1
|
Batool S, Safdar M, Naseem S, Sami A, Saleem RSZ, Larrainzar E, Shahid I. A Novel Enterococcus-Based Nanofertilizer Promotes Seedling Growth and Vigor in Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2875. [PMID: 39458822 PMCID: PMC11510893 DOI: 10.3390/plants13202875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Excessive use of chemical fertilizers poses significant environmental and health concerns. Microbial-based biofertilizers are increasingly being promoted as safe alternatives. However, they have limitations such as gaining farmers' trust, the need for technical expertise, and the variable performance of microbes in the field. The development of nanobiofertilizers as agro-stimulants and agro-protective agents for climate-smart and sustainable agriculture could overcome these limitations. In the present study, auxin-producing Enterococcus sp. SR9, based on its plant growth-promoting traits, was selected for the microbe-assisted synthesis of silver nanoparticles (AgNPs). These microbial-nanoparticles SR9AgNPs were characterized using UV/Vis spectrophotometry, scanning electron microscopy, and a size analyzer. To test the efficacy of SR9AgNPs compared to treatment with the SR9 isolate alone, the germination rates of cucumber (Cucumis sativus), tomato (Solanum lycopersicum), and wheat (Triticum aestivum L.) seeds were analyzed. The data revealed that seeds simultaneously treated with SR9AgNPs and SR9 showed better germination rates than untreated control plants. In the case of vigor, wheat showed the most positive response to the nanoparticle treatment, with a higher vigor index than the other crops analyzed. The toxicity assessment of SR9AgNPs demonstrated no apparent toxicity at a concentration of 100 ppm, resulting in the highest germination and biomass gain in wheat seedlings. This work represents the first step in the characterization of microbial-assisted SR9AgNPs and encourages future studies to extend these conclusions to other relevant crops under field conditions.
Collapse
|
2
|
Rajabi Dehnavi A, Piernik A, Ludwiczak A, Szymańska S, Ciarkowska A, Cárdenas Pérez S, Hrynkiewicz K. Mitigation of salt stress in Sorghum bicolor L. by the halotolerant endophyte Pseudomonas stutzeri ISE12. FRONTIERS IN PLANT SCIENCE 2024; 15:1458540. [PMID: 39376236 PMCID: PMC11456471 DOI: 10.3389/fpls.2024.1458540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024]
Abstract
Increasing soil salinity, exacerbated by climate change, threatens seed germination and crop growth, causing significant agricultural losses. Using bioinoculants based on halotolerant plant growth-promoting endophytes (PGPEs) in modern agriculture is the most promising and sustainable method for supporting plant growth under salt-stress conditions. Our study evaluated the efficacy of Pseudomonas stutzeri ISE12, an endophyte derived from the extreme halophyte Salicornia europaea, in enhancing the salinity tolerance of sorghum (Sorghum bicolor L.). We hypothesized that P. stutzeri ISE12 would improve sorghum salt tolerance to salinity, with the extent of the increase in tolerance depending on the genotype's sensitivity to salt stress. Experiments were conducted for two sorghum genotypes differing in salinity tolerance (Pegah - salt tolerant, and Payam - salt sensitive), which were inoculated with a selected bacterium at different salinity concentrations (0, 100, 150, and 200 mM NaCl). For germination, we measured germination percentage and index, mean germination time, vigor, shoot and root length of seedlings, and fresh and dry weight. In pot experiments, we assessed the number of leaves, leaf area, specific leaf area, leaf weight ratio, relative root weight, plantlet shoot and root length, fresh and dry weight, proline and hydrogen peroxide concentrations, and peroxidase enzyme activity. Our study demonstrated that inoculation significantly enhanced germination and growth for both sorghum genotypes. The salinity-sensitive genotype (Payam) responded better to bacterial inoculation during germination and early seedling growth stages, showing approximately 1.4 to 1.8 times greater improvement than the salinity-tolerant genotype (Pegah). Payam also displayed better performance at the plantlet growth stage, between 1.1 and 2.6 times higher than Pegah. Furthermore, inoculation significantly reduced hydrogen peroxide, peroxidase activity, and proline levels in both sorghum genotypes. These reductions were notably more pronounced in Payam, with up to 1.5, 1.3, and 1.5 times greater reductions than in Pegah. These results highlight the efficacy of P. stutzeri ISE12 in alleviating oxidative stress and reducing energy expenditure on defense mechanisms in sorghum, particularly benefiting salt-sensitive genotypes. Our findings highlight the potential of the bacterial endophyte P. stutzeri ISE12 as a valuable bioinoculant to promote sorghum growth under saline conditions.
Collapse
|
3
|
Hassan AHA, Maridueña-Zavala MG, Alsherif EA, Aloufi AS, Korany SM, Aldilami M, Bouqellah NA, Reyad AM, AbdElgawad H. Inoculation with Jeotgalicoccus sp. improves nutritional quality and biological value of Eruca sativa by enhancing amino acid and phenolic metabolism and increasing mineral uptake, unsaturated fatty acids, vitamins, and antioxidants. FRONTIERS IN PLANT SCIENCE 2024; 15:1412426. [PMID: 39354941 PMCID: PMC11442294 DOI: 10.3389/fpls.2024.1412426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/09/2024] [Indexed: 10/03/2024]
Abstract
Plant growth-promoting bacteria (PGPB) are considered a promising tool for triggering the synthesis of bioactive compounds in plants and to produce healthy foods. This study aimed to demonstrate the impact of PGPB on the growth, accumulation of primary and secondary metabolites, biological activities, and nutritional qualities of Eruca sativa (arugula), a key leafy vegetable worldwide. To this end, Jeotgalicoccus sp. (JW0823), was isolated and identified by using partial 16S rDNA-based identification and phylogenetic analysis. The findings revealed that JW0823 significantly boosted plant biomass production by about 45% (P<0.05) and enhanced pigment contents by 47.5% to 83.8%. JW0823-treated plants showed remarkable improvements in their proximate composition and vitamin contents, with vitamin E levels increasing by 161.5%. JW0823 induced the accumulation of bioactive metabolites including antioxidants, vitamins, unsaturated fatty acids, and essential amino acids, thereby improving the nutritional qualities of treated plants. An increase in the amounts of amino acids was recorded, with isoleucine showing the highest increase of 270.2%. This was accompanied by increased activity of the key enzymes involved in amino acid biosynthesis, including glutamine synthase, dihydrodipicolinate synthase, cystathionine γ-synthase, and phenylalanine ammonia-lyase enzymes. Consequently, the total antioxidant and antidiabetic activities of the inoculated plants were enhanced. Additionally, JW0823 improved antimicrobial activity against several pathogenic microorganisms. Overall, the JW0823 treatment is a highly promising method for enhancing the health-promoting properties and biological characteristics of E. sativa, making it a valuable tool for improving the quality of this important leafy vegetable.
