1
|
McMenemy CM, Guo D, Quinn JA, Greenhalgh DA. 14-3-3σ/Stratifin and p21 limit AKT-related malignant progression in skin carcinogenesis following MDM2-associated p53 loss. Mol Carcinog 2024; 63:1768-1782. [PMID: 38869281 DOI: 10.1002/mc.23771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
To study mechanisms driving/inhibiting skin carcinogenesis, stage-specific expression of 14-3-3σ (Stratifin) was analyzed in skin carcinogenesis driven by activated rasHa/fos expression (HK1.ras/fos) and ablation of PTEN-mediated AKT regulation (K14.creP/Δ5PTENflx/flx). Consistent with 14-3-3σ roles in epidermal differentiation, HK1.ras hyperplasia and papillomas displayed elevated 14-3-3σ expression in supra-basal keratinocytes, paralleled by supra-basal p-MDM2166 activation and sporadic p-AKT473 expression. In bi-genic HK1.fos/Δ5PTENflx/flx hyperplasia, basal-layer 14-3-3σ expression appeared, and alongside p53/p21, was associated with keratinocyte differentiation and keratoacanthoma etiology. Tri-genic HK1.ras/fos-Δ5PTENflx/flx hyperplasia/papillomas initially displayed increased basal-layer 14-3-3σ, suggesting attempts to maintain supra-basal p-MDM2166 and protect basal-layer p53. However, HK1.ras/fos-Δ5PTENflx/flx papillomas exhibited increasing basal-layer p-MDM2166 activation that reduced p53, which coincided with malignant conversion. Despite p53 loss, 14-3-3σ expression persisted in well-differentiated squamous cell carcinomas (wdSCCs) and alongside elevated p21, limited malignant progression via inhibiting p-AKT1473 expression; until 14-3-3σ/p21 loss facilitated progression to aggressive SCC exhibiting uniform p-AKT1473. Analysis of TPA-promoted HK1.ras-Δ5PTENflx/flx mouse skin, demonstrated early loss of 14-3-3σ/p53/p21 in hyperplasia and papillomas, with increased p-MDM2166/p-AKT1473 that resulted in rapid malignant conversion and progression to poorly differentiated SCC. In 2D/3D cultures, membranous 14-3-3σ expression observed in normal HaCaT and SP1ras61 papilloma keratinocytes was unexpectedly detected in malignant T52ras61/v-fos SCC cells cultured in monolayers, but not invasive 3D-cells. Collectively, these data suggest 14-3-3σ/Stratifin exerts suppressive roles in papillomatogenesis via MDM2/p53-dependent mechanisms; while persistent p53-independent expression in early wdSCC may involve p21-mediated AKT1 inhibition to limit malignant progression.
Collapse
|
2
|
Chen Y, Yu J, Ge S, Jia R, Song X, Wang Y, Fan X. An Overview of Optic Pathway Glioma With Neurofibromatosis Type 1: Pathogenesis, Risk Factors, and Therapeutic Strategies. Invest Ophthalmol Vis Sci 2024; 65:8. [PMID: 38837168 PMCID: PMC11160950 DOI: 10.1167/iovs.65.6.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
Optic pathway gliomas (OPGs) are most predominant pilocytic astrocytomas, which are typically diagnosed within the first decade of life. The majority of affected children with OPGs also present with neurofibromatosis type 1 (NF1), the most common tumor predisposition syndrome. OPGs in individuals with NF1 primarily affect the optic pathway and lead to visual disturbance. However, it is challenging to assess risk in asymptomatic patients without valid biomarkers. On the other hand, for symptomatic patients, there is still no effective treatment to prevent or recover vision loss. Therefore, this review summarizes current knowledge regarding the pathogenesis of NF1-associated OPGs (NF1-OPGs) from preclinical studies to seek potential prognostic markers and therapeutic targets. First, the loss of the NF1 gene activates 3 distinct Ras effector pathways, including the PI3K/AKT/mTOR pathway, the MEK/ERK pathway, and the cAMP pathway, which mediate glioma tumorigenesis. Meanwhile, non-neoplastic cells from the tumor microenvironment (microglia, T cells, neurons, etc.) also contribute to gliomagenesis via various soluble factors. Subsequently, we investigated potential genetic risk factors, molecularly targeted therapies, and neuroprotective strategies for tumor prevention and vision recovery. Last, potential directions and promising preclinical models of NF1-OPGs are presented for further research. On the whole, NF1-OPGs develop as a result of the interaction between glioma cells and the tumor microenvironment. Developing effective treatments require a better understanding of tumor molecular characteristics, as well as multistage interventions targeting both neoplastic cells and non-neoplastic cells.
Collapse
|
3
|
Jaiswal P, Meena NP, Chang FS, Liao XH, Kim L, Kimmel AR. An integrated, cross-regulation pathway model involving activating/adaptive and feed-forward/feed-back loops for directed oscillatory cAMP signal-relay/response during the development of Dictyostelium. Front Cell Dev Biol 2024; 11:1263316. [PMID: 38357530 PMCID: PMC10865387 DOI: 10.3389/fcell.2023.1263316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/19/2023] [Indexed: 02/16/2024] Open
Abstract
Self-organized and excitable signaling activities play important roles in a wide range of cellular functions in eukaryotic and prokaryotic cells. Cells require signaling networks to communicate amongst themselves, but also for response to environmental cues. Such signals involve complex spatial and temporal loops that may propagate as oscillations or waves. When Dictyostelium become starved for nutrients, cells within a localized space begin to secrete cAMP. Starved cells also become chemotactic to cAMP. cAMP signals propagate as outwardly moving waves that oscillate at ∼6 min intervals, which creates a focused territorial region for centralized cell aggregation. Proximal cells move inwardly toward the cAMP source and relay cAMP outwardly to recruit additional cells. To ensure directed inward movement and outward cAMP relay, cells go through adapted and de-adapted states for both cAMP synthesis/degradation and for directional cell movement. Although many immediate components that regulate cAMP signaling (including receptors, G proteins, an adenylyl cyclase, phosphodiesterases, and protein kinases) are known, others are only inferred. Here, using biochemical experiments coupled with gene inactivation studies, we model an integrated large, multi-component kinetic pathway involving activation, inactivation (adaptation), re-activation (re-sensitization), feed-forward, and feed-back controls to generate developmental cAMP oscillations.
