1
|
Evensen KG, Rusin E, Robinson WE, Price CL, Kelly SL, Lamb DC, Goldstone JV, Poynton HC. Vertebrate endocrine disruptors induce sex-reversal in blue mussels. Sci Rep 2024; 14:23890. [PMID: 39396059 PMCID: PMC11470919 DOI: 10.1038/s41598-024-74212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
Mollusks are the second most diverse animal phylum, yet little is known about their endocrinology or how they respond to endocrine disrupting compound (EDC) pollution. Characteristic effects of endocrine disruption are reproductive impairment, skewed sex ratios, development of opposite sex characteristics, and population decline. However, whether classical vertebrate EDCs, such as steroid hormone-like chemicals and inhibitors of steroidogenesis, exert effects on mollusks is controversial. In the blue mussel, Mytilus edulis, EDC exposure is correlated with feminized sex ratios in wild and laboratory mussels, but sex reversal has not been confirmed. Here, we describe a non-destructive qPCR assay to identify the sex of M. edulis allowing identification of males and females prior to experimentation. We exposed male mussels to 17α-ethinylestradiol and female mussels to ketoconazole, EDCs that mimic vertebrate steroid hormones or inhibit their biosynthesis. Both chemicals changed the sex of individual mussels, interfered with gonadal development, and disrupted gene expression of the sex differentiation pathway. Impacts from ketoconazole treatment, including changes in steroid levels, confirmed a role for steroidogenesis and steroid-like hormones in mollusk endocrinology. The present study expands the possibilities for laboratory and field monitoring of mollusk species and provides key insights into endocrine disruption and sexual differentiation in bivalves.
Collapse
|
2
|
Yang D, Li F, Zhao X, Dong S, Song G, Wang H, Li X, Ding G. Hexafluoropropylene oxide trimer acid (HFPO-TA) disrupts sex differentiation of zebrafish (Danio rerio) via an epigenetic mechanism of DNA methylation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107077. [PMID: 39236549 DOI: 10.1016/j.aquatox.2024.107077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA), an alternative to perfluorooctanoic acid, has been shown to have estrogenic effects. However, its potential to disrupt fish sex differentiation during gonadal development remains unknown. Therefore, this study exposed zebrafish to HFPO-TA from approximately 2 hours post fertilization (hpf) to 60 days post fertilization (dpf) to investigate its effects on sex differentiation. Results indicated that HFPO-TA disrupted steroid hormone homeostasis, delayed gonadal development in both sexes, and resulted in a female-skewed sex ratio in zebrafish. HFPO-TA exposure up-regulated gene expressions of cyp19a1a, esr1, vtg1 and foxl2, while down-regulated those of amh, sox9a and dmrt1. These suggested that HFPO-TA dysregulated the expressions of key genes related to sex differentiation of zebrafish, promoted the production and activation of estrogen, and further induced the feminization. Interestingly, we observed promoter hypomethylation of cyp19a1a and promoter hypermethylation of amh in male zebrafish, which were negatively associated with their gene expressions. These suggested that HFPO-TA dysregulated these key genes through DNA methylation in their promoters. Therefore, the HFPO-TA disrupted the sex differentiation of zebrafish through an epigenetic mechanism involving DNA methylation, ultimately skewing the sex ratio towards females. Overall, this study demonstrated adverse effects of HFPO-TA on fish sex differentiation and provided novel insights into the underlying epigenetic mechanism.
Collapse
|
3
|
Yang CH, Wang YW, Hsu CW, Chung BC. Zebrafish Foxl2l functions in proliferating germ cells for female meiotic entry. Dev Biol 2024; 517:91-99. [PMID: 39341446 DOI: 10.1016/j.ydbio.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Zebrafish sex differentiation is a complicated process and the detailed mechanism has not been fully understood. Here we characterized a transcription factor, Foxl2l, which participates in female oogenesis. We show that it is expressed specifically in proliferating germ cells in juvenile gonads and mature ovaries. We have used CRISPR-Cas9 to generate zebrafish deficient in foxl2l expression. Zebrafish with foxl2l-/- are all males, and this female-to-male sex reversal cannot be reversed by tp53 mutation, indicating this sex reversal is unrelated to cell death. We have generated transgenic fish expressing GFP under the control of foxl2l promoter to track the development of foxl2l + -germ cells; these cells failed to enter meiosis and accumulated as cystic cells in the foxl2l-/- mutant. Our RNA-seq analysis also showed the reduced expression of genes in meiosis and oogenesis among other affected pathways. All together, we show that zebrafish Foxl2l is a nuclear factor controlling the expression of meiotic and oogenic genes, and its deficiency leads to defective meiotic entry and the accumulation of premeiotic germ cells.