Collapse
|
4
|
Yan Y, Chang W, Tian P, Chen J, Jiang J, Dai X, Jiang T, Luo F, Yang C. Exploring native arsenic (As)-resistant bacteria: unveiling multifaceted mechanisms for plant growth promotion under As stress. J Appl Microbiol 2024; 135:lxae228. [PMID: 39227171 DOI: 10.1093/jambio/lxae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
AIMS This study explores the plant growth-promoting effect (PGPE) and potential mechanisms of the arsenic (As)-resistant bacterium Flavobacterium sp. A9 (A9 hereafter). METHODS AND RESULTS The influences of A9 on the growth of Arabidopsis thaliana, lettuce, and Brassica napus under As(V) stress were investigated. Additionally, a metabolome analysis was conducted to unravel the underlying mechanisms that facilitate PGPE. Results revealed that A9 significantly enhanced the fresh weight of Arabidopsis seedlings by 62.6%-135.4% under As(V) stress. A9 significantly increased root length (19.4%), phosphorus (25.28%), chlorophyll content (59%), pod number (24.42%), and weight (18.88%), while decreasing As content (48.33%, P ≤ .05) and oxidative stress of Arabidopsis. It also significantly promoted the growth of lettuce and B. napus under As(V) stress. A9 demonstrated the capability to produce ≥31 beneficial substances contributing to plant growth promotion (e.g. gibberellic acid), stress tolerance (e.g. thiamine), and reduced As accumulation (e.g. siderophores). CONCLUSIONS A9 significantly promoted the plant growth under As stress and decreased As accumulation by decreasing oxidative stress and releasing beneficial compounds.
Collapse
|
5
|
de Oliveira-Paiva CA, Bini D, de Sousa SM, Ribeiro VP, Dos Santos FC, de Paula Lana UG, de Souza FF, Gomes EA, Marriel IE. Inoculation with Bacillus megaterium CNPMS B119 and Bacillus subtilis CNPMS B2084 improve P-acquisition and maize yield in Brazil. Front Microbiol 2024; 15:1426166. [PMID: 38989019 PMCID: PMC11233657 DOI: 10.3389/fmicb.2024.1426166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Phosphorus (P) is a critical nutrient for plant growth, yet its uptake is often hindered by soil factors like clay minerals and metal oxides such as aluminum (Al), iron (Fe), and calcium (Ca), which bind P and limit its availability. Phosphate-solubilizing bacteria (PSB) have the unique ability to convert insoluble P into a soluble form, thereby fostering plant growth. This study aimed to assess the efficacy of inoculation of Bacillus megaterium B119 (rhizospheric) and B. subtilis B2084 (endophytic) via seed treatment in enhancing maize yield, grain P content, and enzyme activities across two distinct soil types in field conditions. Additionally, we investigated various mechanisms contributing to plant growth promotion, compatibility with commercial inoculants, and the maize root adhesion profile of these strains. During five crop seasons in two experimental areas in Brazil, Sete Lagoas-MG and Santo Antônio de Goiás-GO, single inoculations with either B119 or B2084 were implemented in three seasons, while a co-inoculation with both strains was applied in two seasons. All treatments received P fertilizer according to plot recommendations, except for control. Both the Bacillus strains exhibited plant growth-promoting properties relevant to P dynamics, including phosphate solubilization and mineralization, production of indole-3-acetic acid (IAA)-like molecules, siderophores, exopolysaccharides (EPS), biofilms, and phosphatases, with no antagonism observed with Azospirillum and Bradyrizhobium. Strain B2084 displayed superior maize root adhesion compared to B119. In field trials, single inoculations with either B119 or B2084 resulted in increased maize grain yield, with relative average productivities of 22 and 16% in Sete Lagoas and 6 and 3% in Santo Antônio de Goiás, respectively. Co-inoculation proved more effective, with an average yield increase of 24% in Sete Lagoas and 11% in Santo Antônio de Goiás compared to the non-inoculated control. Across all seasons, accumulated grain P content correlated with yield, and soil P availability in the rhizosphere increased after co-inoculation in Santo Antônio de Goiás. These findings complement previous research efforts and have led to the validation and registration of the first Brazilian inoculant formulated with Bacillus strains for maize, effectively enhancing and P grain content.