Collapse
|
4
|
Yun SD, Scott E, Moghadamchargari Z, Laganowsky A. 2'-Deoxy Guanosine Nucleotides Alter the Biochemical Properties of Ras. Biochemistry 2023; 62:2450-2460. [PMID: 37487239 PMCID: PMC11131413 DOI: 10.1021/acs.biochem.3c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Ras proteins in the mitogen-activated protein kinase (MAPK) signaling pathway represent one of the most frequently mutated oncogenes in cancer. Ras binds guanosine nucleotides and cycles between active (GTP) and inactive (GDP) conformations to regulate the MAPK signaling pathway. Guanosine and other nucleotides exist in cells as either 2'-hydroxy or 2'-deoxy forms, and imbalances in the deoxyribonucleotide triphosphate pool have been associated with different diseases, such as diabetes, obesity, and cancer. However, the biochemical properties of Ras bound to dGNP are not well understood. Herein, we use native mass spectrometry to monitor the intrinsic GTPase activity of H-Ras and N-Ras oncogenic mutants, revealing that the rate of 2'-deoxy guanosine triphosphate (dGTP) hydrolysis differs compared to the hydroxylated form, in some cases by seven-fold. Moreover, K-Ras expressed from HEK293 cells exhibited a higher than anticipated abundance of dGNP, despite the low abundance of dGNP in cells. Additionally, the GTPase and dGTPase activity of K-RasG12C was found to be accelerated by 10.2- and 3.8-fold in the presence of small molecule covalent inhibitors, which may open opportunities for the development of Pan-Ras inhibitors. The molecular assemblies formed between H-Ras and N-Ras, including mutant forms, with the catalytic domain of SOS (SOScat) were also investigated. The results show that the different mutants of H-Ras and N-Ras not only engage SOScat differently, but these assemblies are also dependent on the form of guanosine triphosphate bound to Ras. These findings bring to the forefront a new perspective on the nucleotide-dependent biochemical properties of Ras that may have implications for the activation of the MAPK signaling pathway and Ras-driven cancers.
Collapse
|
5
|
Sakakibara N, Clavijo PE, Sievers C, Gray VC, King KE, George AL, Ponnamperuma RM, Walter BA, Chen Z, Van Waes C, Allen CT, Weinberg WC. Oncogenic Ras and ΔNp63α cooperate to recruit immunosuppressive polymorphonuclear myeloid-derived suppressor cells in a mouse model of squamous cancer pathogenesis. Front Immunol 2023; 14:1200970. [PMID: 37638000 PMCID: PMC10449460 DOI: 10.3389/fimmu.2023.1200970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/13/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Amplification of human chromosome 3q26-29, which encodes oncoprotein ΔNp63 among other isoforms of the p63 family, is a feature common to squamous cell carcinomas (SCCs) of multiple tissue origins. Along with overexpression of ΔNp63, activation of the protooncogene, RAS, whether by overexpression or oncogenic mutation, is frequently observed in many cancers. In this study, analysis of transcriptome data from The Cancer Genome Atlas (TCGA) demonstrated that expression of TP63 mRNA, particularly ΔNp63 isoforms, and HRAS are significantly elevated in advanced squamous cell carcinomas of the head and neck (HNSCCs), suggesting pathological significance. However, how co-overexpressed ΔNp63 and HRAS affect the immunosuppressive tumor microenvironment (TME) is incompletely understood. Methods Here, we established and characterized an immune competent mouse model using primary keratinocytes with retroviral-mediated overexpression of ΔNp63α and constitutively activated HRAS (v-rasHa G12R) to evaluate the role of these oncogenes in the immune TME. Results In this model, orthotopic grafting of wildtype syngeneic keratinocytes expressing both v-rasHa and elevated levels of ΔNp63α consistently yield carcinomas in syngeneic hosts, while cells expressing v-rasHa alone yield predominantly papillomas. We found that polymorphonuclear (PMN) myeloid cells, experimentally validated to be immunosuppressive and thus representing myeloid-derived suppressor cells (PMN-MDSCs), were significantly recruited into the TME of carcinomas arising early following orthotopic grafting of ΔNp63α/v-rasHa-expressing keratinocytes. ΔNp63α/v-rasHa-driven carcinomas expressed higher levels of chemokines implicated in recruitment of MDSCs compared to v-rasHa-initiated tumors, providing a heretofore undescribed link between ΔNp63α/HRAS-driven carcinomas and the development of an immunosuppressive TME. Conclusion These results support the utilization of a genetic carcinogenesis model harboring specific genomic drivers of malignancy to study mechanisms underlying the development of local immunosuppression.