Collapse
|
4
|
Khamoun C, Kupittayanant S, Kupittayanant P. Effect of egg incubator temperature on sex differentiation in Korat chickens. J Therm Biol 2024; 125:103984. [PMID: 39353363 DOI: 10.1016/j.jtherbio.2024.103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
The effect of incubator temperature on sex differentiation in Korat chickens was investigated. The experiments were divided into two sets: temperature applied throughout the entire incubation period and temperature applied during certain periods (days 3-6 of incubation) by either increasing above the standard or decreasing below the standard temperature. In each experiment, 300 Korat chicken eggs were separated into three groups of 5 repetitions, with 20 eggs in each group. This was done using a completely randomized design for each experiment: a group using a temperature below the standard for incubation (36.0 °C), a group using the standard incubation temperature (37.7 °C), and a group using a temperature above the standard for incubation (38.0 °C). W chromosomes were detected at hatch; histology examined reproductive structures after 35 days. Increasing the temperature to 38.0 °C throughout the entire incubation period resulted in no significant difference in hatching rates compared to the standard temperature (P > 0.05). Raising the temperature to 38.0 °C throughout the entire incubation and during certain periods resulted in changes in the reproductive structure of chickens, leading to a mismatch between chromosomal and gonadal sex, observed at 9.7% and 5.9% of individuals with W chromosomes possessed testes, indicating a mismatch between chromosomal and gonadal sex. However, decreasing the temperature to 36.0 °C throughout the incubation period resulted in lower hatching rates compared to the standard temperature (P < 0.05). Incubating eggs at 36.0 °C for specific periods resulted in 19.4% of genetic males developing ovaries instead of testes. The presence of ovaries in individuals without W chromosomes indicated this mismatch. The results of this study provide evidence that temperature plays a role in sex differentiation in Korat chickens, as demonstrated by the detection of W chromosomes and histological studies of testes and ovaries. Moreover, this study presents the first evidence in broilers that temperature can affect sex differentiation.
Collapse
|
5
|
Takehana Y, Taniguchi R, Kanemura K, Kobayashi T. Gsdf is not indispensable for male differentiation in the medaka species Oryzias hubbsi. Biochem Biophys Res Commun 2024; 724:150227. [PMID: 38870865 DOI: 10.1016/j.bbrc.2024.150227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Sex determination mechanisms differ widely among vertebrates, particularly in fish species, where diverse sex chromosomes and sex-determining genes have evolved. However, the sex-differentiation pathways activated by these sex-determining genes appear to be conserved. Gonadal soma-derived growth factor (Gsdf) is one of the genes conserved across teleost fish, especially in medaka fishes of the genus Oryzias, and is implicated in testis differentiation and germ cell proliferation. However, its role in sex differentiation remains unclear. In this study, we investigated Gsdf function in Oryzias hubbsi, a species with a ZW sex-determination system. We confirmed its male-dominant expression, as in other species. However, histological analyses revealed no male-to-female sex reversal in Gsdf-knockout fish, contrary to findings in other medaka species. Genetic sex determination remained intact without Gsdf function, indicating a Gsdf-independent sex-differentiation pathway in O. hubbsi. Instead, Gsdf loss led to germ cell overproliferation in both sexes and accelerated onset of meiosis in testes, suggesting a role in germ cell proliferation. Notably, the feminizing effect of germ cells observed in O. latipes was absent, suggesting diverse germ cell-somatic cell relationships in Oryzias gonad development. Our study highlights species-specific variations in the molecular pathways governing sex determination and differentiation, emphasizing the need for further exploration to elucidate the complexities of sexual development.
Collapse
|
6
|
Zhang X, Wu Y, Zhang Y, Zhang J, Chu P, Chen K, Liu H, Luo Q, Fei S, Zhao J, Ou M. Histological observations and transcriptome analyses reveal the dynamic changes in the gonads of the blotched snakehead (Channa maculata) during sex differentiation and gametogenesis. Biol Sex Differ 2024; 15:70. [PMID: 39244546 PMCID: PMC11380785 DOI: 10.1186/s13293-024-00643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Blotched snakehead (Channa maculata) displays significant sexual dimorphism, with males exhibiting faster growth rates and larger body sizes compared to females. The cultivation of the all-male population of snakeheads holds substantial economic and ecological value. Nonetheless, the intricate processes governing the development of bipotential gonads into either testis or ovary in C. maculata remain inadequately elucidated. Therefore, it is necessary to determine the critical time window of sex differentiation in C. maculata, providing a theoretical basis for sex control in production practices. METHODS The body length and weight of male and female C. maculata were measured at different developmental stages to reveal when sexual dimorphism in growth initially appears. Histological observations and spatiotemporal comparative transcriptome analyses were performed on ovaries and testes across various developmental stages to determine the crucial time windows for sex differentiation in each sex and the sex-related genes. Additionally, qPCR and MG2C were utilized to validate and locate sex-related genes, and levels of E2 and T were quantified to understand sex steroid synthesis. RESULTS Sexual dimorphism in growth became evident starting from 90 dpf. Histological observations revealed that morphological sex differentiation in females and males occurred between 20 and 25 dpf or earlier and 30-35 dpf or earlier, respectively, corresponding to the appearance of the ovarian cavity or efferent duct anlage. Transcriptome analyses revealed divergent gene expression patterns in testes and ovaries after 30 dpf. The periods of 40-60 dpf and 60-90 dpf marked the initiation of molecular sex differentiation in females and males, respectively. Male-biased genes (Sox11a, Dmrt1, Amh, Amhr2, Gsdf, Ar, Cyp17a2) likely play crucial roles in male sex differentiation and spermatogenesis, while female-biased genes (Foxl2, Cyp19a1a, Bmp15, Figla, Er) could be pivotal in ovarian differentiation and development. Numerous biological pathways linked to sex differentiation and gametogenesis were also identified. Additionally, E2 and T exhibited sexual dimorphism during sex differentiation and gonadal development. Based on these results, it is hypothesized that in C. maculata, the potential male sex differentiation pathway, Sox11a-Dmrt1-Sox9b, activates downstream sex-related genes (Amh, Amhr2, Gsdf, Ar, Cyp17a2) for testicular development, while the antagonistic pathway, Foxl2/Cyp19a1a, activates downstream sex-related genes (Bmp15, Figla, Er) for ovarian development. CONCLUSIONS This study provides a comprehensive overview of gonadal dynamic changes during sex differentiation and gametogenesis in C. maculata, establishing a scientific foundation for sex control in this species.