Collapse
|
6
|
Habteweld A, Kantor M, Kantor C, Handoo Z. Understanding the dynamic interactions of root-knot nematodes and their host: role of plant growth promoting bacteria and abiotic factors. FRONTIERS IN PLANT SCIENCE 2024; 15:1377453. [PMID: 38745927 PMCID: PMC11091308 DOI: 10.3389/fpls.2024.1377453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024]
Abstract
Root-knot nematodes (Meloidogyne spp., RKN) are among the most destructive endoparasitic nematodes worldwide, often leading to a reduction of crop growth and yield. Insights into the dynamics of host-RKN interactions, especially in varied biotic and abiotic environments, could be pivotal in devising novel RKN mitigation measures. Plant growth-promoting bacteria (PGPB) involves different plant growth-enhancing activities such as biofertilization, pathogen suppression, and induction of systemic resistance. We summarized the up-to-date knowledge on the role of PGPB and abiotic factors such as soil pH, texture, structure, moisture, etc. in modulating RKN-host interactions. RKN are directly or indirectly affected by different PGPB, abiotic factors interplay in the interactions, and host responses to RKN infection. We highlighted the tripartite (host-RKN-PGPB) phenomenon with respect to (i) PGPB direct and indirect effect on RKN-host interactions; (ii) host influence in the selection and enrichment of PGPB in the rhizosphere; (iii) how soil microbes enhance RKN parasitism; (iv) influence of host in RKN-PGPB interactions, and (v) the role of abiotic factors in modulating the tripartite interactions. Furthermore, we discussed how different agricultural practices alter the interactions. Finally, we emphasized the importance of incorporating the knowledge of tripartite interactions in the integrated RKN management strategies.
Collapse
|
7
|
Yoosefzadeh Najafabadi M, Lukens L, Costa-Neto G. Editorial: Integrated omics approaches to accelerate plant improvement. FRONTIERS IN PLANT SCIENCE 2024; 15:1397582. [PMID: 38571715 PMCID: PMC10990039 DOI: 10.3389/fpls.2024.1397582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
|
8
|
Patel M, Islam S, Glick BR, Choudhary N, Yadav VK, Bagatharia S, Sahoo DK, Patel A. Zero budget natural farming components Jeevamrit and Beejamrit augment Spinacia oleracea L. (spinach) growth by ameliorating the negative impacts of the salt and drought stress. Front Microbiol 2024; 15:1326390. [PMID: 38533327 PMCID: PMC10963433 DOI: 10.3389/fmicb.2024.1326390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
The growth of crop plants, particularly spinach (Spinacia oleracea L.), can be significantly impeded by salinity and drought. However, pre-treating spinach plants with traditional biofertilizers like Jeevamrit and Beejamrit (JB) substantially reverses the salinity and drought-induced inhibitory effects. Hence, this study aims to elucidate the underlying mechanisms that govern the efficacy of traditional fertilizers. The present work employed comprehensive biochemical, physiological, and molecular approaches to investigate the processes by which JB alleviates abiotic stress. The JB treatment effectively boosts spinach growth by increasing nutrient uptake and antioxidant enzyme activity, which mitigates the detrimental effects of drought and salinity-induced stress. Under salt and drought stress conditions, the application of JB resulted in an impressive rise in germination percentages of 80 and 60%, respectively. In addition, the application of JB treatment resulted in a 50% decrease in electrolyte leakage and a 75% rise in the relative water content of the spinach plants. Furthermore, the significant reduction in proline and glycine betaine levels in plants treated with JB provides additional evidence of the treatment's ability to prevent cell death caused by environmental stressors. Following JB treatment, the spinach plants exhibited substantially higher total chlorophyll content was also observed. Additionally, using 16S rRNA sequencing, we discovered and characterized five plant-beneficial bacteria from the JB bio-inoculants. These bacterial isolates comprise a number of traits that contribute to growth augmentation in plants. These evidences suggest that the presence of the aforesaid microorganisms (along with additional ones) is accountable for the JB-mediated stimulation of plant growth and development.
Collapse
|
9
|
Ujvári G, Capo L, Grassi A, Cristani C, Pagliarani I, Turrini A, Blandino M, Giovannetti M, Agnolucci M. Agronomic strategies to enhance the early vigor and yield of maize. Part I: the role of seed applied biostimulant, hybrid and starter fertilization on rhizosphere bacteria profile and diversity. FRONTIERS IN PLANT SCIENCE 2023; 14:1240310. [PMID: 38023909 PMCID: PMC10651756 DOI: 10.3389/fpls.2023.1240310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
The sustainable intensification of maize-based systems may reduce greenhouse-gas emissions and the excessive use of non-renewable inputs. Considering the key role that the microbiological fertility has on crop growth and resilience, it is worth of interest studying the role of cropping system on the rhizosphere bacterial communities, that affect soil health and biological soil fertility. In this work we monitored and characterized the diversity and composition of native rhizosphere bacterial communities during the early growth phases of two maize genotypes of different early vigor, using a nitrogen (N)-phosphorus (P) starter fertilization and a biostimulant seed treatment, in a growth chamber experiment, by polymerase chain reaction-denaturing gradient gel electrophoresis of partial 16S rRNA gene and amplicon sequencing. Cluster analyses showed that the biostimulant treatment affected the rhizosphere bacterial microbiota of the ordinary hybrid more than that of the early vigor, both at plant emergence and at the 5-leaf stage. Moreover, the diversity indices calculated from the community profiles, revealed significant effects of NP fertilization on richness and the estimated effective number of species (H2) in both maize genotypes, while the biostimulant had a positive effect on plant growth promoting community of the ordinary hybrid, both at the plant emergence and at the fifth leaf stage. Our data showed that maize genotype was the major factor shaping rhizosphere bacterial community composition suggesting that the root system of the two maize hybrids recruited a different microbiota. Moreover, for the first time, we identified at the species and genus level the predominant native bacteria associated with two maize hybrids differing for vigor. These results pave the way for further studies to be performed on the effects of cropping system and specific crop practices, considering also the application of biostimulants, on beneficial rhizosphere microorganisms.