Collapse
|
6
|
Fraga T, de Sousa MJ, Magalhães J, Basto R, Paulo J, Bonito N, Magalhães JP, Figueiredo P, Sousa GM. HER2 Status in RAS and BRAF Wild-Type Metastatic Colorectal Cancer: A Portuguese Study. Cureus 2023; 15:e42536. [PMID: 37637599 PMCID: PMC10460123 DOI: 10.7759/cureus.42536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
INTRODUCTION Colorectal cancer (CRC) is the second-most deadly cancer worldwide. However, there remains a scarcity of precision treatments available for this type of cancer. Amplification or overexpression of human epidermal growth factor receptor 2 (HER2+) is a well-established therapeutic target in gastric and breast cancer. HER2 is positive in approximately 5% of CRC cases and has been implicated in resistance to therapy with anti-epidermal growth factor receptor antibodies. The aim of this study was to evaluate HER2 status in RAS and BRAF wild-type metastatic CRC (mCRC) and its correlation with survival outcomes. MATERIALS AND METHODS A single-center retrospective analysis of RAS and BRAF wild-type mCRC patients undergoing systemic treatment was conducted from July 2014 to September 2020. Tissue HER2 status was determined by immunohistochemistry (IHC) and/or fluorescence in situ hybridization (FISH) and/or chromogenic in situ hybridization (CISH). HER2+ was defined as IHC3 (+) or IHC2 (+) through FISH or CISH (+). RESULTS Fifty-nine patients were included. The median age of all the included patients was 64 years (33-82). Four patients had HER2+ tumors (7%). Four patients had HER2+ tumors (7%). The majority of HER2+ mCRC cases were males (n=3) and left-sided CRC (n=3). All patients received FOLFIRI plus cetuximab as first-line treatment. At the median follow-up of 24.0 months, patients with HER2-negative mCRC presented with a median overall survival (mOS) of 39.4 months (95% confidence interval (CI) 32.7-46.0) and the four patients with HER2+ mCRC had a mOS of 20.4 months (95% CI; 9.5-31.3; p=0.07). In HER2-negative patients, the median PFS (mPFS) was 11.3 months (95% CI; 9.2-13.4) vsHER2-positive patients with a mPFS of 10.9 months (95% CI; 1.3-20.4; p=0.47). CONCLUSIONS To our knowledge, this is the first study reporting HER2+ in mCRC patients in a Portuguese population and the HER2+ rate was consistent with previous studies. Our study suggests that HER2+ may potentially be a marker that is able to predict poor prognosis in RAS and BRAF wild-type mCRC.
Collapse
|
7
|
Cruz JPM, Sy M. Neuroectodermal Diseases: A Comparative Case Report Study. Cureus 2023; 15:e40349. [PMID: 37456443 PMCID: PMC10339275 DOI: 10.7759/cureus.40349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Neuroectodermal disease involves abnormalities that arise from the ectodermal origin, such as the nervous system, eyeball, retina, and skin. Due to the rarity of the disease, it is often underdiagnosed or misdiagnosed. In this study, the researcher presents two cases of pediatric patients with no fetomaternal complications who presented with focal seizures as their initial complaint. During the examination, varying skin color pigmentation and an abnormal neurophysical examination were observed. Cranial imaging showed hemimegalencephaly and voltage asymmetry on EEG. Skin biopsy was performed on both cases, which revealed basketweave orthokeratosis. The combination of a triad of intractable epilepsy, developmental delay, and cutaneous lesion prompted the consideration of a neuroectodermal disease. The study shows two cases of hypomelanosis of Ito and nevus syndrome, both of which may be due to mTOR and RAS pathways, respectively.
Collapse
|
8
|
Park K, Jayadev R, Payne SG, Kenny-Ganzert IW, Chi Q, Costa DS, Ramos-Lewis W, Thendral SB, Sherwood DR. Reciprocal discoidin domain receptor signaling strengthens integrin adhesion to connect adjacent tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532639. [PMID: 36993349 PMCID: PMC10055161 DOI: 10.1101/2023.03.14.532639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Separate tissues connect through adjoining basement membranes to carry out molecular barrier, exchange, and organ support functions. Cell adhesion at these connections must be robust and balanced to withstand independent tissue movement. Yet, how cells achieve synchronized adhesion to connect tissues is unknown. Here, we have investigated this question using the C. elegans utse-seam tissue connection that supports the uterus during egg-laying. Through genetics, quantitative fluorescence, and cell specific molecular disruption, we show that type IV collagen, which fastens the linkage, also activates the collagen receptor discoidin domain receptor 2 (DDR-2) in both the utse and seam. RNAi depletion, genome editing, and photobleaching experiments revealed that DDR-2 signals through LET-60/Ras to coordinately strengthen an integrin adhesion in the utse and seam that stabilizes their connection. These results uncover a synchronizing mechanism for robust adhesion during tissue connection, where collagen both affixes the linkage and signals to both tissues to bolster their adhesion.
Collapse
|
9
|
Malone CF, Kim M, Alexe G, Engel K, Forman AB, Robichaud A, Conway AS, Goodale A, Meyer A, Khalid D, Thayakumar A, Hatcher JM, Gray NS, Piccioni F, Stegmaier K. Transcriptional Antagonism by CDK8 Inhibition Improves Therapeutic Efficacy of MEK Inhibitors. Cancer Res 2023; 83:285-300. [PMID: 36398965 PMCID: PMC9938728 DOI: 10.1158/0008-5472.can-21-4309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/21/2022] [Accepted: 11/15/2022] [Indexed: 11/20/2022]
Abstract
Aberrant RAS/MAPK signaling is a common driver of oncogenesis that can be therapeutically targeted with clinically approved MEK inhibitors. Disease progression on single-agent MEK inhibitors is common, however, and combination therapies are typically required to achieve significant clinical benefit in advanced cancers. Here we focused on identifying MEK inhibitor-based combination therapies in neuroblastoma with mutations that activate the RAS/MAPK signaling pathway, which are rare at diagnosis but frequent in relapsed neuroblastoma. A genome-scale CRISPR-Cas9 functional genomic screen was deployed to identify genes that when knocked out sensitize RAS-mutant neuroblastoma to MEK inhibition. Loss of either CCNC or CDK8, two members of the mediator kinase module, sensitized neuroblastoma to MEK inhibition. Furthermore, small-molecule kinase inhibitors of CDK8 improved response to MEK inhibitors in vitro and in vivo in RAS-mutant neuroblastoma and other adult solid tumors. Transcriptional profiling revealed that loss of CDK8 or CCNC antagonized the transcriptional signature induced by MEK inhibition. When combined, loss of CDK8 or CCNC prevented the compensatory upregulation of progrowth gene expression induced by MEK inhibition. These findings propose a new therapeutic combination for RAS-mutant neuroblastoma and may have clinical relevance for other RAS-driven malignancies. SIGNIFICANCE Transcriptional adaptation to MEK inhibition is mediated by CDK8 and can be blocked by the addition of CDK8 inhibitors to improve response to MEK inhibitors in RAS-mutant neuroblastoma, a clinically challenging disease.