Collapse
|
7
|
Yu H, Du X, Chen X, Liu L, Wang X. Transforming growth factor-β (TGF-β): A master signal pathway in teleost sex determination. Gen Comp Endocrinol 2024; 355:114561. [PMID: 38821217 DOI: 10.1016/j.ygcen.2024.114561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Sex determination and differentiation in fish has always been a hot topic in genetic breeding of aquatic animals. With the advances in next-generation sequencing (NGS) in recent years, sex chromosomes and sex determining genes can be efficiently identified in teleosts. To date, master sex determination genes have been elucidated in 114 species, of which 72 species have sex determination genes belonging to TGF-β superfamily. TGF-β is the only signaling pathway that the largest proportion of components, which including ligands (amhy, gsdfy, gdf6), receptors (amhr, bmpr), and regulator (id2bby), have opportunity recognized as a sex determination gene. In this review, we focus on the recent studies about teleost sex-determination genes within TGF-β superfamily and propose several hypotheses on how these genes regulate sex determination process. Differing from other reviews, our review specifically devotes significant attention to all members of the TGF-β signal pathway, not solely the sex determination genes within the TGF-β superfamily. However, the functions of the paralogous genes of TGF superfamily are still needed ongoing research. Further studies are required to more accurately interpret the molecular mechanism of TGF-β superfamily sex determination genes.
Collapse
|
8
|
Geffroy B, Goikoetxea A, Villain-Naud N, Martinez AS. Early fasting does not impact gonadal size nor vasa gene expression in the European seabass Dicentrarchus labrax. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024:10.1007/s10695-024-01395-6. [PMID: 39196454 DOI: 10.1007/s10695-024-01395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024]
Abstract
Primordial germ cells (PGCs) play a crucial role in sexual development in fish, with recent studies revealing their influence on sexual fate. Notably, PGC number at specific developmental stages can determine whether an individual develops as male or female. Temperature was shown to impact PGC proliferation and the subsequent phenotypic sex in some fish species. Here, we aimed at testing the role of food deprivation on gonad development in the European seabass Dicentrarchus labrax, a species displaying a polygenic sex determination system with an environmental influence. We subjected larvae to two periods of starvation to investigate whether restricting growth affects both gonadal size and vasa gene expression. We first confirmed by immunohistochemistry that Vasa was indeed a marker of PGCs in the European seabass, as in other fish species. We also showed that vasa correlated positively with fish size, confirming that it could be used as a marker of feminization. However, starvation did not show any significant effects on vasa expression nor on gonadal size. It is hypothesized that evolutionary mechanisms likely safeguard PGCs against environmental stressors to ensure reproductive success. Further research is needed to elucidate the intricate interplay between environmental cues, PGC biology, and sexual differentiation in fish.
Collapse
|
9
|
Liang SL, Chen RS. The Glutamine-Glutamate Cycle Contributes to Behavioral Feminization in Female Rats. Neuroendocrinology 2024:1-21. [PMID: 39182491 DOI: 10.1159/000541102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION In perinatal female rats, the glutamine (Gln)-glutamate cycle (GGC) constitutively supplies Gln to neurons of the ventral lateral ventromedial nucleus of the hypothalamus (vlVMH) to sustain glutamatergic synaptic transmission (GST). In contrast, male pups may use Gln only during periods of elevated neuronal activity. Perinatal disruption of the GGC has sex-specific effects on the GST and morphology of vlVMH neurons during adulthood. Since (vl)VMH neuronal activities regulate mating behavior expression, we hypothesize that maintaining a perinatal intact GGC may be essential for the sexual differentiation of reproductive behaviors. METHODS Using perinatal rats of both sexes, we pharmacologically killed astrocytes or blocked the GGC and supplemented them with exogenous Gln. Mating behavior, an open-field test and protein levels of GGC enzymes were examined during adulthood. RESULTS Killing astrocytes reduced mating behavior expression by 38-48% and 71-72% in male and female rats, respectively. Any blocker targeting the GGC consistently reduced female lordosis behavior by 52-73% and increased glutaminase protein levels in the hypothalamus, but blockers had no effect on the expression of or motivation for copulatory behavior in males. Exogenous Gln supplementation partly rescued the decline in Gln synthetase inhibitor-mediated sex behavior in females. Perinatal interruption of the GGC did not increase induced expression of female sexual behavior in hormone-primed castrated male rats or affect locomotion or anxiety-like behavior in either sex. CONCLUSION The intact GGC is necessary for behavioral feminization in female rats and may play little or no role in behavioral masculinization or defeminization in males.