Collapse
|
10
|
Fasani E, Giannelli G, Varotto S, Visioli G, Bellin D, Furini A, DalCorso G. Epigenetic Control of Plant Response to Heavy Metals. PLANTS (BASEL, SWITZERLAND) 2023; 12:3195. [PMID: 37765359 PMCID: PMC10537915 DOI: 10.3390/plants12183195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Plants are sessile organisms that must adapt to environmental conditions, such as soil characteristics, by adjusting their development during their entire life cycle. In case of low-distance seed dispersal, the new generations are challenged with the same abiotic stress encountered by the parents. Epigenetic modification is an effective option that allows plants to face an environmental constraint and to share the same adaptative strategy with their progeny through transgenerational inheritance. This is the topic of the presented review that reports the scientific progress, up to date, gained in unravelling the epigenetic response of plants to soil contamination by heavy metals and metalloids, collectively known as potentially toxic elements. The effect of the microbial community inhabiting the rhizosphere is also considered, as the evidence of a transgenerational transfer of the epigenetic status that contributes to the activation in plants of response mechanisms to soil pollution.
Collapse
|
11
|
Asghar I, Ahmed M, Farooq MA, Ishtiaq M, Arshad M, Akram M, Umair A, Alrefaei AF, Jat Baloch MY, Naeem A. Characterizing indigenous plant growth promoting bacteria and their synergistic effects with organic and chemical fertilizers on wheat ( Triticum aestivum). FRONTIERS IN PLANT SCIENCE 2023; 14:1232271. [PMID: 37727857 PMCID: PMC10505817 DOI: 10.3389/fpls.2023.1232271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 09/21/2023]
Abstract
The excessive use of chemical fertilizers is deteriorating both the environment and soil, making it a big challenge faced by sustainable agriculture. To assist the efforts for the solution of this burning issue, nine different potential native strains of plant growth-promoting bacteria (PGPB) namely, SA-1(Bacillus subtilis), SA-5 (Stenotrophomonas humi),SA-7(Azospirillum brasilense), BH-1(Azospirillum oryzae), BH-7(Azotobacter armeniacus), BH-8(Rhizobium pusense), BA-3(Azospirillum zeae), BA-6(Rhizobium pusense), and BA-7(Pseudomonas fragi) were isolated that were characterized morphologically, biochemically and molecularly on the basis of 16S rRNA sequencing. Furthermore, the capability of indigenous PGPB in wheat (Triticum aestivum, Chakwal-50) under control, DAP+FYM, SA-1,5,7, BH-1,7,8, BA-3,6,7, DAP+ FYM + SA-1,5,7, DAP+FYM+ BH-1,7,8 and DAP+FYM+ BA-3,6,7 treatments was assessed in a randomized complete block design (RCBD). The results of the study showed that there was a significant increase in plant growth, nutrients, quality parameters, crop yield, and soil nutrients at three depths under SA-1,5,7, BH-1,7,8, and BA-3,6,7 in combination with DAP+FYM. Out of all these treatments, DAP+ FYM + BA-3,6,7 was found to be the most efficient for wheat growth having the highest 1000-grain weight of 55.1 g. The highest values for plant height, no. of grains/spike, spike length, shoot length, root length, shoot dry weight, root dry weight, 1000 grain weight, biological yield, and economic yield were found to be 90.7 cm, 87.7 cm, 7.20 cm, 53.5 cm, 33.5 cm, 4.87 g, 1.32 g, 55.1 g, 8209 kg/h, and 4572 kg/h, respectively, in the DAP+FYM+BA treatment. The DAP+FYM+BA treatment had the highest values of TN (1.68 µg/mL), P (0.38%), and K (1.33%). Likewise, the value of mean protein (10.5%), carbohydrate (75%), lipid (2.5%), and available P (4.68 ppm) was also highest in the DAP+FYM+BA combination. C:P was found to be significantly highest (20.7) in BA alone but was significantly lowest (11.9) in DAP+FYM+BA. Hence, the integration of strains BA-3, BA-5, and BA-7 in fertilizers can be regarded as the most suitable choice for agricultural growth in the sub-mountainous lower region of AJK. This could serve as the best choice for sustainable wheat growth and improved soil fertility with lesser impacts on the environment.
Collapse
|
12
|
Nasuelli M, Novello G, Gamalero E, Massa N, Gorrasi S, Sudiro C, Hochart M, Altissimo A, Vuolo F, Bona E. PGPB and/or AM Fungi Consortia Affect Tomato Native Rhizosphere Microbiota. Microorganisms 2023; 11:1891. [PMID: 37630451 PMCID: PMC10458106 DOI: 10.3390/microorganisms11081891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Tomatoes are one of the most important crops worldwide and also play a central role in the human diet. Microbial consortia are microorganism associations, often employed as bioinoculants, that can interact with the native rhizosphere microbiota. The aim of this study was to evaluate the impact of a bacterial-based biostimulant (Pseudomonas fluorescens and Bacillus amyloliquefaciens) (PSBA) in combination, or not, with a commercial inoculum Micomix (Rhizoglomus irregulare, Funnelliformis mosseae, Funnelliformis caledonium, Bacillus licheniformis, Bacillus mucilaginosus) (MYC) on the native rhizosphere communities and on tomato production. The trial was carried out using Solanum lycopersicum in an open field as follows: control full NPK (CFD), control reduced NPK (CRD), MYC, PSBA, PSBA + MYC. Bacterial population in the different samples were characterized using a next generation sequencing approach. The bioinocula effect on the native rhizosphere microbiota resulted in significant variation both in alpha and beta diversity and in a specific signature associated with the presence of biostimulants, especially in the presence of co-inoculation (PSBA + MYC). In particular, the high initial biodiversity shifts in the community composition occurred and consisted in the increase in the abundance of genera correlated to the soil acidification and in an enhanced density of nitrogen-fixing microbes. The results also highlighted the well-known rhizosphere effect.