Collapse
|
10
|
Hebron KE, Wan X, Roth JS, Liewehr DJ, Sealover NE, Frye WJ, Kim A, Stauffer S, Perkins OL, Sun W, Isanogle KA, Robinson CM, James A, Awasthi P, Shankarappa P, Luo X, Lei H, Butcher D, Smith R, Edmondson EF, Chen JQ, Kedei N, Peer CJ, Shern JF, Figg WD, Chen L, Hall MD, Difilippantonio S, Barr FG, Kortum RL, Robey RW, Vaseva AV, Khan J, Yohe ME. The Combination of Trametinib and Ganitumab is Effective in RAS-Mutated PAX-Fusion Negative Rhabdomyosarcoma Models. Clin Cancer Res 2023; 29:472-487. [PMID: 36322002 PMCID: PMC9852065 DOI: 10.1158/1078-0432.ccr-22-1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE PAX-fusion negative rhabdomyosarcoma (FN RMS) is driven by alterations in the RAS/MAP kinase pathway and is partially responsive to MEK inhibition. Overexpression of IGF1R and its ligands is also observed in FN RMS. Preclinical and clinical studies have suggested that IGF1R is itself an important target in FN RMS. Our previous studies revealed preclinical efficacy of the MEK1/2 inhibitor, trametinib, and an IGF1R inhibitor, BMS-754807, but this combination was not pursued clinically due to intolerability in preclinical murine models. Here, we sought to identify a combination of an MEK1/2 inhibitor and IGF1R inhibitor, which would be tolerated in murine models and effective in both cell line and patient-derived xenograft models of RAS-mutant FN RMS. EXPERIMENTAL DESIGN Using proliferation and apoptosis assays, we studied the factorial effects of trametinib and ganitumab (AMG 479), a mAb with specificity for human and murine IGF1R, in a panel of RAS-mutant FN RMS cell lines. The molecular mechanism of the observed synergy was determined using conventional and capillary immunoassays. The efficacy and tolerability of trametinib/ganitumab was assessed using a panel of RAS-mutated cell-line and patient-derived RMS xenograft models. RESULTS Treatment with trametinib and ganitumab resulted in synergistic cellular growth inhibition in all cell lines tested and inhibition of tumor growth in four of six models of RAS-mutant RMS. The combination had little effect on body weight and did not produce thrombocytopenia, neutropenia, or hyperinsulinemia in tumor-bearing SCID beige mice. Mechanistically, ganitumab treatment prevented the phosphorylation of AKT induced by MEK inhibition alone. Therapeutic response to the combination was observed in models without a mutation in the PI3K/PTEN axis. CONCLUSIONS We demonstrate that combined trametinib and ganitumab is effective in a genomically diverse panel of RAS-mutated FN RMS preclinical models. Our data also show that the trametinib/ganitumab combination likely has a favorable tolerability profile. These data support testing this combination in a phase I/II clinical trial for pediatric patients with relapsed or refractory RAS-mutated FN RMS.
Collapse
|
11
|
Xu X, Pots H, Gilsbach BK, Parsons D, Veltman DM, Ramachandra SG, Li H, Kortholt A, Jin T. C2GAP2 is a common regulator of Ras signaling for chemotaxis, phagocytosis, and macropinocytosis. Front Immunol 2022; 13:1075386. [PMID: 36524124 PMCID: PMC9745196 DOI: 10.3389/fimmu.2022.1075386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
Abstract
Phagocytosis, macropinocytosis, and G protein coupled receptor-mediated chemotaxis are Ras-regulated and actin-driven processes. The common regulator for Ras activity in these three processes remains unknown. Here, we show that C2GAP2, a Ras GTPase activating protein, highly expressed in the vegetative growth state in model organism Dictyostelium. C2GAP2 localizes at the leading edge of chemotaxing cells, phagosomes during phagocytosis, and macropinosomes during micropinocytosis. c2gapB- cells lacking C2GAP2 displayed increased Ras activation upon folic acid stimulation and subsequent impaired chemotaxis in the folic acid gradient. In addition, c2gaB- cells have elevated phagocytosis and macropinocytosis, which subsequently results in faster cell growth. C2GAP2 binds multiple phospholipids on the plasma membrane and the membrane recruitment of C2GAP2 requires calcium. Taken together, we show a shared negative regulator of Ras signaling that mediates Ras signaling for chemotaxis, phagocytosis, and macropinocytosis.
Collapse
|
12
|
Yang HS, Liu W, Zheng SY, Cai HY, Luo HH, Feng YF, Lei YY. A Novel Ras--Related Signature Improves Prognostic Capacity in Oesophageal Squamous Cell Carcinoma. Front Genet 2022; 13:822966. [PMID: 35281814 PMCID: PMC8912969 DOI: 10.3389/fgene.2022.822966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/08/2022] [Indexed: 12/24/2022] Open
Abstract
Oesophageal squamous cell carcinoma (ESCC) remains a clinically challenging disease with high morbidity rates and poor prognosis. ESCC is also the most common pathological type of oesophageal cancer (EC) in China. Ras-related genes are one of the most frequently mutated gene families in cancer and regulate tumour development and progression. Given this, we investigated the Ras-related gene expression profiles and their values in ESCC prognosis, using data from the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases. We found that we could identify three distinct oesophageal cancer clusters based on their unique expression profile for 11 differentially expressed Ras-related genes with each of these demonstrating some prognostic value when, evaluated using univariate Cox analysis. We then used multivariate Cox analysis to identify relevant independent prognostic indicators and used these to build a new prognostic prediction model for oesophageal cancer patients using these three Ras-related genes. These evaluations produced an area under the curve (AUC) of 0.932. We found that our Ras-related signatures could also act as independent factors in ESCC prognosis and that patients with low Ras scores showed a higher overall expression levels of various immune checkpoint genes, including TNFSF4, TNFRSF8, TNFRSF9, NRP1, CD28, CD70, CD200, CD276, METTL16, METTL14, ZC3H13, YTHDF3, VIRMA, FTO, and RBM15, as well as a higher CSMD3, FLG, DNAH5, MUC4, PLCO, EYS, and ZNF804B mutation rates, and better sensitivity to drugs such as erlotinib, paclitaxel, and gefitinib. In conclusion, we were able to use the unique expression profiles of several Ras-related genes to produce a novel disease signature which might facilitate improved prognosis in ESCC, providing new insight into both diagnosis and treatment in these cancers.
