenarios, considering subject-dependent and subject-independent data. RESULTS In the subject-dependent scenario, the random forest (RF) classifier achieved a maximum accuracy of 94.60 % for pairwise classification, while the artificial neural network (ANN) classifier achieved a maximum accuracy of 66.92 % for multiclass classification. In the subject-independent scenario, the random forest (RF) classifier achieved maximum accuracies of 81.02 % for pairwise classification and 55.58 % for multiclass classification. Moreover, EEG signals were classified based on frequency bands and brain lobes, revealing that the theta (θ) and delta (δ) bands, as well as the frontal and temporal lobes, are sufficient for distinguishing between brain states. CONCLUSION The findings promise to develop a system capable of automatically segmenting imagined speech segments from continuous EEG signals.
Collapse
|
6
|
Chen X, Li S, Tu Y, Wang Z, Wu D. User-wise perturbations for user identity protection in EEG-based BCIs. J Neural Eng 2024. [PMID: 39423826 DOI: 10.1088/1741-2552/ad88a5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
OBJECTIVE An electroencephalogram (EEG)-based brain-computer interface (BCI) is a direct communication pathway between the human brain and a computer. Most research so far studied more accurate BCIs, but much less attention has been paid to the ethics of BCIs. Aside from task-specific information, EEG signals also contain rich private information, e.g., user identity, emotion, disorders, etc., which should be protected. APPROACH We show for the first time that adding user-wise perturbations can make identity information in EEG unlearnable. We propose four types of user-wise privacy-preserving perturbations, i.e., random noise, synthetic noise, error minimization noise, and error maximization noise. After adding the proposed perturbations to EEG training data, the user identity information in the data becomes unlearnable, while the BCI task information remains unaffected. MAIN RESULTS Experiments on six EEG datasets using three neural network classifiers and various traditional machine learning models demonstrated the robustness and practicability of the proposed perturbations. SIGNIFICANCE Our research shows the feasibility of hiding user identity information in EEG data without impacting the primary BCI task information.
Collapse
|
7
|
Gunda NK, Khalaf MI, Bhatnagar S, Quraishi A, Gudala L, Venkata AKP, Alghayadh FY, Alsubai S, Bhatnagar V. Lightweight attention mechanisms for EEG emotion recognition for brain computer interface. J Neurosci Methods 2024; 410:110223. [PMID: 39032522 DOI: 10.1016/j.jneumeth.2024.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/18/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND In the realm of brain-computer interfaces (BCI), identifying emotions from electroencephalogram (EEG) data is a difficult endeavor because of the volume of data, the intricacy of the signals, and the several channels that make up the signals. NEW METHODS Using dual-stream structure scaling and multiple attention mechanisms (LDMGEEG), a lightweight network is provided to maximize the accuracy and performance of EEG-based emotion identification. Reducing the number of computational parameters while maintaining the current level of classification accuracy is the aim. This network employs a symmetric dual-stream architecture to assess separately time-domain and frequency-domain spatio-temporal maps constructed using differential entropy features of EEG signals as inputs. RESULT The experimental results show that after significantly lowering the number of parameters, the model achieved the best possible performance in the field, with a 95.18 % accuracy on the SEED dataset. COMPARISON WITH EXISTING METHODS Moreover, it reduced the number of parameters by 98 % when compared to existing models. CONCLUSION The proposed method distinct channel-time/frequency-space multiple attention and post-attention methods enhance the model's ability to aggregate features and result in lightweight performance.