Collapse
|
10
|
Shen X, Yan H, Hu M, Zhou H, Wang J, Gao R, Liu Q, Wang X, Liu Y. The potential regulatory role of the non-coding RNAs in regulating the exogenous estrogen-induced feminization in Takifugu rubripes gonad. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107022. [PMID: 39032423 DOI: 10.1016/j.aquatox.2024.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Estrogen plays a pivotal role in the early stage of sex differentiation in teleost. However, the underlying mechanisms of estrogen-induced feminization process are still needed for further clarification. Here, the comparative analysis of whole-transcriptome RNA sequencing was conducted between 17beta-Estradiol induced feminized XY (E-XY) gonads and control gonads (C) in Takifugu rubripes. A total of 57 miRNAs, 65 lncRNAs, and 4 circRNAs were found to be expressed at lower levels in control-XY (C-XY) than that in control-XX (C-XX), and were up-regulated in XY during E2-induced feminization process. The expression levels of 24 miRNAs, and 55 lncRNAs were higher in C-XY than that in C-XX, and were down-regulated in E2-treated XY. Furthermore, a correlation analysis was performed between miRNA-seq and mRNA-seq data. In C-XX/C-XY, 114 differential expression (DE) miRNAs were predicted to target to 904 differential expression genes (DEGs), while in C-XY/E-XY, 226 DEmiRNAs were predicted to target to 2,048 DEGs. In C-XX/C-XY, and C-XY/E-XY, KEGG pathway enrichment analysis showed that those targeted genes were mainly enriched in MAPK signaling, calcium signaling, steroid hormone biosynthesis and ovarian steroidogenesis pathway. Additionally, the competitive endogenous RNA (ceRNA) regulatory network was constructed by 24 miRNAs, 21 lncRNAs, 4 circRNAs and 5 key sex-related genes. These findings suggested that the expression of critical genes in sex differentiation were altered in E2-treated XY T. rubripes may via the lncRNA-miRNA-mRNA regulation network to facilitate the differentiation and maintenance of ovaries. Our results provide a new insight into the comprehensive understanding of the effects of estrogen signaling pathways on sex differentiation in teleost gonads.
Collapse
|
11
|
Guo M, Zhao F, Zhang M, Chen X, Duan M, Xie Y, Zhang Z, Jiang J, Qiu L. Long-term exposure of metamifop affects sex differentiation and reproductive system of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107004. [PMID: 38901218 DOI: 10.1016/j.aquatox.2024.107004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
The extensive use of herbicide metamifop (MET) in rice fields for weeds control will inevitably lead to its entering into water environments and threaten the aquatic organisms. Previous researches have demonstrated that sublethal exposure of MET significantly affected zebrafish development. Yet the long-term toxicological impacts of MET on aquatic life remains unknown. Herein, we investigated the potential effects of MET (5 and 50 μg/L) on zebrafish during an entire life cycle. Since the expression level of male sex differentiation-related gene dmrt1 and sex hormone synthesis-related gene cyp19a1b were significantly changed after 50 μg/L MET exposure for only 7 days, indicators related to sex differentiation and reproductive system were further investigated. Results showed that the transcript of dmrt1 was inhibited, estradiol content increased and testosterone content decreased in zebrafish of both sexes after MET exposure at 45, 60 and 120 dpf. Histopathological sections showed that the proportions of mature germ cells in the gonads of male and female zebrafish (120 dpf) were significantly decreased. Moreover, males had elevated vitellogenin content while females did not after MET exposure; MET induced feminization in zebrafish, with the proportion of females significantly increased by 19.6% while that of males significantly decreased by 13.2% at 120 dpf. These results suggested that MET interfered with the expression levels of gonad development related-genes, disrupted sex hormone balance, and affected sex differentiation and reproductive system of female and male zebrafish, implying it might have potential endocrine disrupting effects after long-term exposure.
Collapse
|
12
|
Lu T, Zheng W, Hu F, Lin X, Tao R, Li M, Guo LH. Disruption of zebrafish sex differentiation by emerging contaminants hexafluoropropylene oxides at environmental concentrations via antagonizing androgen receptor pathways. ENVIRONMENT INTERNATIONAL 2024; 190:108868. [PMID: 38976939 DOI: 10.1016/j.envint.2024.108868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
As alternatives of perfluorooctanoic acid (PFOA), hexafluoropropylene oxide dimeric acid (HFPO-DA) and trimeric acid (HFPO-TA) have been detected increasingly in environmental media and even humans. They have been shown to exhibit reproductive toxicity to model species, but their effects on human remain unclear due to the knowledge gap in their mode of action. Herein, (anti-)androgenic effects of the two HFPOs and PFOA were investigated and underlying toxicological mechanism was explored by combining zebrafish test, cell assay and molecular docking simulation. Exposure of juvenile zebrafish to the chemicals during sex differentiation promoted feminization, with HFPO-TA acting at an environmental concentration of 1 μg/L. The chemicals inhibited proliferation of human prostate cells and transcriptional activity of human and zebrafish androgen receptors (AR), with HFPO-TA displaying the strongest potency. Molecular docking revealed that the chemicals bind to AR in a conformation similar to a known AR antagonist. Combined in vivo, in vitro and in silico results demonstrated that the chemicals disrupted sex differentiation likely by antagonizing AR-mediated pathways, and provided more evidence that HFPO-TA is not a safe alternative to PFOA.
Collapse
|
13
|
Wang A, Shi S, Ma Y, Li S, Gui W. Insights into the role of FoxL2 in tebuconazole-induced male- biased sex differentiation of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174543. [PMID: 38977095 DOI: 10.1016/j.scitotenv.2024.174543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Tebuconazole (TEB) is a commonly used fungicide that inhibits the aromatase Cyp19A and downregulates the transcription factor forkhead box L2 (FoxL2), leading to male-biased sex differentiation in zebrafish larvae. However, the specific mechanism by which FoxL2 functions following TEB exposure remains unclear. In this study, the phosphorylation sites and kinase-specific residues in zebrafish FoxL2 protein (zFoxL2) were predicted. Subsequently, recombinant zFoxL2 was prepared via prokaryotic expression, and a polyclonal rabbit-anti-zFoxL2 antibody was generated. Zebrafish fibroblast (ZF4) cells were exposed to 100-μM TEB alone for 8 h, after which changes in the expression of genes involved in the foxl2 regulatory pathway (akt1, pi3k, cyp19a1b, c/ebpb and sox9a) were detected. When co-exposed to 1-μM estradiol and 100-μM TEB, the expression of these key genes tended to be restored. Interestingly, TEB did not affect the expression of the foxl2 gene or protein but it significantly suppressed the phosphorylation of FoxL2 (pFoxL2) at serine 238 (decreased by 43.64 %, p = 0.009). Co-immunoprecipitation assays showed that, following exposure to 100-μM TEB, the total precipitated proteins in ZF4 cells decreased by 17.02 % (p = 0.029) and 31.39 % (p = 0.027) in the anti-zFoxL2 antibody group and anti-pFoxL2 (ser238) antibody group, respectively, indicating that TEB suppressed the capacity of the FoxL2 protein to bind to other proteins via repression of its own phosphorylation. The pull-down assay confirmed this conclusion. This study preliminarily elucidated that the foxl2 gene functions via post-translational regulation through hypophosphorylation of its encoded protein during TEB-induced male-biased sex differentiation.