Collapse
|
13
|
Hidalgo F, Nocka LM, Shah NH, Gorday K, Latorraca NR, Bandaru P, Templeton S, Lee D, Karandur D, Pelton JG, Marqusee S, Wemmer D, Kuriyan J. A saturation-mutagenesis analysis of the interplay between stability and activation in Ras. eLife 2022; 11:e76595. [PMID: 35272765 PMCID: PMC8916776 DOI: 10.7554/elife.76595] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/25/2022] [Indexed: 12/31/2022] Open
Abstract
Cancer mutations in Ras occur predominantly at three hotspots: Gly 12, Gly 13, and Gln 61. Previously, we reported that deep mutagenesis of H-Ras using a bacterial assay identified many other activating mutations (Bandaru et al., 2017). We now show that the results of saturation mutagenesis of H-Ras in mammalian Ba/F3 cells correlate well with the results of bacterial experiments in which H-Ras or K-Ras are co-expressed with a GTPase-activating protein (GAP). The prominent cancer hotspots are not dominant in the Ba/F3 data. We used the bacterial system to mutagenize Ras constructs of different stabilities and discovered a feature that distinguishes the cancer hotspots. While mutations at the cancer hotspots activate Ras regardless of construct stability, mutations at lower-frequency sites (e.g. at Val 14 or Asp 119) can be activating or deleterious, depending on the stability of the Ras construct. We characterized the dynamics of three non-hotspot activating Ras mutants by using NMR to monitor hydrogen-deuterium exchange (HDX). These mutations result in global increases in HDX rates, consistent with destabilization of Ras. An explanation for these observations is that mutations that destabilize Ras increase nucleotide dissociation rates, enabling activation by spontaneous nucleotide exchange. A further stability decrease can lead to insufficient levels of folded Ras - and subsequent loss of function. In contrast, the cancer hotspot mutations are mechanism-based activators of Ras that interfere directly with the action of GAPs. Our results demonstrate the importance of GAP surveillance and protein stability in determining the sensitivity of Ras to mutational activation.
Collapse
|
14
|
Niu P, Ren X, Wu M, Wan S, Zheng Y, Jiao X, Yan L, Cao H, Yang L, Shao F. Effect of intrarenal renin-angiotensin-aldosterone system on renal function in patients after cardiac surgery. Medicine (Baltimore) 2022; 101:e28854. [PMID: 35363185 PMCID: PMC9282047 DOI: 10.1097/md.0000000000028854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/28/2022] [Indexed: 01/04/2023] Open
Abstract
The aim of the study was to investigate the influence of intrarenal RAS on the decrease of renal function in patients undergoing cardiac surgery with cardiopulmonary bypass. This observational study investigated the activation of intrarenal RAS in 24 patients with AKI after cardiac surgery with cardiopulmonary bypass. The activation of intrarenal RAS was determined by urinary angiotensinogen (uAGT), which was measured at 12 hours before surgery, 0 and12 hours after surgery. The results were compared with those of 21 patients without AKI after cardiac surgery with cardiopulmonary bypass. Clinical and laboratory data were collected. Compared with baseline, all patients with cardiac surgery had activation of intrarenal RAS at 0 and 12 hours after surgery. The activation of intrarenal RAS was found significantly higher at both 0 and 12 hours after surgery in AKI group versus non AKI group (6.18 ± 1.93 ng/mL vs 3.49 ± 1.71 ng/mL, 16.38 ± 7.50 ng/mL vs 6.04 ± 2.59 ng/mL, respectively). There was a positive correlation between the activation of RAS at 0 hour after surgery and the decrease of renal function at 48 hours after surgery (r = 0.654, P = .001). These findings suggest that uAGT might be a suitable biomarker for prediction of the occurrence and severity of AKI after cardiac surgery. Inhibition of intrarenal RAS activation might be one the path of future treatment for this type of disease.
Collapse
|
15
|
Wu D, Tan H, Su W, Cheng D, Wang G, Wang J, Ma DA, Dong GM, Sun P. MZF1 mediates oncogene-induced senescence by promoting the transcription of p16 INK4A. Oncogene 2022; 41:414-426. [PMID: 34773072 PMCID: PMC8758531 DOI: 10.1038/s41388-021-02110-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/27/2023]
Abstract
Oncogene induced senescence is a tumor suppressing defense mechanism, in which the cell cycle-dependent protein kinase (CDK) inhibitor p16INK4A (encoded by the CDKN2A gene) plays a key role. We previously reported that a transcriptional co-activator chromodomain helicase DNA binding protein 7 (CHD7) mediates oncogenic ras-induced senescence by inducing transcription of the p16INK4A gene. In the current study, we identified myeloid zinc finger 1 (MZF1) as the transcriptional factor that recruits CHD7 to the p16INK4A promoter, where it mediates oncogenic ras-induced p16INK4A transcription and senescence through CHD7, in primary human cells from multiple origins. Moreover, the expression of MZF1 is induced by oncogenic ras in senescent cells through the c-Jun and Ets1 transcriptional factors upon their activation by the Ras-Raf-1-MEK-ERK signaling pathway. In non-small cell lung cancer (NSCLC) and pancreatic adenocarcinoma (PAAD) where activating ras mutations occur frequently, reduced MZF1 expression is observed in tumors, as compared to corresponding normal tissues, and correlates with poor patient survival. Analysis of single cell RNA-sequencing data from PAAD patients revealed that among the tumor cells with normal RB expression levels, those with reduced levels of MZF1 are more likely to express lower p16INK4A levels. These findings have identified novel signaling components in the pathway that mediates induction of the p16INK4A tumor suppressor and the senescence response, and suggested that MZF1 is a potential tumor suppressor in at least some cancer types, the loss of which contributes to the inactivation of the p16INK4A/RB pathway and disruption of senescence in tumor cells with intact RB.