Collapse
|
13
|
Chaganti C, Phule AS, Chandran LP, Sonth B, Kavuru VPB, Govindannagari R, Sundaram RM. Silicate solubilizing and plant growth promoting bacteria interact with biogenic silica to impart heat stress tolerance in rice by modulating physiology and gene expression. Front Microbiol 2023; 14:1168415. [PMID: 37520375 PMCID: PMC10374332 DOI: 10.3389/fmicb.2023.1168415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/22/2023] [Indexed: 08/01/2023] Open
Abstract
Heat stress caused due to increasing warming climate has become a severe threat to global food production including rice. Silicon plays a major role in improving growth and productivity of rice by aiding in alleviating heat stress in rice. Soil silicon is only sparingly available to the crops can be made available by silicate solubilizing and plant-growth-promoting bacteria that possess the capacity to solubilize insoluble silicates can increase the availability of soluble silicates in the soil. In addition, plant growth promoting bacteria are known to enhance the tolerance to abiotic stresses of plants, by affecting the biochemical and physiological characteristics of plants. The present study is intended to understand the role of beneficial bacteria viz. Rhizobium sp. IIRR N1 a silicate solublizer and Gluconacetobacter diazotrophicus, a plant growth promoting bacteria and their interaction with insoluble silicate sources on morpho-physiological and molecular attributes of rice (Oryza sativa L.) seedlings after exposure to heat stress in a controlled hydroponic system. Joint inoculation of silicates and both the bacteria increased silicon content in rice tissue, root and shoot biomass, significantly increased the antioxidant enzyme activities (viz. superoxidase dismutase, catalase and ascorbate peroxidase) compared to other treatments with sole application of either silicon or bacteria. The physiological traits (viz. chlorophyll content, relative water content) were also found to be significantly enhanced in presence of silicates and both the bacteria after exposure to heat stress conditions. Expression profiling of shoot and root tissues of rice seedlings revealed that seedlings grown in the presence of silicates and both the bacteria exhibited higher expression of heat shock proteins (HSPs viz., OsHsp90, OsHsp100 and 60 kDa chaperonin), hormone-related genes (OsIAA6) and silicon transporters (OsLsi1 and OsLsi2) as compared to seedlings treated with either silicates or with the bacteria alone. The results thus reveal the interactive effect of combined application of silicates along with bacteria Rhizobium sp. IIRR N1, G. diazotrophicus inoculation not only led to augmented silicon uptake by rice seedlings but also influenced the plant biomass and elicited higher expression of HSPs, hormone-related and silicon transporter genes leading to improved tolerance of seedling to heat stress.
Collapse
|
14
|
Montes-Luz B, Conrado AC, Ellingsen JK, Monteiro RA, de Souza EM, Stacey G. Acetylene Reduction Assay: A Measure of Nitrogenase Activity in Plants and Bacteria. Curr Protoc 2023; 3:e766. [PMID: 37196102 DOI: 10.1002/cpz1.766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nitrogen is one of the most abundant elements in the biosphere, but its gaseous form is not biologically available to many organisms, including plants and animals. Diazotrophic microorganisms can convert atmospheric nitrogen into ammonia, a form that can be absorbed by plants in a process called biological nitrogen fixation (BNF). BNF is catalyzed by the enzyme nitrogenase, which not only reduces N2 to NH3 , but also reduces other substrates such as acetylene. The acetylene reduction assay (ARA) can be used to measure nitrogenase activity in diazotrophic organisms, either in symbiotic associations or in their free-living state. The technique uses gas chromatography to measure the reduction of acetylene to ethylene by nitrogenase in a simple, quick, and inexpensive manner. Here, we demonstrate how to: prepare nodulated soybean plants and culture free-living Azospirillum brasilense for the ARA, use the gas chromatograph to detect the ethylene formed, and calculate the nitrogenase activity based on the peaks generated by the chromatograph. The methods shown here using example organisms can be easily adapted to other nodulating plants and diazotrophic bacteria. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Acetylene reduction assay in root nodules Basic Protocol 2: Acetylene reduction assay using diazotrophic bacteria Basic Protocol 3: Calculation of nitrogenase activity Support Protocol 1: Production of acetylene from calcium carbide Support Protocol 2: Calibration of the gas chromatograph Support Protocol 3: Total protein quantification.
Collapse
|
15
|
Kartik VP, Chandwani S, Amaresan N. Augmenting the bioavailability of iron in rice grains from field soils through the application of iron-solubilizing bacteria. Lett Appl Microbiol 2023; 76:6912252. [PMID: 36688779 DOI: 10.1093/lambio/ovac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 01/24/2023]
Abstract
The biofortification approach has been widely used to enhance mineral nutrients in staple foods such as rice (Oryza sativa). In the present study, iron-solubilizing plant growth-promoting bacteria (PGPB) were evaluated for iron fortification of rice grains and NPK via field experiments. Inoculation of iron-solubilizing bacteria showed significant improvements in growth parameters, such as plant height, root and shoot dry weight, panicle length, grain yield, and nitrogen, potassium, phosphorus, and iron uptake. The mobilization of iron was ranged from 53.88% to 89.05% in rice grains compared to the uninoculated plants. The present study results revealed that application of PGPB strains is vital approach to combat the problem of iron deficiency in rice and subsequently in humans.