Collapse
|
8
|
Wang X, Qi H. Decoding motor imagery loaded on steady-state somatosensory evoked potential based on complex task-related component analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108425. [PMID: 39321611 DOI: 10.1016/j.cmpb.2024.108425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/25/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND AND OBJECTIVE Motor Imagery (MI) recognition is one of the most critical decoding problems in brain- computer interface field. Combined with the steady-state somatosensory evoked potential (MI-SSSEP), this new paradigm can achieve higher recognition accuracy than the traditional MI paradigm. Typical algorithms do not fully consider the characteristics of MI-SSSEP signals. Developing an algorithm that fully captures the paradigm's characteristics to reduce false triggering rate is the new step in improving performance. METHODS The idea to use complex signal task-related component analysis (cTRCA) algorithm for spatial filtering processing has been proposed in this paper according to the features of SSSEP signal. In this research, it's proved from the analysis of simulation signals that task-related component analysis (TRCA) as typical method is affected when the response between stimuli has reduced correlation and the proposed algorithm can effectively overcome this problem. The experimental data under the MI-SSSEP paradigm have been used to identify right-handed target tasks and three unique interference tasks are used to test the false triggering rate. cTRCA demonstrates superior performance as confirmed by the Wilcoxon signed-rank test. RESULTS The recognition algorithm of cTRCA combined with mutual information-based best individual feature (MIBIF) and minimum distance to mean (MDM) can obtain AUC value up to 0.89, which is much higher than traditional algorithm common spatial pattern (CSP) combined with support vector machine (SVM) (the average AUC value is 0.77, p < 0.05). Compared to CSP+SVM, this algorithm model reduced the false triggering rate from 38.69 % to 20.74 % (p < 0.001). CONCLUSIONS The research prove that TRCA is influenced by MI-SSSEP signals. The results further prove that the motor imagery task in the new paradigm MI-SSSEP causes the phase change in evoked potential. and the cTRCA algorithm based on such phase change is more suitable for this hybrid paradigm and more conducive to decoding the motor imagery task and reducing false triggering rate.
Collapse
|
9
|
Sung DJ, Kim KT, Jeong JH, Kim L, Lee SJ, Kim H, Kim SJ. Improving inter-session performance via relevant session-transfer for multi-session motor imagery classification. Heliyon 2024; 10:e37343. [PMID: 39296025 PMCID: PMC11409124 DOI: 10.1016/j.heliyon.2024.e37343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Motor imagery (MI)-based brain-computer interfaces (BCIs) using electroencephalography (EEG) have found practical applications in external device control. However, the non-stationary nature of EEG signals remains to obstruct BCI performance across multiple sessions, even for the same user. In this study, we aim to address the impact of non-stationarity, also known as inter-session variability, on multi-session MI classification performance by introducing a novel approach, the relevant session-transfer (RST) method. Leveraging the cosine similarity as a benchmark, the RST method transfers relevant EEG data from the previous session to the current one. The effectiveness of the proposed RST method was investigated through performance comparisons with the self-calibrating method, which uses only the data from the current session, and the whole-session transfer method, which utilizes data from all prior sessions. We validated the effectiveness of these methods using two datasets: a large MI public dataset (Shu Dataset) and our own dataset of gait-related MI, which includes both healthy participants and individuals with spinal cord injuries. Our experimental results revealed that the proposed RST method leads to a 2.29 % improvement (p < 0.001) in the Shu Dataset and up to a 6.37 % improvement in our dataset when compared to the self-calibrating method. Moreover, our method surpassed the performance of the recent highest-performing method that utilized the Shu Dataset, providing further support for the efficacy of the RST method in improving multi-session MI classification performance. Consequently, our findings confirm that the proposed RST method can improve classification performance across multiple sessions in practical MI-BCIs.