Collapse
|
16
|
Hachim IY, Hachim MY, Talaat IM, López-Ozuna VM, Saheb Sharif-Askari N, Al Heialy S, Halwani R, Hamid Q. The Molecular Basis of Gender Variations in Mortality Rates Associated With the Novel Coronavirus (COVID-19) Outbreak. Front Mol Biosci 2021; 8:728409. [PMID: 34604307 PMCID: PMC8484873 DOI: 10.3389/fmolb.2021.728409] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/02/2021] [Indexed: 01/10/2023] Open
Abstract
Since the outbreak of the novel coronavirus disease (COVID-19) at the end of 2019, the clinical presentation of the disease showed a great heterogeneity with a diverse impact among different subpopulations. Emerging evidence from different parts of the world showed that male patients usually had a longer disease course as well as worse outcome compared to female patients. A better understanding of the molecular mechanisms behind this difference might be a fundamental step for more effective and personalized response to this disease outbreak. For that reason, here we investigate the molecular basis of gender variations in mortality rates related to COVID-19 infection. To achieve this, we used publicly available lung transcriptomic data from 141 females and compare it to 286 male lung tissues. After excluding Y specific genes, our results showed a shortlist of 73 genes that are differentially expressed between the two groups. Further analysis using pathway enrichment analysis revealed downregulation of a group of genes that are involved in the regulation of hydrolase activity including (CHM, DDX3X, FGFR3, SFRP2, and NLRP2) in males lungs compared to females. This pathway is believed to be essential for immune response and antimicrobial activity in the lung tissues. In contrast, our results showed an increased upregulation of angiotensin II receptor type 1 (AGTR1), a member of the renin-angiotensin system (RAS) that plays a role in angiotensin-converting enzyme 2 (ACE2) activity modulation in male lungs compared to females. Finally, our results showed a differential expression of genes involved in the immune response including the NLRP2 and PTGDR2 in lung tissues of both genders, further supporting the notion of the sex-based immunological differences. Taken together, our results provide an initial evidence of the molecular mechanisms that might be involved in the differential outcomes observed in both genders during the COVID-19 outbreak. This maybe essential for the discovery of new targets and more precise therapeutic options to treat COVID-19 patients from different clinical and epidemiological characteristics with the aim of improving their outcome.
Collapse
|
17
|
WNT5A inhibition alters the malignant peripheral nerve sheath tumor microenvironment and enhances tumor growth. Oncogene 2021; 40:4229-4241. [PMID: 34079083 PMCID: PMC8217297 DOI: 10.1038/s41388-021-01773-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/21/2020] [Accepted: 03/29/2021] [Indexed: 02/05/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft-tissue sarcomas that cause significant mortality in adults with neurofibromatosis type 1. We compared gene expression of growth factors in normal human nerves to MPNST and normal human Schwann cells to MPNST cell lines. We identified WNT5A as the most significantly upregulated ligand-coding gene and verified its protein expression in MPNST cell lines and tumors. In many contexts WNT5A acts as an oncogene. However, inhibiting WNT5A expression using shRNA did not alter MPNST cell proliferation, invasion, migration, or survival in vitro. Rather, shWNT5A-treated MPNST cells upregulated mRNAs associated with the remodeling of extracellular matrix and with immune cell communication. In addition, these cells secreted increased amounts of the proinflammatory cytokines CXCL1, CCL2, IL6, CXCL8, and ICAM1. Versus controls, shWNT5A-expressing MPNST cells formed larger tumors in vivo. Grafted tumors contained elevated macrophage/stromal cells, larger and more numerous blood vessels, and increased levels of Mmp9, Cxcl13, Lipocalin-1, and Ccl12. In some MPNST settings, these effects were mimicked by targeting the WNT5A receptor ROR2. These data suggest that the non-canonical Wnt ligand WNT5A inhibits MPNST tumor formation by modulating the MPNST microenvironment, so that blocking WNT5A accelerates tumor growth in vivo.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Ras pathway mutations are one of the most common type of alterations in pediatric hematologic malignancies and are frequently associated with adverse outcomes. Despite ongoing efforts to use targeted treatments, there remain no Food and Drug Administration (FDA)-approved medications specifically for children with Ras pathway-mutated leukemia. This review will summarize the role of Ras pathway mutations in pediatric leukemia, discuss the current state of Ras pathway inhibitors and highlight the most promising agents currently being evaluated in clinical trials. RECENT FINDINGS Efficacy using RAF and MEK inhibitors has been demonstrated across multiple solid and brain tumors, and these are now considered standard-of-care for certain tumor types in adults and children. Clinical trials are now testing these medications for the first time in pediatric hematologic disorders, such as acute lymphoblastic leukemia, juvenile myelomonocytic leukemia, and histiocytic disorders. Novel inhibitors of the Ras pathway, including direct RAS inhibitors, are also being tested in clinical trials across a spectrum of pediatric and adult malignancies. SUMMARY Activation of the Ras pathway is a common finding in pediatric hematologic neoplasms. Implementation of precision medicine with a goal of improving outcomes for these patients will require testing of Ras pathway inhibitors in combination with other drugs in the context of current and future clinical trials.