Collapse
|
14
|
Jiang S, Guo X, Qian X, Ning X, Zhang C, Yin S, Zhang K. Sex-bias of core intestinal microbiota in different stocks of Chinese mitten crabs (Eriocheir sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101281. [PMID: 38935994 DOI: 10.1016/j.cbd.2024.101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
The differences in intestinal microbiota composition are synergistically shaped by internal and external factors of the host. The core microbiota plays a vital role in maintaining intestinal homeostasis. In this study, we conducted 16S rRNA sequencing analysis to investigate the stability of intestinal microbiota and sex-bias of six stocks of Chinese mitten crabs (105 females; and 110 males). The dominant phyla in all six stocks were Proteobacteria, Tenericutes, Bacteroidetes and Firmicutes; however, their relative abundance differed significantly. Twenty-seven core operational taxonomic units (OTUs), corresponding to 18 genera, were screened. Correlation analysis revealed that OTUs of four stocks in the Yangtze River system play important roles in maintaining the stability of intestinal microbiota. Additionally, the core intestinal microbiota was significantly sex-biased, and the top three genera in terms of relative abundance (Acinetobacter, Vibrio, and Candidatus_Hepatoplasma) were significantly dominant in female crabs. Network structure analysis also confirmed gender differences in the association pattern of intestinal microbiota. The intestinal microbiota of male crabs has a higher degree of functional enrichment. This study provided a theoretical basis for further investigating exploring the shaping effect of gender and geographical factors on the intestinal microbiota of Chinese mitten crabs.
Collapse
|
15
|
Yang S, Tang X, Yan F, Yang H, Xu L, Jian Z, Deng H, He Q, Zhu G, Wang Q. A time-course transcriptome analysis revealing the potential molecular mechanism of early gonadal differentiation in the Chinese giant salamander. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101200. [PMID: 38320446 DOI: 10.1016/j.cbd.2024.101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/08/2024] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
The Chinese giant salamander (CGS) Andrias davidianus is the largest extant amphibian and has recently become an important species for aquaculture with high economic value. Meanwhile, its wild populations and diversity are in urgent need of protection. Exploring the mechanism of its early gonadal differentiation will contribute to the development of CGS aquaculture and the recovery of its wild population. In this study, transcriptomic and phenotypic research was conducted on the critical time points of early gonadal differentiation of CGS. The results indicate that around 210 days post-hatching (dph) is the critical window for female CGS's gonadal differentiation, while 270 dph is that of male CGS. Besides, the TRPM1 gene may be the crucial gene among many candidates determining the sex of CGS. More importantly, in our study, key genes involved in CGS's gonadal differentiation and development are identified and their potential pathways and regulatory models at early stage are outlined. This is an initial exploration of the molecular mechanisms of CGS's early gonadal differentiation at multiple time points, providing essential theoretical foundations for its captive breeding and offering unique insights into the conservation of genetic diversity in wild populations from the perspective of sex development.
Collapse
|
16
|
Jiang G, Xue Y, Arifuzzaman A, Huang X. Identification and characterization of the Dmrt1B gene in the oriental river prawn, Macrobrachium nipponense. Dev Genes Evol 2024; 234:21-32. [PMID: 38616194 DOI: 10.1007/s00427-024-00715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Dmrt (doublesex and mab-3 related transcription factor) is a protein family of transcription factors implicated in sexual regulation. Dmrt proteins are widely conserved and known for their involvement in sex determination and differentiation across species, from invertebrates to humans. In this study, we identified a novel gene with a DM (doublesex/Mab-3)-domain gene in the river prawn, Macrobrachium nipponense, which we named MniDmrt1B due to its similarities and close phylogenetic relationship with Dmrt1B in Macrobrachium rosenbergii. Through amino acid alignments and structural predictions, we observed conservation and identified putative active sites within the DM domain. qRT-PCR analysis revealed that MniDmrt1B exhibited high expression levels in the testis, with consistently higher expression in males compared to females during development. Additionally, similar to other sex-regulated genes, the MniDmrt1B gene exhibited high expression levels during the sex differentiation-sensitive periods in M. nipponense. These results strongly indicated that MniDmrt1B probably plays an important role in testis development and sex differentiation in M. nipponense.