Collapse
|
10
|
Feng J, Gao S, Hu Y, Sun G, Sheng W. Brain-Computer Interface for Patients with Spinal Cord Injury: A Bibliometric Study. World Neurosurg 2024:S1878-8750(24)01532-8. [PMID: 39245135 DOI: 10.1016/j.wneu.2024.08.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) is a debilitating condition with profound implications on patients' quality of life. Recent advancements in brain-computer interface (BCI) technology have provided novel opportunities for individuals with paralysis due to SCI. Consequently, research on the application of BCI for treating SCI has received increasing attention from scholars worldwide. However, there is a lack of rigorous bibliometric studies on the evolution and trends in this field. Hence, the present study aimed to use bibliometric methods to investigate the current status and emerging trends in the field of applying BCI for treating SCI and thus identify novel therapeutic options for SCI. METHODS We conducted a comprehensive review of the relevant literature on BCI applications for treating SCI published between 2005 and 2024 by using the Web of Science Core Collection database. To facilitate visualization and quantitative analysis of the published literature, we used VOSviewer and CiteSpace software tools. These tools enabled the assessment of co-authorships, co-occurrences, citations, and co-citations in the selected literature, thereby providing an overview of the current trends and predictive insights into the field. RESULTS The literature search yielded 714 publications from the Web of Science Core Collection database. The findings indicated a significant upward trend in the number of publications, yielding a total of 24,804 citations, with an average citation rate of 34.74 per publication and an H-index of 75. Research contributions were identified from 54 countries/regions, and the United States, China, and Germany emerged as the predominant contributors. A total of 1114 research institutions contributed to the retrieved literature, with Harvard Medical School, Brown University, and Northwestern University producing the highest number of publications. The published literature was predominantly distributed across 258 academic journals, and the Journal of Neural Engineering was the most frequently utilized publication source. Hochberg, Leigh, Henderson, Jaimie, and Collinger were the prominent authors in this field. CONCLUSIONS In recent years, there has been a steep increase in research on the use of BCI for treating SCI. Existing research focuses on the application of BCI for improving rehabilitation and quality of life of patients with SCI. Interdisciplinary collaboration is the current trend in this field.
Collapse
|
11
|
Bhavsar P, Shah P, Sinha S, Kumar D. Musical Neurofeedback Advancements, Feedback Modalities, and Applications: A Systematic Review. Appl Psychophysiol Biofeedback 2024; 49:347-363. [PMID: 38837017 DOI: 10.1007/s10484-024-09647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
The field of EEG-Neurofeedback (EEG-NF) training has showcased significant promise in treating various mental disorders, while also emerging as a cognitive enhancer across diverse applications. The core principle of EEG-NF involves consciously guiding the brain in desired directions, necessitating active engagement in neurofeedback (NF) tasks over an extended period. Music listening tasks have proven to be effective stimuli for such training, influencing emotions, mood, and brainwave patterns. This has spurred the development of musical NF systems and training protocols. Despite these advancements, there exists a gap in systematic literature that comprehensively explores and discusses the various modalities of feedback mechanisms, its benefits, and the emerging applications. Addressing this gap, our review article presents a thorough literature survey encompassing studies on musical NF conducted over the past decade. This review highlights the several benefits and applications ranging from neurorehabilitation to therapeutic interventions, stress management, diagnostics of neurological disorders, and sports performance enhancement. While acknowledged for advantages and popularity of musical NF, there is an opportunity for growth in the literature in terms of the need for systematic randomized controlled trials to compare its effectiveness with other modalities across different tasks. Addressing this gap will involve developing standardized methodologies for studying protocols and optimizing parameters, presenting an exciting prospect for advancing the field.