Collapse
|
19
|
Zhang M, Jang H, Nussinov R. PI3K Driver Mutations: A Biophysical Membrane-Centric Perspective. Cancer Res 2021; 81:237-247. [PMID: 33046444 PMCID: PMC7855922 DOI: 10.1158/0008-5472.can-20-0911] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/24/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022]
Abstract
Ras activates its effectors at the membrane. Active PI3Kα and its associated kinases/phosphatases assemble at membrane regions enriched in signaling lipids. In contrast, the Raf kinase domain extends into the cytoplasm and its assembly is away from the crowded membrane surface. Our structural membrane-centric outlook underscores the spatiotemporal principles of membrane and signaling lipids, which helps clarify PI3Kα activation. Here we focus on mechanisms of activation driven by PI3Kα driver mutations, spotlighting the PI3Kα double (multiple) activating mutations. Single mutations can be potent, but double mutations are stronger: their combination is specific, a single strong driver cannot fully activate PI3K, and two weak drivers may or may not do so. In contrast, two strong drivers may successfully activate PI3K, where one, for example, H1047R, modulates membrane interactions facilitating substrate binding at the active site (km) and the other, for example, E542K and E545K, reduces the transition state barrier (ka), releasing autoinhibition by nSH2. Although mostly unidentified, weak drivers are expected to be common, so we ask here how common double mutations are likely to be and why PI3Kα with double mutations responds effectively to inhibitors. We provide a structural view of hotspot and weak driver mutations in PI3Kα activation, explain their mechanisms, compare these with mechanisms of Raf activation, and point to targeting cell-specific, chromatin-accessible, and parallel (or redundant) pathways to thwart the expected emergence of drug resistance. Collectively, our biophysical outlook delineates activation and highlights the challenges of drug resistance.
Collapse
|
20
|
Ruffinelli JC, Santos Vivas C, Sanz-Pamplona R, Moreno V. New advances in the clinical management of RAS and BRAF mutant colorectal cancer patients. Expert Rev Gastroenterol Hepatol 2021; 15:65-79. [PMID: 32946312 DOI: 10.1080/17474124.2021.1826305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION In colorectal carcinogenesis, genetic alterations in RAS and BRAF oncogenes play an important role for cancer initiation and/or progression and represent a key focus in the search for targeted therapies. Despite many years of research and a great amount of studies, until very recently this pathway was considered extremely hard to downregulate to obtain a significant clinical impact in colorectal cancer patients. But better times are coming with the advent of new promising drugs and combinations strategies. AREAS COVERED In this review, we go over the biological characteristics of the MAPK pathway in colorectal tumors, while illustrating the clinical correlation of RAS and BRAF mutations, particularly its prognostic and predictive value. We also present newly data about recent improvements in the treatment strategy for patients harboring these types of tumors. EXPERT COMMENTARY With great advances in the knowledge of molecular basis of RAS and BRAF mutant colorectal cancer in conjunction with biotechnology development and the constant effort for improvement, in the near future many new therapeutic options would be available for the management of this group of patient with dismal prognosis.
Collapse
|
21
|
Dasgupta A, Sierra L, Tsang SV, Kurenbekova L, Patel T, Rajapakse K, Shuck RL, Rainusso N, Landesman Y, Unger T, Coarfa C, Yustein JT. Targeting PAK4 Inhibits Ras-Mediated Signaling and Multiple Oncogenic Pathways in High-Risk Rhabdomyosarcoma. Cancer Res 2021; 81:199-212. [PMID: 33168646 PMCID: PMC7878415 DOI: 10.1158/0008-5472.can-20-0854] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/15/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most prevalent pediatric soft-tissue sarcoma. Multimodal treatment, including surgery and traditional chemotherapy with radiotherapy, has contributed to improvements in overall survival rates. However, patients with recurrent or metastatic disease have 5-year survival rates of less than 30%. One reason for the lack of therapeutic advancement is identification and targeting of critical signaling nodes. p21-activated kinases (PAK) are a family of serine/threonine kinases downstream of multiple critical tumorigenic receptor tyrosine kinase receptors and oncogenic regulators, including IGFR and RAS signaling, that significantly contribute to aggressive malignant phenotypes. Here, we report that RMS cell lines and tumors exhibit enhanced PAK4 expression levels and activity, which are further activated by growth factors involved in RMS development. Molecular perturbation of PAK4 in multiple RMS models in vitro and in vivo resulted in inhibition of RMS development and progression. Fusion-positive and -negative RMS models were sensitive to two PAK4 small-molecule inhibitors, PF-3758309 and KPT-9274, which elicited significant antitumor and antimetastatic potential in several primary and metastatic in vivo models, including a relapsed RMS patient-derived xenograft model. Transcriptomic analysis of PAK4-targeted tumors revealed inhibition of the RAS-GTPase, Hedgehog, and Notch pathways, along with evidence of activation of antitumor immune response signatures. This PAK4-targeting gene signature showed prognostic significance for patients with sarcoma. Overall, our results show for the first time that PAK4 is a novel and viable therapeutic target for the treatment of high-risk RMS. SIGNIFICANCE: These data demonstrate a novel oncogenic role for PAK4 in rhabdomyosarcoma and show that targeting PAK4 activity is a promising viable therapeutic option for advanced rhabdomyosarcoma.
Collapse
|
22
|
Kobayashi K, Baba K, Kambayashi S, Okuda M. Effect of simvastatin on cell proliferation and Ras activation in canine tumour cells. Vet Comp Oncol 2020; 19:99-108. [PMID: 32779819 DOI: 10.1111/vco.12644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/24/2022]
Abstract
Statins are inhibitors of the mevalonate cascade that is responsible for cholesterol biosynthesis and the formation of intermediate metabolites, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) used in the prenylation of proteins. Although statins are widely used in the treatment of hypercholesterolemia, recent studies suggest that they also inhibit proliferation of tumour cells by reducing prenylation of small GTP-binding proteins, such as, Ras. This study aimed to evaluate the effect of simvastatin on cell proliferation and Ras activation in various canine tumour cell lines, including hemangiosarcoma (HSA), melanoma, and lymphoma cell lines. Simvastatin inhibited cell proliferation of all cell lines tested in a concentration- and time-dependent manner, but the susceptibilities were different amongst the cell lines. Simvastatin induced apoptotic cell death via activation of caspase-3 and cell cycle arrest. The cytotoxic effects of simvastatin were attenuated by GGPP and FPP. Simvastatin decreased the amount of prenylated Ras and GTP-bound Ras in HSA and melanoma cell lines, but not in lymphoma cell lines. These results indicate that simvastatin induces cytotoxic effects through the depletion of GGPP and FPP in a variety of canine tumour cells, whereas multiple mechanisms are involved in the effects. Further study is required to elucidate the underlying mechanisms of simvastatin-induced cytotoxic effects in a variety of canine tumour cells.