Collapse
|
17
|
Wei T, Mo L, Wu Z, Zou T, Huang J. Gonadal transcriptome analysis of genes related to sex differentiation and sex development in the Pomacea canaliculata. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101235. [PMID: 38631127 DOI: 10.1016/j.cbd.2024.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
As an invasive alien animal, Pomacea canaliculata poses a great danger to the ecology and human beings. Recently, there has been a gradual shift towards bio-friendly control. Based on the development of RNA interference and CRISPR technology as molecular regulatory techniques for pest control, it was determined if the knockout of genes related to sex differentiation in P. canaliculata could induce sterility, thereby helping in population control. However, the knowledge of sex differentiation- and development-related genes in P. canaliculata is currently lacking. Here, transcriptomic approaches were used to study the genes expressed in the two genders of P. canaliculata at various developmental stages. Gonad transcriptomes of immature or mature males and females were compared, revealing 12,063 genes with sex-specific expression, of which 6066 were male- and 5997 were female-specific. Among the latter, 581 and 235 genes were up-regulated in immature and mature females, respectively. The sex-specific expressed genes identified included GnRHR2 and TSSK3 in males and ZAR1 and WNT4 in females. Of the genes, six were involved in reproduction: CCNBLIP1, MND1, DMC1, DLC1, MRE11, and E(sev)2B. Compared to immature snail gonads, the expression of HSP90 and CDK1 was markedly reduced in gonadal. It was hypothesized that the two were associated with the development of females. These findings provided new insights into crucial genetic information on sex differentiation and development in P. canaliculata. Additionally, some candidate genes were explored, which can contribute to future studies on controlling P. canaliculata using molecular regulatory techniques.
Collapse
|
18
|
Chen G, Zhou T, Cao J, Li X, Zhu C, Wang L, Zou G, Liang H. Roles of estrogen receptors during sexual reversal in Pelodiscus sinensis. Mol Biol Rep 2024; 51:634. [PMID: 38727746 DOI: 10.1007/s11033-024-09482-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/26/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND The Chinese soft-shelled turtle, Pelodiscus sinensis, exhibits distinct sexual dimorphism, with the males growing faster and larger than the females. During breeding, all-male offspring can be obtained using 17β-estradiol (E2). However, the molecular mechanisms underlying E2-induced sexual reversal have not yet been elucidated. Previous studies have investigated the molecular sequence and expression characteristics of estrogen receptors (ERs). METHODS AND RESULTS In this study, primary liver cells and embryos of P. sinensis were treated with ER agonists or inhibitors. Cell incubation experiments revealed that nuclear ERs (nERs) were the main pathway for the transmission of estrogen signals. Our results showed that ERα agonist (ERα-ag) upregulated the expression of Rspo1, whereas ERα inhibitor (ERα-Inh) downregulated its expression. The expression of Dmrt1 was enhanced after ERα-Inh + G-ag treatment, indicating that the regulation of male genes may not act through a single estrogen receptor, but a combination of ERs. In embryos, only the ERα-ag remarkably promoted the expression levels of Rspo1, Wnt4, and β-catenin, whereas the ERα-Inh had a suppressive effect. Additionally, Dmrt1, Amh, and Sox9 expression levels were downregulated after ERβ inhibitor (ERβ-Inh) treatment. GPER agonist (G-ag) has a significant promotion effect on Rspo1, Wnt4, and β-catenin, while the inhibitor G-Inh does not affect male-related genes. CONCLUSIONS Overall, these results suggest that ERs play different roles during sexual reversal in P. sinensis and ERα may be the main carrier of estrogen-induced sexual reversal in P. sinensis. Further studies need to be performed to analyze the mechanism of ER action.
Collapse
|
19
|
Kajiwara T, Miyazaki M, Yamaoka S, Yoshitake Y, Yasui Y, Nishihama R, Kohchi T. Transcription of the Antisense Long Non-Coding RNA, SUPPRESSOR OF FEMINIZATION, Represses Expression of the Female-Promoting Gene FEMALE GAMETOPHYTE MYB in the Liverwort Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2024; 65:338-349. [PMID: 38174428 PMCID: PMC11020262 DOI: 10.1093/pcp/pcad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
Sexual differentiation is a fundamental process in the life cycles of land plants, ensuring successful sexual reproduction and thereby contributing to species diversity and survival. In the dioicous liverwort Marchantia polymorpha, this process is governed by an autosomal sex-differentiation locus comprising FEMALE GAMETOPHYTE MYB (FGMYB), a female-promoting gene, and SUPPRESSOR OF FEMINIZATION (SUF), an antisense strand-encoded long non-coding RNA (lncRNA). SUF is specifically transcribed in male plants and suppresses the expression of FGMYB, leading to male differentiation. However, the molecular mechanisms underlying this process remain elusive. Here, we show that SUF acts through its transcription to suppress FGMYB expression. Transgene complementation analysis using CRISPR/Cas9D10A-based large-deletion mutants identified a genomic region sufficient for the sex differentiation switch function in the FGMYB-SUF locus. Inserting a transcriptional terminator sequence into the SUF-transcribed region resulted in the loss of SUF function and allowed expression of FGMYB in genetically male plants, leading to conversion of the sex phenotype from male to female. Partial deletions of SUF had no obvious impact on its function. Replacement of the FGMYB sequence with that of an unrelated gene did not affect the ability of SUF transcription to suppress sense-strand expression. Taken together, our findings suggest that the process of SUF transcription, rather than the resulting transcripts, is required for controlling sex differentiation in M. polymorpha.