Collapse
|
12
|
Awuah WA, Ahluwalia A, Darko K, Sanker V, Tan JK, Tenkorang PO, Ben-Jaafar A, Ranganathan S, Aderinto N, Mehta A, Shah MH, Lee Boon Chun K, Abdul-Rahman T, Atallah O. Bridging Minds and Machines: The Recent Advances of Brain-Computer Interfaces in Neurological and Neurosurgical Applications. World Neurosurg 2024; 189:138-153. [PMID: 38789029 DOI: 10.1016/j.wneu.2024.05.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
Brain-computer interfaces (BCIs), a remarkable technological advancement in neurology and neurosurgery, mark a significant leap since the inception of electroencephalography in 1924. These interfaces effectively convert central nervous system signals into commands for external devices, offering revolutionary benefits to patients with severe communication and motor impairments due to a myriad of neurological conditions like stroke, spinal cord injuries, and neurodegenerative disorders. BCIs enable these individuals to communicate and interact with their environment, using their brain signals to operate interfaces for communication and environmental control. This technology is especially crucial for those completely locked in, providing a communication lifeline where other methods fall short. The advantages of BCIs are profound, offering autonomy and an improved quality of life for patients with severe disabilities. They allow for direct interaction with various devices and prostheses, bypassing damaged or nonfunctional neural pathways. However, challenges persist, including the complexity of accurately interpreting brain signals, the need for individual calibration, and ensuring reliable, long-term use. Additionally, ethical considerations arise regarding autonomy, consent, and the potential for dependence on technology. Despite these challenges, BCIs represent a transformative development in neurotechnology, promising enhanced patient outcomes and a deeper understanding of brain-machine interfaces.
Collapse
|
13
|
邵 谢, 张 艺, 张 栋, 门 延, 王 子, 陈 晓, 谢 平. [Virtual reality-brain computer interface hand function enhancement rehabilitation system incorporating multi-sensory stimulation]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:656-663. [PMID: 39218590 PMCID: PMC11366477 DOI: 10.7507/1001-5515.202312055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Stroke is an acute cerebrovascular disease in which sudden interruption of blood supply to the brain or rupture of cerebral blood vessels cause damage to brain cells and consequently impair the patient's motor and cognitive abilities. A novel rehabilitation training model integrating brain-computer interface (BCI) and virtual reality (VR) not only promotes the functional activation of brain networks, but also provides immersive and interesting contextual feedback for patients. In this paper, we designed a hand rehabilitation training system integrating multi-sensory stimulation feedback, BCI and VR, which guides patients' motor imaginations through the tasks of the virtual scene, acquires patients' motor intentions, and then carries out human-computer interactions under the virtual scene. At the same time, haptic feedback is incorporated to further increase the patients' proprioceptive sensations, so as to realize the hand function rehabilitation training based on the multi-sensory stimulation feedback of vision, hearing, and haptic senses. In this study, we compared and analyzed the differences in power spectral density of different frequency bands within the EEG signal data before and after the incorporation of haptic feedback, and found that the motor brain area was significantly activated after the incorporation of haptic feedback, and the power spectral density of the motor brain area was significantly increased in the high gamma frequency band. The results of this study indicate that the rehabilitation training of patients with the VR-BCI hand function enhancement rehabilitation system incorporating multi-sensory stimulation can accelerate the two-way facilitation of sensory and motor conduction pathways, thus accelerating the rehabilitation process.
Collapse
|
14
|
张 耀, 刘 东, 高 峰. [A deep transfer learning approach for cross-subject recognition of mental tasks based on functional near-infrared spectroscopy]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:673-683. [PMID: 39218592 PMCID: PMC11366474 DOI: 10.7507/1001-5515.202310002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/22/2024] [Indexed: 09/04/2024]
Abstract
In the field of brain-computer interfaces (BCIs) based on functional near-infrared spectroscopy (fNIRS), traditional subject-specific decoding methods suffer from the limitations of long calibration time and low cross-subject generalizability, which restricts the promotion and application of BCI systems in daily life and clinic. To address the above dilemma, this study proposes a novel deep transfer learning approach that combines the revised inception-residual network (rIRN) model and the model-based transfer learning (TL) strategy, referred to as TL-rIRN. This study performed cross-subject recognition experiments on mental arithmetic (MA) and mental singing (MS) tasks to validate the effectiveness and superiority of the TL-rIRN approach. The results show that the TL-rIRN significantly shortens the calibration time, reduces the training time of the target model and the consumption of computational resources, and dramatically enhances the cross-subject decoding performance compared to subject-specific decoding methods and other deep transfer learning methods. To sum up, this study provides a basis for the selection of cross-subject, cross-task, and real-time decoding algorithms for fNIRS-BCI systems, which has potential applications in constructing a convenient and universal BCI system.