Collapse
|
23
|
Pereira J, Alves F, Ferreira F, Vasconcelos de Matos L, Massena A, Martins A. Liquid Biopsies in Progressing Metastatic Colorectal Cancer- Application and their Therapeutic Implications According to the RAS Status. Cureus 2020; 12:e7035. [PMID: 32211268 PMCID: PMC7082790 DOI: 10.7759/cureus.7035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction The treatment of metastatic colorectal cancer (mCRC) now includes therapy with biological agents inthe first line of treatment. The advances of our knowledge in molecular biology of these tumors allowed the identification of signaling pathways involved in tumorigenesis as potential therapeutic targets. In this field, monoclonal antibodies against epidermal growth factor receptor (anti-EGFR) added to a chemotherapy doublet have demonstrated improved overall survival for these patients. However, mutations in oncogenes NRAS/KRAS are predictive of absence of response to these treatments. Therefore, genotyping in mCRC is essential to personalized treatment. It is known that tumoral heterogeneity and selective pression by targeted therapies can lead to changes in RAS mutational status, along the course of the disease. This opens the possibility of different targeted therapies. Tumor analysis through liquid biopsies allows for the detection of genetic alterations in a less invasive way than common solid tumor biopsy and is currently being validated in different settings, with promising results in mCRC. The main goal of this study was to assess therapeutic implications of Liquid Biopsy (LB) in treatment of progressive mCRC and its potential impact on survival. Material and methods A retrospective, observational, unicentric study of patients diagnosed with progressive mCRC and who underwent LB after several lines of treatment, was performed. Analysis of patient and tumor characteristics, as well as LB results was performed with descriptive statistics and survival analysis according to Kaplan-Meier methods and COX analysis with STATA/IC software. Results We included 18 patients on whom LB were performed (median age 61 years; 55% (n=10) men). The median follow-up was 37.4 months. At diagnosis, 12 patients had a KRAS mutation. In the LB reassessment, there was a change in the RAS status in six patients, who initially had a mutation and later showed KRASwt (wild type RAS). LB led to a change in the therapeutic plan in these six patients, allowing the use of anti-EGFR therapy. Progression Free Survival (PFS) and Overall Survival (OS) could not be calculated at this time. Conclusion LB can revolutionize the approach to mCRC by optimizing therapeutic sequencing in a continuum of care strategy. The search for genetic changes over the course of the disease allows a better therapeutic approach to each patient. In the study presented, the realization of LB allowed an increase in therapeutic options in 1/3 of the patients. It is important to continue these studies with larger samples in order to better validate this strategy.
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The current review aims to highlight the frequency of RAS mutations in pediatric leukemias and solid tumors and to propose strategies for targeting oncogenic RAS in pediatric cancers. RECENT FINDINGS The three RAS genes (HRAS, NRAS, and KRAS) comprise the most frequently mutated oncogene family in human cancer. RAS mutations are commonly observed in three of the leading causes of cancer death in the United States, namely lung cancer, pancreatic cancer, and colorectal cancer. The association of RAS mutations with these aggressive malignancies inspired the creation of the National Cancer Institute RAS initiative and spurred intense efforts to develop strategies to inhibit oncogenic RAS, with much recent success. RAS mutations are frequently observed in pediatric cancers; however, recent advances in anti-RAS drug development have yet to translate into pediatric clinical trials. SUMMARY We find that RAS is mutated in common and rare pediatric malignancies and that oncogenic RAS confers a functional dependency in these cancers. Many strategies for targeting RAS are being pursued for malignancies that primarily affect adults and there is a clear need for inclusion of pediatric patients in clinical trials of these agents.
Collapse
|
25
|
O'Connor CM, Leonard D, Wiredja D, Avelar RA, Wang Z, Schlatzer D, Bryson B, Tokala E, Taylor SE, Upadhyay A, Sangodkar J, Ging ras AC, Westermarck J, Xu W, DiFeo A, Brautigan DL, Haider S, Jackson M, Narla G. Inactivation of PP2A by a recurrent mutation drives resistance to MEK inhibitors. Oncogene 2020; 39:703-717. [PMID: 31541192 PMCID: PMC6980487 DOI: 10.1038/s41388-019-1012-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/26/2019] [Accepted: 08/09/2019] [Indexed: 12/27/2022]
Abstract
The serine/threonine Protein Phosphatase 2A (PP2A) functions as a tumor suppressor by negatively regulating multiple oncogenic signaling pathways. The canonical PP2A holoenzyme comprises a scaffolding subunit (PP2A Aα/β), which serves as the platform for binding of both the catalytic C subunit and one regulatory B subunit. Somatic heterozygous missense mutations in PPP2R1A, the gene encoding the PP2A Aα scaffolding subunit, have been identified across multiple cancer types, but the effects of the most commonly mutated residue, Arg-183, on PP2A function have yet to be fully elucidated. In this study, we used a series of cellular and in vivo models and discovered that the most frequent Aα R183W mutation formed alternative holoenzymes by binding of different PP2A regulatory subunits compared with wild-type Aα, suggesting a rededication of PP2A functions. Unlike wild-type Aα, which suppressed tumorigenesis, the R183W mutant failed to suppress tumor growth in vivo through activation of the MAPK pathway in RAS-mutant transformed cells. Furthermore, cells expressing R183W were less sensitive to MEK inhibitors. Taken together, our results demonstrate that the R183W mutation in PP2A Aα scaffold abrogates the tumor suppressive actions of PP2A, thereby potentiating oncogenic signaling and reducing drug sensitivity of RAS-mutant cells.
Collapse
|