Collapse
|
20
|
Ding H, Wang M, Wang M, Wu S, Guo Y, Gao Y, Li L, Bao Z, Wang B, Hu J. Synchronously sexual maturity in hermaphrodite fish as revealed by transcriptome analysis in Plectropomus leopardus. Gene 2024; 901:148166. [PMID: 38242379 DOI: 10.1016/j.gene.2024.148166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Leopard coral grouper (Plectropomus leopardus) is a type of hermaphrodite fish, but the mechanisms of gonadal development and gametogenesis remain unclear. In the present study, we performed histological observation and transcriptomic analysis during the process of sexual differentiation in P. leopardus. According to the histological results, sexual differentiation was completed at 15 months old, developed synchronously in male and female individuals at 2 years old, and matured synchronously at 3 years old. Comparative transcriptomic analyses showed that the gonadal had differentiated by 15 months old, with enrichment of pathways associated with cell proliferation, transcriptional metabolism, and germline stem cell differentiation. Furthermore, cilium movement and fatty acid anabolism, which are associated with spermatogenesis and oocyte growth, were significantly enriched at 3 years old. In addition, key genes associated with male and female sex differentiation, such as amh, dmrt1, dmrt2a, zp4, sox3, gdf9, and gsdf, were identified by weighted gene co-expression network analysis (WGCNA). Finally, the localization and expression of the key genes amh and sox3 were observed in different cell types within the testes and ovaries, reflecting the development of the testes and ovaries, respectively. All the evidence indicates that P. leopardus is a hermaphrodite and synchronously sexually mature fish. Our study complements the gonadal development patterns of hermaphroditic fish by providing new insights into the molecular mechanisms underlying sexual differentiation and sex change in hermaphroditic groupers.
Collapse
|
21
|
Luo X, Guo J, Zhang J, Ma Z, Li H. Overview of chicken embryo genes related to sex differentiation. PeerJ 2024; 12:e17072. [PMID: 38525278 PMCID: PMC10959104 DOI: 10.7717/peerj.17072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/18/2024] [Indexed: 03/26/2024] Open
Abstract
Sex determination in chickens at an early embryonic stage has been a longstanding challenge in poultry production due to the unique ZZ:ZW sex chromosome system and various influencing factors. This review has summarized the genes related to the sex differentiation of chicken early embryos (mainly Dmrt1, Sox9, Amh, Cyp19a1, Foxl2, Tle4z1, Jun, Hintw, Ube2i, Spin1z, Hmgcs1, Foxd1, Tox3, Ddx4, cHemgn and Serpinb11 in this article), and has found that these contributions enhance our understanding of the genetic basis of sex determination in chickens, while identifying potential gene targets for future research. This knowledge may inform and guide the development of sex screening technologies for hatching eggs and support advancements in gene-editing approaches for chicken embryos. Moreover, these insights offer hope for enhancing animal welfare and promoting conservation efforts in poultry production.
Collapse
|
22
|
Hull JJ, Heu CC, Gross RJ, LeRoy DM, Schutze IX, Langhorst D, Fabrick JA, Brent CS. Doublesex is essential for masculinization but not feminization in Lygus hesperus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 166:104085. [PMID: 38307215 DOI: 10.1016/j.ibmb.2024.104085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
In most holometabolous insects, sex differentiation occurs via a hierarchical cascade of transcription factors, with doublesex (dsx) regulating genes that control sex-specific traits. Although less is known in hemimetabolous insects, early evidence suggests that substantial differences exist from more evolutionarily advanced insects. Here, we identified and characterized dsx in Lygus hesperus (western tarnished plant bug), a hemipteran pest of many agricultural crops in western North America. The full-length transcript for L. hesperus dsx (Lhdsx) and several variants encode proteins with conserved DNA binding and oligomerization domains. Transcript profiling revealed that Lhdsx is ubiquitously expressed, likely undergoes alternative pre-mRNA splicing, and, unlike several model insects, is sex-biased rather than sex-specific. Embryonic RNA interference (RNAi) of Lhdsx only impacted sex development in adult males, which lacked both internal reproductive organs and external genitalia. No discernible impacts on adult female development or reproductivity were observed. RNAi knockdown of Lhdsx in nymphs likewise only affected adult males, which lacked the characteristic dimorphic coloration but had dramatically elevated vitellogenin transcripts. Gene knockout of Lhdsx by CRISPR/Cas9 editing yielded only females in G0 and strongly biased heterozygous G1 offspring to females with the few surviving males showing severely impaired genital development. These results indicate that L. hesperus male development requires Lhdsx, whereas female development proceeds via a basal pathway that functions independently of dsx. A fundamental understanding of sex differentiation in L. hesperus could be important for future gene-based management strategies of this important agricultural pest.