Collapse
|
15
|
王 瑶, 李 雨, 崔 红, 李 萌, 陈 小. [A review of functional electrical stimulation based on brain-computer interface]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:650-655. [PMID: 39218589 PMCID: PMC11366473 DOI: 10.7507/1001-5515.202311036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/28/2024] [Indexed: 09/04/2024]
Abstract
Individuals with motor dysfunction caused by damage to the central nervous system are unable to transmit voluntary movement commands to their muscles, resulting in a reduced ability to control their limbs. However, traditional rehabilitation methods have problems such as long treatment cycles and high labor costs. Functional electrical stimulation (FES) based on brain-computer interface (BCI) connects the patient's intentions with muscle contraction, and helps to promote the reconstruction of nerve function by recognizing nerve signals and stimulating the moving muscle group with electrical impulses to produce muscle convulsions or limb movements. It is an effective treatment for sequelae of neurological diseases such as stroke and spinal cord injury. This article reviewed the current research status of BCI-based FES from three aspects: BCI paradigms, FES parameters and rehabilitation efficacy, and looked forward to the future development trend of this technology, in order to improve the understanding of BCI-based FES.
Collapse
|
16
|
郭 孟, 杨 帮, 耿 亦, 竭 荣, 张 永, 郑 炎. [Visual object detection system based on augmented reality and steady-state visual evoked potential]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:684-691. [PMID: 39218593 PMCID: PMC11366478 DOI: 10.7507/1001-5515.202403041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/16/2024] [Indexed: 09/04/2024]
Abstract
This study investigates a brain-computer interface (BCI) system based on an augmented reality (AR) environment and steady-state visual evoked potentials (SSVEP). The system is designed to facilitate the selection of real-world objects through visual gaze in real-life scenarios. By integrating object detection technology and AR technology, the system augmented real objects with visual enhancements, providing users with visual stimuli that induced corresponding brain signals. SSVEP technology was then utilized to interpret these brain signals and identify the objects that users focused on. Additionally, an adaptive dynamic time-window-based filter bank canonical correlation analysis was employed to rapidly parse the subjects' brain signals. Experimental results indicated that the system could effectively recognize SSVEP signals, achieving an average accuracy rate of 90.6% in visual target identification. This system extends the application of SSVEP signals to real-life scenarios, demonstrating feasibility and efficacy in assisting individuals with mobility impairments and physical disabilities in object selection tasks.
Collapse
|
17
|
Li S, Daly I, Guan C, Cichocki A, Jin J. Inter-participant transfer learning with attention based domain adversarial training for P300 detection. Neural Netw 2024; 180:106655. [PMID: 39226850 DOI: 10.1016/j.neunet.2024.106655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/28/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
A Brain-computer interface (BCI) system establishes a novel communication channel between the human brain and a computer. Most event related potential-based BCI applications make use of decoding models, which requires training. This training process is often time-consuming and inconvenient for new users. In recent years, deep learning models, especially participant-independent models, have garnered significant attention in the domain of ERP classification. However, individual differences in EEG signals hamper model generalization, as the ERP component and other aspects of the EEG signal vary across participants, even when they are exposed to the same stimuli. This paper proposes a novel One-source domain transfer learning method based Attention Domain Adversarial Neural Network (OADANN) to mitigate data distribution discrepancies for cross-participant classification tasks. We train and validate our proposed model on both a publicly available OpenBMI dataset and a Self-collected dataset, employing a leave one participant out cross validation scheme. Experimental results demonstrate that the proposed OADANN method achieves the highest and most robust classification performance and exhibits significant improvements when compared to baseline methods (CNN, EEGNet, ShallowNet, DeepCovNet) and domain generalization methods (ERM, Mixup, and Groupdro). These findings underscore the efficacy of our proposed method.