Collapse
|
16
|
Świecimska M, Golińska P, Goodfellow M. Generation of a high quality library of bioactive filamentous actinomycetes from extreme biomes using a culture-based bioprospecting strategy. Front Microbiol 2023; 13:1054384. [PMID: 36741889 PMCID: PMC9893292 DOI: 10.3389/fmicb.2022.1054384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Filamentous actinomycetes, notably members of the genus Streptomyces, remain a rich source of new specialized metabolites, especially antibiotics. In addition, they are also a valuable source of anticancer and biocontrol agents, biofertilizers, enzymes, immunosuppressive drugs and other biologically active compounds. The new natural products needed for such purposes are now being sought from extreme habitats where harsh environmental conditions select for novel strains with distinctive features, notably an ability to produce specialized metabolites of biotechnological value. Methods A culture-based bioprospecting strategy was used to isolate and screen filamentous actinomycetes from three poorly studied extreme biomes. Actinomycetes representing different colony types growing on selective media inoculated with environmental suspensions prepared from high-altitude, hyper-arid Atacama Desert soils, a saline soil from India and from a Polish pine forest soil were assigned to taxonomically predictive groups based on characteristic pigments formed on oatmeal agar. One hundred and fifteen representatives of the colour-groups were identified based on 16S rRNA gene sequences to determine whether they belonged to validly named or to putatively novel species. The antimicrobial activity of these isolates was determined using a standard plate assay. They were also tested for their capacity to produce hydrolytic enzymes and compounds known to promote plant growth while representative strains from the pine forest sites were examined to determine their ability to inhibit the growth of fungal and oomycete plant pathogens. Results Comparative 16S rRNA gene sequencing analyses on isolates representing the colour-groups and their immediate phylogenetic neighbours showed that most belonged to either rare or novel species that belong to twelve genera. Representative isolates from the three extreme biomes showed different patterns of taxonomic diversity and characteristic bioactivity profiles. Many of the isolates produced bioactive compounds that inhibited the growth of one or more strains from a panel of nine wild strains in standard antimicrobial assays and are known to promote plant growth. Actinomycetes from the litter and mineral horizons of the pine forest, including acidotolerant and acidophilic strains belonging to the genera Actinacidiphila, Streptacidiphilus and Streptomyces, showed a remarkable ability to inhibit the growth of diverse fungal and oomycete plant pathogens. Discussion It can be concluded that selective isolation and characterization of dereplicated filamentous actinomyctes from several extreme biomes is a practical way of generating high quality actinomycete strain libraries for agricultural, industrial and medical biotechnology.
Collapse
|
17
|
Khan N, Humm EA, Jayakarunakaran A, Hirsch AM. Reviewing and renewing the use of beneficial root and soil bacteria for plant growth and sustainability in nutrient-poor, arid soils. FRONTIERS IN PLANT SCIENCE 2023; 14:1147535. [PMID: 37089637 PMCID: PMC10117987 DOI: 10.3389/fpls.2023.1147535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
A rapidly increasing human population coupled with climate change and several decades of over-reliance on synthetic fertilizers has led to two pressing global challenges: food insecurity and land degradation. Therefore, it is crucial that practices enabling both soil and plant health as well as sustainability be even more actively pursued. Sustainability and soil fertility encompass practices such as improving plant productivity in poor and arid soils, maintaining soil health, and minimizing harmful impacts on ecosystems brought about by poor soil management, including run-off of agricultural chemicals and other contaminants into waterways. Plant growth promoting bacteria (PGPB) can improve food production in numerous ways: by facilitating resource acquisition of macro- and micronutrients (especially N and P), modulating phytohormone levels, antagonizing pathogenic agents and maintaining soil fertility. The PGPB comprise different functional and taxonomic groups of bacteria belonging to multiple phyla, including Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, among others. This review summarizes many of the mechanisms and methods these beneficial soil bacteria use to promote plant health and asks whether they can be further developed into effective, potentially commercially available plant stimulants that substantially reduce or replace various harmful practices involved in food production and ecosystem stability. Our goal is to describe the various mechanisms involved in beneficial plant-microbe interactions and how they can help us attain sustainability.
Collapse
|
18
|
Mendes GC, Müller C, Almeida AM. Editorial: Physiological, biochemical and molecular approaches in response to abiotic stresses in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1194937. [PMID: 37152123 PMCID: PMC10161930 DOI: 10.3389/fpls.2023.1194937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023]
|
19
|
Bakaeva M, Chetverikov S, Timergalin M, Feoktistova A, Rameev T, Chetverikova D, Kenjieva A, Starikov S, Sharipov D, Hkudaygulov G. PGP-Bacterium Pseudomonas protegens Improves Bread Wheat Growth and Mitigates Herbicide and Drought Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:3289. [PMID: 36501327 PMCID: PMC9735837 DOI: 10.3390/plants11233289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The reaction of plants to simultaneous stress action and treatment with biological stimulants still remains poorly studied. Laboratory and field experiments have been conducted to study the growth and yield of bread wheat (Triticum aestivum L.) of the variety Ekada 113; stress markers and quantitative ratios of phytohormones in plants under insufficient soil moisture; the effects of spraying with herbicide containing 2,4-D and dicamba and growth-stimulating bacterium Pseudomonas protegens DA1.2; and combinations of these factors. Under water shortage conditions, spraying plants with Chistalan reduced their growth compared to non-sprayed plants, which was associated with inhibition of root growth and a decrease in the content of endogenous auxins in the plants. Under conditions of combined stress, the treatment of plants with the strain P. protegens DA1.2 increased the IAA/ABA ratio and prevented inhibition of root growth by auxin-like herbicide, ensuring water absorption by the roots as well as increased transpiration. As a result, the content of malondialdehyde oxidative stress marker was reduced. Bacterization improved the water balance of wheat plants under arid field conditions. The addition of bacterium P. protegens DA1.2 to the herbicide Chistalan increased relative water content in wheat leaves by 11% compared to plants treated with herbicide alone. Application of the bacterial strain P. protegens DA1.2 increased the amount of harvested grain from 2.0-2.2 t/ha to 3.2-3.6 t/ha. Thus, auxin-like herbicide Chistalan and auxin-producing bacterium P. protegens DA1.2 may affect the balance of phytohormones in different ways. This could be the potential reason for the improvement in wheat plants' growth during dry periods when the bacterium P. protegens DA1.2 is included in mixtures for weed control.