Collapse
|
23
|
Xue S, Huang H, Xu Y, Liu L, Meng Q, Zhu J, Zhou M, Du H, Yao C, Jin Q, Nie C, Zhong Y. Transcriptomic analysis reveals the molecular basis of photoperiod-regulated sex differentiation in tropical pumpkins (Cucurbita moschata Duch.). BMC PLANT BIOLOGY 2024; 24:90. [PMID: 38317069 PMCID: PMC10845594 DOI: 10.1186/s12870-024-04777-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Photoperiod, or the length of the day, has a significant impact on the flowering and sex differentiation of photoperiod-sensitive crops. The "miben" pumpkin (the main type of Cucurbita moschata Duch.) is well-known for its high yield and strong disease resistance. However, its cultivation has been limited due to its sensitivity to photoperiod. This sensitivity imposes challenges on its widespread cultivation and may result in suboptimal yields in regions with specific daylength conditions. As a consequence, efforts are being made to explore potential strategies or breeding techniques to enhance its adaptability to a broader range of photoperiods, thus unlocking its full cultivation potential and further promoting its valuable traits in agriculture. RESULTS This study aimed to identify photoperiod-insensitive germplasm exhibiting no difference in sex differentiation under different day-length conditions. The investigation involved a phenotypic analysis of photoperiod-sensitive (PPS) and photoperiod-insensitive (PPIS) pumpkin materials exposed to different day lengths, including long days (LDs) and short days (SDs). The results revealed that female flower differentiation was significantly inhibited in PPS_LD, while no differences were observed in the other three groups (PPS_SD, PPIS_LD, and PPIS_SD). Transcriptome analysis was carried out for these four groups to explore the main-effect genes of sex differentiation responsive to photoperiod. The main-effect gene subclusters were identified based on the principal component and hierarchical cluster analyses. Further, functional annotations and enrichment analysis revealed significant upregulation of photoreceptors (CmCRY1, F-box/kelch-repeat protein), circadian rhythm-related genes (CmGI, CmPRR9, etc.), and CONSTANS (CO) in PPS_LD. Conversely, a significant downregulation was observed in most Nuclear Factor Y (NF-Y) transcription factors. Regarding the gibberellic acid (GA) signal transduction pathway, positive regulators of GA signaling (CmSCL3, CmSCL13, and so forth) displayed higher expression levels, while the negative regulators of GA signaling, CmGAI, exhibited lower expression levels in PPS_LD. Notably, this effect was not observed in the synthetic pathway genes. Furthermore, genes associated with ethylene synthesis and signal transduction (CmACO3, CmACO1, CmERF118, CmERF118-like1,2, CmWIN1-like, and CmRAP2-7-like) showed significant downregulation. CONCLUSIONS This study offered a crucial theoretical and genetic basis for understanding how photoperiod influences the mechanism of female flower differentiation in pumpkins.
Collapse
|
24
|
Li C, Li Y, Qin C, Yu C, Hu J, Guo C, Wang Y. Determination of the timing of early gonadal differentiation in silver pomfret, Pampus argenteus. Anim Reprod Sci 2024; 261:107373. [PMID: 38211439 DOI: 10.1016/j.anireprosci.2023.107373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/03/2023] [Indexed: 01/13/2024]
Abstract
Silver pomfret is a species of global significance due to its high nutritional in fisheries sector. To accurately ascertain the timing of sex differentiation mechanism and mRNA level in this species, this study examined gonad morphology and patterns of gene expression related to sex differentiation in males and females from 51 to 180 days post hatch (dph), the temperature of water was maintained at 26 ± 1 ℃. Distinct morphological differentiation of the silver pomfret ovaries, marked by the emergence of primary oocytes, became apparent from 68 dph. By 108 dph, the testes began to differentiate, as evidenced by the appearance of the efferent duct. Early oocytes exhibited a diameter ranged from 0.077 mm to 0.682 mm, with an average diameter of 0.343 ± 0.051 mm. The proportions of various types of germ cells within the testes were subjected to analysis. The localization of Vasa during the early stages of sexual differentiation was a subject to analysis as well. Vasa was predominantly localized within the cytoplasm of gonocyte, peri-nucleolus stage oocytes, primary oocytes and type A spermatogonocytes, indicating that Vasa is involved in the early gonadal differentiation of silver pomfret. The study investigated the expression patterns of dmrt1, gsdf, amh, foxl2, cyp19a1a, cyp11a, sox3 and vasa, all of which are involved in the sex differentiation of teleosts. Among these genes, amh, gsdf, sox3, foxl2, vasa were indentified as crucial contributors to the early gonadal development of silver pomfret. Significant sex-related differences were observed in the expression patterns of amh, dmrt1, gsdf, cyp11a, sox3, cyp19a1a, vasa. This study provides novel insights into the timing of physiological changes associated with the sexual differentiation of silver pomfret. Collectively, the present data indicates that the differentiation of ovaries and testes take place approximately at 68 dph in females and 108 dph in males.
Collapse
|
25
|
Ye J, Zeng J, Zheng H, Zhang C, Zhang H, Zheng H. Genome-wide identification of STATs and analysis of their role in sex determination in Pacific oysters (Crassostrea gigas). Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110933. [PMID: 38110171 DOI: 10.1016/j.cbpb.2023.110933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
STAT (signal transducer and activator of the transcription) proteins, are a group of highly conserved transcription factors and fundamental components of the JAK-STAT signaling pathway. They play crucial roles in a variety of biological processes, such as immunity, proliferation, differentiation, and growth. However, little information is known regarding their role in gonad development and sex determination in mollusks. In this study, we identified 3 STAT genes in Pacific Oyster Crassostrea gigas. Phylogenetic analysis showed that STATs from mollusks were highly conserved, and most of them had four identical motif regions, except for the STAT1 and STAT3 predicted sequences from Crassostrea hongkongensis. Tissue expression analysis indicated CgSTAT1 had a high expression level in most tissues, while CgSTAT3 had a low expression level in most tissues. Expression analysis of early developmental stages showed CgSTAT1 had a higher expression level from egg to D shaped larva and a lower expression level in subsequent stages. In contrast CgSTAT1, CgSTAT2 had a reverse expression pattern. Expression analysis of different developmental stages of diploid gonads indicated that CgSTAT1 had a higher expression level at the S1 and S3 stages relative to the S2 stage in females, while in males the S3 stage had a higher expression than than the S2 stage. The expression level of CgSTAT1 between diploids and triploids in females differed significantly, but there were no significant differences in males. Expression of CgSTAT2 differed significantly between diploid and triploid males. These data suggest an important role for STATs in sex differentiation in diploid and triploid oysters. Our study is the first to explore the role of STATs in sex differentiation and gonadal development in oysters, and will help us better understand the molecular mechanisms of sex differentiation in shellfish.
Collapse
|