Collapse
|
18
|
Pfeffer MA, Ling SSH, Wong JKW. Exploring the frontier: Transformer-based models in EEG signal analysis for brain-computer interfaces. Comput Biol Med 2024; 178:108705. [PMID: 38865781 DOI: 10.1016/j.compbiomed.2024.108705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/01/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
This review systematically explores the application of transformer-based models in EEG signal processing and brain-computer interface (BCI) development, with a distinct focus on ensuring methodological rigour and adhering to empirical validations within the existing literature. By examining various transformer architectures, such as the Temporal Spatial Transformer Network (TSTN) and EEG Conformer, this review delineates their capabilities in mitigating challenges intrinsic to EEG data, such as noise and artifacts, and their subsequent implications on decoding and classification accuracies across disparate mental tasks. The analytical scope extends to a meticulous examination of attention mechanisms within transformer models, delineating their role in illuminating critical temporal and spatial EEG features and facilitating interpretability in model decision-making processes. The discourse additionally encapsulates emerging works that substantiate the efficacy of transformer models in noise reduction of EEG signals and diversifying applications beyond the conventional motor imagery paradigm. Furthermore, this review elucidates evident gaps and propounds exploratory avenues in the applications of pre-trained transformers in EEG analysis and the potential expansion into real-time and multi-task BCI applications. Collectively, this review distils extant knowledge, navigates through the empirical findings, and puts forward a structured synthesis, thereby serving as a conduit for informed future research endeavours in transformer-enhanced, EEG-based BCI systems.
Collapse
|
19
|
Rezvani S, Hosseini-Zahraei SH, Tootchi A, Guger C, Chaibakhsh Y, Saberi A, Chaibakhsh A. A review on the performance of brain-computer interface systems used for patients with locked-in and completely locked-in syndrome. Cogn Neurodyn 2024; 18:1419-1443. [PMID: 39104673 PMCID: PMC11297882 DOI: 10.1007/s11571-023-09995-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/28/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2024] Open
Abstract
Patients with locked-in syndrome (LIS) and complete locked-in syndrome (CLIS) own a fully functional brain restricted within a non-functional body. In order to help LIS patients stay connected with their surroundings, brain-computer interfaces (BCIs) and related technologies have emerged. BCIs translate brain activity into actions that can be performed by external devices enabling LIS patients to communicate, leading to an increase in their quality of life. The past decade has seen the rapid development of BCIs that have the potential to be used for patients with locked-in syndrome, from which a great deal is tested only on healthy subjects and not on actual patients. This study aims to (1) provide the readers with a comprehensive study that contributes to this growing area of research by exploring the performance of BCIs tested specifically on LIS and CLIS patients, (2) give an overview of different modalities and paradigms used in different stages of the locked-in syndrome, and (3) discuss the contributions and limitations of BCIs introduced for the LIS and CLIS patients in the state-of-the-art and lay a groundwork for researchers interested in this field.
Collapse
|
20
|
Li M, Qi E, Xu G, Jin J, Zhao Q, Guo M, Liao W. A delayed matching task-based study on action sequence of motor imagery. Cogn Neurodyn 2024; 18:1593-1607. [PMID: 39104677 PMCID: PMC11297855 DOI: 10.1007/s11571-023-10030-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 08/07/2024] Open
Abstract
The way people imagine greatly affects performance of brain-computer interface (BCI) based on motion imagery (MI). Action sequence is a basic unit of imitation, learning, and memory for motor behavior. Whether it influences the MI-BCI is unknown, and how to manifest this influence is difficult since the MI is a spontaneous brain activity. To investigate the influence of the action sequence, this study proposes a novel paradigm named action sequences observing and delayed matching task to use images and videos to guide people to observe, match and reinforce the memory of sequence. Seven subjects' ERPs and MI performance are analyzed under four different levels of complexities or orders of the sequence. Results demonstrated that the action sequence in terms of complexity and sequence order significantly affects the MI. The complex action in positive order obtains stronger ERD/ERS and more pronounced MI feature distributions, and yields an MI classification accuracy that is 12.3% higher than complex action in negative order (p < 0.05). In addition, the ERP amplitudes derived from the supplementary motor area show a positive correlation to the MI. This study demonstrates a new perspective of improving imagery in the MI-BCI by considering the complexity and order of the action sequences, and provides a novel index for manifesting the MI performance by ERP.