Collapse
|
20
|
Krawczyk K, Szabelska-Beręsewicz A, Przemieniecki SW, Szymańczyk M, Obrępalska-Stęplowska A. Insect Gut Bacteria Promoting the Growth of Tomato Plants ( Solanum lycopersicum L.). Int J Mol Sci 2022; 23:13548. [PMID: 36362334 PMCID: PMC9657159 DOI: 10.3390/ijms232113548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/10/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
We investigated gut bacteria from three insect species for the presence of plant growth properties (PGP). Out of 146 bacterial strains obtained from 20 adult specimens of Scolytidae sp., 50 specimens of Oulema melanopus, and 150 specimens of Diabrotica virgifera, we selected 11 strains displaying the following: PGP, phosphate solubility, production of cellulase, siderophore, lipase, protease, and hydrogen cyanide. The strains were tested for growth promotion ability on tomato (Lycopersicon esculentum) plants. Each strain was tested individually, and all strains were tested together as a bacterial consortium. Tomato fruit yield was compared with the negative control. The plants treated with bacterial consortium showed a significant increase in fruit yield, in both number of fruits (+41%) and weight of fruits (+44%). The second highest yield was obtained for treatment with Serratia liquefaciens Dv032 strain, where the number and weight of yielded fruits increased by 35% and 30%, respectively. All selected 11 strains were obtained from Western Corn Rootworm (WCR), Diabrotica virgifera. The consortium comprised: Ewingella americana, Lactococcus garvieae, L. lactis, Pseudomonas putida, Serratia liquefaciens, and S. plymuthica. To our knowledge, this is the first successful application of D. virgifera gut bacteria for tomato plant growth stimulation that has been described.
Collapse
|
21
|
Franchi E, Cardaci A, Pietrini I, Fusini D, Conte A, De Folly D’Auris A, Grifoni M, Pedron F, Barbafieri M, Petruzzelli G, Vocciante M. Nature-Based Solutions for Restoring an Agricultural Area Contaminated by an Oil Spill. PLANTS (BASEL, SWITZERLAND) 2022; 11:2250. [PMID: 36079632 PMCID: PMC9459758 DOI: 10.3390/plants11172250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
A feasibility study is presented for a bioremediation intervention to restore agricultural activity in a field hit by a diesel oil spill from an oil pipeline. The analysis of the real contaminated soil was conducted following two approaches. The first concerned the assessment of the biodegradative capacity of the indigenous microbial community through laboratory-scale experimentation with different treatments (natural attenuation, landfarming, landfarming + bioaugmentation). The second consisted of testing the effectiveness of phytoremediation with three plant species: Zea mays (corn), Lupinus albus (lupine) and Medicago sativa (alfalfa). With the first approach, after 180 days, the different treatments led to biodegradation percentages between 83 and 96% for linear hydrocarbons and between 76 and 83% for branched ones. In case of contamination by petroleum products, the main action of plants is to favor the degradation of hydrocarbons in the soil by stimulating microbial activity thanks to root exudates. The results obtained in this experiment confirm that the presence of plants favors a decrease in the hydrocarbon content, resulting in an improved degradation of up to 18% compared with non-vegetated soils. The addition of plant growth-promoting bacteria (PGPB) isolated from the contaminated soil also promoted the growth of the tested plants. In particular, an increase in biomass of over 50% was found for lupine. Finally, the metagenomic analysis of the contaminated soil allowed for evaluating the evolution of the composition of the microbial communities during the experimentation, with a focus on hydrocarbon- oxidizing bacteria.
Collapse
|
22
|
Rafique HM, Khan MY, Asghar HN, Ahmad Zahir Z, Nadeem SM, Sohaib M, Alotaibi F, Al-Barakah FNI. Converging alfalfa ( Medicago sativa L.) and petroleum hydrocarbon acclimated ACC-deaminase containing bacteria for phytoremediation of petroleum hydrocarbon contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:717-727. [PMID: 35917513 DOI: 10.1080/15226514.2022.2104214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant assisted bioremediation of petroleum hydrocarbon contaminated soil is considered an effective green technology whereby accelerated degradation occurs due to converged effect of microorganisms and plants. However, survival and growth of microbes and plants under stress conditions is challenging task for success of the technology. In this study, plant growth promoting bacteria containing 1-aminocyclopropane-1-carboxylate (ACC)-deaminase activity and tolerance to petroleum hydrocarbon contamination were used in association with alfalfa for bioremediation of petroleum hydrocarbon contaminated soil. Eight pre-isolated bacterial isolates from soil having previous history of petroleum contamination were used in convergence with alfalfa on sand soil which was artificially contaminated (10 g crude oil per kg-1 of coarse textured soil). Combined effect of bacteria and plants on the degradation of petroleum hydrocarbons under controlled conditions of light and temperature was observed for a period of 60 days. The results of the study revealed that four bacterial isolates Bacillus subtilis strain PM32Y, Bacillus cereus strain WZ3S1, Bacillus sp. strain SM73 and Bacillus sp. strain WZ3S3 in association with alfalfa significantly degraded petroleum hydrocarbons. The most significant biodegradation (47%) of petroleum hydrocarbons was recorded in the experimental unit receiving PM32Y inoculation in association with alfalfa. Biodegradation of petroleum hydrocarbons was 33% with alone inoculation (without alfalfa) of PM32Y. The study revealed that combined use of bacteria and alfalfa plant is more efficient than alone application of either bacteria or plants for degradation of petroleum hydrocarbons.
Collapse
|
23
|
Naseer A, Andleeb S, Basit A, Abbasi WA, Ejaz S, Ali S, Ali NM. Phylogenetic Illustration of Eisenia fetida Associated Vermi-bacteria Involved in Heavy Metals Remediation and Retaining Plant Growth Promoting Traits. J Oleo Sci 2022; 71:1241-1252. [PMID: 35793970 DOI: 10.5650/jos.ess21366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heavy metals contamination in the soil is a major threat to wildlife, the environment, and human health. Microbial remediation is an emerging and promising technology to reduce heavy metals toxicity. Therefore, the present research aimed to isolate and to identify the heavy metals tolerated bacteria from the Eisenia fetida for the first time, and to screen the bacto-remediation capabilities and plant growth promoting traits of vermi-bacterial isolates. Vermi-bacteria was isolated from the gut of E. fetida, identified through staining, culturing, biochemical tests, and ribotyping. Plant growth-promoting traits were also evaluated. Phylogenetic results revealed that isolated Vermi-bacterial strains showed resemblance with Bacillus thuringiensis, Bacillus aryabhattai, Staphylococcus hominis, Bacillus toyonensis, Bacillus cabrialesii, Bacillus tequilensis, Bacillus mojavensis, Bacillus amyloliquefaciens, Bacillus toyonensis, Bacillus anthracis, and Bacillus paranthracis. All identified Vermi-bacterial species are Gram-positive (rod and cocci) in nature, not only indicated the efficient biosorption of lead, cadmium, and chromium but also produce all plant growth stimulating traits such as indole acetic acid (IAA), amylase, protease, lipase, hydrogen cyanide, ammonia, and siderophore production, and also act as a phosphate solubilizers. Bacillus anthracis showed significant production of siderophore (33.0±0.0 mm), phosphate solubilizing (33.0±0.0 mm), proteolytic (15.0±0.0 mm), and lipolytic activities (20.0±0.0 mm) compared to other vermi-bacterial isolates. Bioaccumulation factor results revealed that Bacillus anthracis showed more accumulation of Cd (12.00±0.01 ppm), Cr (5.38±0.01 ppm), and Pb (4.38±0.01 ppm). Therefore, the current findings showed that all identified vermi-bacteria could be used as potential bactoremediation agents in heavy metals polluted environments and could be used as microbial biofertilizers to enhance crop production in a polluted area.
Collapse
|
24
|
Araujo R. Advances in Soil Engineering: Sustainable Strategies for Rhizosphere and Bulk Soil Microbiome Enrichment. FRONT BIOSCI-LANDMRK 2022; 27:195. [PMID: 35748271 DOI: 10.31083/j.fbl2706195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/06/2022]
Abstract
The preservation of natural ecosystems, as well as the correct management of human societies, largely depends on the maintenance of critical microbial functions associated with soils. Soils are biodiversity rich pools, and rhizosphere soils can be associated with increased plant functions in addition to the regulation of nutrient cycling, litter decomposition, soil fertility and food production by agriculture systems. The application of biocontrol agents or plant growth-promoting bacteria has been tested in order to colonize roots at initial stages and offer advantages by promoting healthier and higher-yielding crops. In this review we describe the efforts to develop more sustainable systems that seek to minimize environmental disruption while maintaining plant health. Particular emphasis is given in this review to soil improvement strategies and the taxonomic groups involved in plant growth and protection against biotic stresses. It is important to define the impacts of land management and crop production practices on the structure and composition of soil bacterial communities. By promoting, monitoring and controlling the plant microbiome, and understanding the role of certain biocontrol agents within the plant throughout the lifecycle of the plant, we may substantially improve nutritional and environmental standards and reduce the negative impact of some agrochemicals. The integration of biological alternatives with traditional strategies may be critical to improve the sustainability of agriculture systems.
Collapse
|
25
|
Zhang Y, Zhao S, Liu S, Peng J, Zhang H, Zhao Q, Zheng L, Chen Y, Shen Z, Xu X, Chen C. Enhancing the Phytoremediation of Heavy Metals by Combining Hyperaccumulator and Heavy Metal-Resistant Plant Growth-Promoting Bacteria. FRONTIERS IN PLANT SCIENCE 2022; 13:912350. [PMID: 35720534 PMCID: PMC9201774 DOI: 10.3389/fpls.2022.912350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HMs) have become a major environmental pollutant threatening ecosystems and human health. Although hyperaccumulators provide a viable alternative for the bioremediation of HMs, the potential of phytoremediation is often limited by the small biomass and slow growth rate of hyperaccumulators and HM toxicity to plants. Here, plant growth-promoting bacteria (PGPB)-assisted phytoremediation was used to enhance the phytoremediation of HM-contaminated soils. A PGPB with HM-tolerant (HMT-PGPB), Bacillus sp. PGP15 was isolated from the rhizosphere of a cadmium (Cd) hyperaccumulator, Solanum nigrum. Pot experiments demonstrated that inoculation with strain PGP15 could significantly increase the growth of S. nigrum. More importantly, strain PGP15 markedly improved Cd accumulation in S. nigrum while alleviating Cd-induced stress in S. nigrum. Specifically, PGP15 inoculation significantly decreased the contents of H2O2, MDA, and O 2 · - in S. nigrum, while the activities (per gram plant fresh weight) of SOD, APX, and CAT were significantly increased in the PGP15-inoculated plants compared with the control sample. These results suggested that the interactions between strain PGP15 and S. nigrum could overcome the limits of phytoremediation alone and highlighted the promising application potential of the PGPB-hyperaccumulator collaborative pattern in the bioremediation of HM-contaminated soils. Furthermore, the PGP15 genome was sequenced and compared with other strains to explore the mechanisms underlying plant growth promotion by HMT-PGPB. The results showed that core genes that define the fundamental metabolic capabilities of strain PGP15 might not be necessary for plant growth promotion. Meanwhile, PGP15-specific genes, including many transposable elements, played a crucial role in the adaptive evolution of HM resistance. Overall, our results improve the understanding of interactions between HMT-PGPB and plants and facilitate the application of HMT-PGPB in the phytoremediation of HM-contaminated soils.
Collapse
|