Collapse
|
21
|
Waisberg E, Ong J, Lee AG. Ethical Considerations of Neuralink and Brain-Computer Interfaces. Ann Biomed Eng 2024; 52:1937-1939. [PMID: 38602573 DOI: 10.1007/s10439-024-03511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Neuralink is a neurotechnology company founded by Elon Musk in 2016, which has been quietly developing revolutionary technology allowing for ultra-high precision bidirectional communication between external devices and the brain. In this paper, we explore the multifaceted ethical considerations surrounding neural interfaces, analyzing potential societal impacts, risks, and call for a need for responsible innovation. Despite the technological, medical, medicolegal, and ethical challenges ahead, neural interface technology remains extremely promising and has the potential to create a new era of medicine.
Collapse
|
22
|
Bhatt MW, Sharma S. Multi-scale self-attention approach for analysing motor imagery signals in brain-computer interfaces. J Neurosci Methods 2024; 408:110182. [PMID: 38795979 DOI: 10.1016/j.jneumeth.2024.110182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Motor imagery-based electroencephalogram (EEG) brain-computer interface (BCI) technology has seen tremendous advancements in the past several years. Deep learning has outperformed more traditional approaches, such next-gen neuro-technologies, in terms of productivity. It is still challenging to develop and train an end-to-end network that can sufficiently extract the possible characteristics from EEG data used in motor imaging. Brain-computer interface research is largely reliant on the fundamental problem of accurately classifying EEG data. There are still many challenges in the field of MI classification even after researchers have proposed a variety of methods, such as deep learning and machine learning techniques. METHODOLOGY We provide a model for four-class categorization of motor imagery EEG signals using attention mechanisms: left hand, right hand, foot, and tongue/rest. The model is built on multi-scale spatiotemporal self-attention networks. To determine the most effective channels, self-attention networks are implemented spatially to assign greater weight to channels associated with motion and lesser weight to channels unrelated to motion. To eliminate noise in the temporal domain, parallel multi-scale Temporal Convolutional Network (TCN) layers are utilized to extract temporal domain features at various scales. RESULT On the IV-2b dataset from the BCI Competition, the suggested model achieved an accuracy of 85.09 %; on the IV-2a and IV-2b datasets from the HGD datasets, it was 96.26 %. COMPARISON WITH EXISTING METHODS In single-subject classification, this approach demonstrates superior accuracy when compared to existing methods. CONCLUSION The findings suggest that this approach exhibits commendable performance, resilience, and capacity for transfer learning.
Collapse
|
23
|
Lakshminarayanan K, Ramu V, Shah R, Haque Sunny MS, Madathil D, Brahmi B, Wang I, Fareh R, Rahman MH. Developing a tablet-based brain-computer interface and robotic prototype for upper limb rehabilitation. PeerJ Comput Sci 2024; 10:e2174. [PMID: 39145233 PMCID: PMC11323104 DOI: 10.7717/peerj-cs.2174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 08/16/2024]
Abstract
Background The current study explores the integration of a motor imagery (MI)-based BCI system with robotic rehabilitation designed for upper limb function recovery in stroke patients. Methods We developed a tablet deployable BCI control of the virtual iTbot for ease of use. Twelve right-handed healthy adults participated in this study, which involved a novel BCI training approach incorporating tactile vibration stimulation during MI tasks. The experiment utilized EEG signals captured via a gel-free cap, processed through various stages including signal verification, training, and testing. The training involved MI tasks with concurrent vibrotactile stimulation, utilizing common spatial pattern (CSP) training and linear discriminant analysis (LDA) for signal classification. The testing stage introduced a real-time feedback system and a virtual game environment where participants controlled a virtual iTbot robot. Results Results showed varying accuracies in motor intention detection across participants, with an average true positive rate of 63.33% in classifying MI signals. Discussion The study highlights the potential of MI-based BCI in robotic rehabilitation, particularly in terms of engagement and personalization. The findings underscore the feasibility of BCI technology in rehabilitation and its potential use for stroke survivors with upper limb dysfunctions.
Collapse
|
24
|
Aljuhani W, Sayyad Y. Orthopedic Research Funding: Assessing the Relationship between Investments and Breakthroughs. Orthop Rev (Pavia) 2024; 16:120368. [PMID: 38993375 PMCID: PMC11236838 DOI: 10.52965/001c.120368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 07/13/2024] Open
Abstract
Orthopedic research plays a crucial role in improving patient outcomes for musculoskeletal disorders. This narrative review explores the intricate interplay between funding patterns and the trajectory of breakthroughs achieved in this dynamic field. A meticulous search strategy identified studies illuminating the diverse sources of orthopedic research funding, including public funding (government agencies), philanthropic organizations, private sector investment, and international funding bodies. The review further delved into the spectrum of breakthroughs, encompassing fundamental scientific discoveries, technological advancements, and personalized medicine approaches. Public funding emerged as a significant pillar, supporting foundational research that lays the groundwork for future advancements. Philanthropic organizations addressed specific musculoskeletal disorders, often focusing on patient-centric applications. International funding bodies played a role in supporting research in low- and middle-income countries. Breakthroughs extended beyond cutting-edge prosthetics and minimally invasive surgeries, encompassing fundamental discoveries in areas like gene therapy and biomaterials science. Technological advancements included brain-computer interface prosthetics and 3D-printed implants. Personalized medicine offered the potential for tailored treatments based on individual needs and genetic profiles. This review underscores the complex interplay between funding patterns and breakthroughs in orthopedic research. A multifaceted approach is essential for continued progress. Fostering collaboration, optimizing funding models, and prioritizing both foundational and translational research hold the key to unlocking the true potential of orthopedic research and transforming the lives of patients suffering from musculoskeletal disorders.
Collapse
|
25
|
Liu X, Hu B, Si Y, Wang Q. The role of eye movement signals in non-invasive brain-computer interface typing system. Med Biol Eng Comput 2024; 62:1981-1990. [PMID: 38509350 DOI: 10.1007/s11517-024-03070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Brain-Computer Interfaces (BCIs) have shown great potential in providing communication and control for individuals with severe motor disabilities. However, traditional BCIs that rely on electroencephalography (EEG) signals suffer from low information transfer rates and high variability across users. Recently, eye movement signals have emerged as a promising alternative due to their high accuracy and robustness. Eye movement signals are the electrical or mechanical signals generated by the movements and behaviors of the eyes, serving to denote the diverse forms of eye movements, such as fixations, smooth pursuit, and other oculomotor activities like blinking. This article presents a review of recent studies on the development of BCI typing systems that incorporate eye movement signals. We first discuss the basic principles of BCI and the recent advancements in text entry. Then, we provide a comprehensive summary of the latest advancements in BCI typing systems that leverage eye movement signals. This includes an in-depth analysis of hybrid BCIs that are built upon the integration of electrooculography (EOG) and eye tracking technology, aiming to enhance the performance and functionality of the system. Moreover, we highlight the advantages and limitations of different approaches, as well as potential future directions. Overall, eye movement signals hold great potential for enhancing the usability and accessibility of BCI typing systems, and further research in this area could lead to more effective communication and control for individuals with motor disabilities.
Collapse
|