1
|
Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM. JAK-STAT Signaling as a Target for Inflammatory and Autoimmune Diseases: Current and Future Prospects. Drugs 2017; 77:521-546. [PMID: 28255960 PMCID: PMC7102286 DOI: 10.1007/s40265-017-0701-9] [Citation(s) in RCA: 777] [Impact Index Per Article: 97.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Janus kinase/signal transduction and activator of transcription (JAK-STAT) signaling pathway is implicated in the pathogenesis of inflammatory and autoimmune diseases including rheumatoid arthritis, psoriasis, and inflammatory bowel disease. Many cytokines involved in the pathogenesis of autoimmune and inflammatory diseases use JAKs and STATs to transduce intracellular signals. Mutations in JAK and STAT genes cause a number of immunodeficiency syndromes, and polymorphisms in these genes are associated with autoimmune diseases. The success of small-molecule JAK inhibitors (Jakinibs) in the treatment of rheumatologic disease demonstrates that intracellular signaling pathways can be targeted therapeutically to treat autoimmunity. Tofacitinib, the first rheumatologic Jakinib, is US Food and Drug Administration (FDA) approved for rheumatoid arthritis and is currently under investigation for other autoimmune diseases. Many other Jakinibs are in preclinical development or in various phases of clinical trials. This review describes the JAK-STAT pathway, outlines its role in autoimmunity, and explains the rationale/pre-clinical evidence for targeting JAK-STAT signaling. The safety and clinical efficacy of the Jakinibs are reviewed, starting with the FDA-approved Jakinib tofacitinib, and continuing on to next-generation Jakinibs. Recent and ongoing studies are emphasized, with a focus on emerging indications for JAK inhibition and novel mechanisms of JAK-STAT signaling blockade.
Collapse
|
Review |
8 |
777 |
2
|
JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci U S A 2015; 112:E6301-10. [PMID: 26578790 DOI: 10.1073/pnas.1515386112] [Citation(s) in RCA: 584] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chronic, low grade, sterile inflammation frequently accompanies aging and age-related diseases. Cellular senescence is associated with the production of proinflammatory chemokines, cytokines, and extracellular matrix (ECM) remodeling proteases, which comprise the senescence-associated secretory phenotype (SASP). We found a higher burden of senescent cells in adipose tissue with aging. Senescent human primary preadipocytes as well as human umbilical vein endothelial cells (HUVECs) developed a SASP that could be suppressed by targeting the JAK pathway using RNAi or JAK inhibitors. Conditioned medium (CM) from senescent human preadipocytes induced macrophage migration in vitro and inflammation in healthy adipose tissue and preadipocytes. When the senescent cells from which CM was derived had been treated with JAK inhibitors, the resulting CM was much less proinflammatory. The administration of JAK inhibitor to aged mice for 10 wk alleviated both adipose tissue and systemic inflammation and enhanced physical function. Our findings are consistent with a possible contribution of senescent cells and the SASP to age-related inflammation and frailty. We speculate that SASP inhibition by JAK inhibitors may contribute to alleviating frailty. Targeting the JAK pathway holds promise for treating age-related dysfunction.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
584 |
3
|
Xu M, Palmer AK, Ding H, Weivoda MM, Pirtskhalava T, White TA, Sepe A, Johnson KO, Stout MB, Giorgadze N, Jensen MD, LeBrasseur NK, Tchkonia T, Kirkland JL. Targeting senescent cells enhances adipogenesis and metabolic function in old age. eLife 2015; 4:e12997. [PMID: 26687007 PMCID: PMC4758946 DOI: 10.7554/elife.12997] [Citation(s) in RCA: 422] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022] Open
Abstract
Senescent cells accumulate in fat with aging. We previously found genetic clearance of senescent cells from progeroid INK-ATTAC mice prevents lipodystrophy. Here we show that primary human senescent fat progenitors secrete activin A and directly inhibit adipogenesis in non-senescent progenitors. Blocking activin A partially restored lipid accumulation and expression of key adipogenic markers in differentiating progenitors exposed to senescent cells. Mouse fat tissue activin A increased with aging. Clearing senescent cells from 18-month-old naturally-aged INK-ATTAC mice reduced circulating activin A, blunted fat loss, and enhanced adipogenic transcription factor expression within 3 weeks. JAK inhibitor suppressed senescent cell activin A production and blunted senescent cell-mediated inhibition of adipogenesis. Eight weeks-treatment with ruxolitinib, an FDA-approved JAK1/2 inhibitor, reduced circulating activin A, preserved fat mass, reduced lipotoxicity, and increased insulin sensitivity in 22-month-old mice. Our study indicates targeting senescent cells or their products may alleviate age-related dysfunction of progenitors, adipose tissue, and metabolism. DOI:http://dx.doi.org/10.7554/eLife.12997.001 The likelihood of developing metabolic diseases such as diabetes increases with age. This is, in part, because the cells within fat and other tissues become less sensitive to the hormone insulin as people and other animals get older. Also, the stem cells that give rise to new, insulin-responsive fat cells become dysfunctional with increasing age. This is related to the accumulation of “senescent” cells, which, unlike normal fat cell progenitors, release molecules that are toxic to nearby and distant cells. Xu, Palmer et al. have now investigated if senescent cells interfere with the activity of stem cells from human fat tissue, and if getting rid of these senescent cells might restore the normal activity and insulin responsiveness of aged fat tissue. The experiments revealed that human senescent fat cell progenitors release a protein called activin A, which impedes the normal function of stem cells and fat tissue. Additionally, older mice had higher levels of activin A in both their blood and fat tissue than young mice. Xu, Palmer et al. then analyzed older mice that had been engineered to have senescent fat cells that could be triggered to essentially kill themselves when the mice were treated with a drug. Eliminating the senescent cells from these mice led to lower levels of activin A and more fat tissue (due to improved stem cell capacity to become fully functional fat cells) that expressed genes required for insulin responsiveness. This showed that senescent cells are a cause of age-related fat tissue loss and metabolic disease in older mice. Next, Xu, Palmer et al. treated older mice with drugs called JAK inhibitors, which they found reduce the production of activin A by senescent cells isolated from fat tissue. After two months of treatment, the levels of activin A in the blood and in fat tissue were indeed reduced. The fat tissue in treated mice also showed fewer features associated with the development of diabetes than the fat tissue of untreated mice. As such, these results paralleled those after selectively eliminating the senescent cells. Together these findings suggest that JAK inhibitors or drugs (called senolytics) that selectively eliminate senescent cells may have clinical benefits in treating age-related conditions such as diabetes and stem cell dysfunction. DOI:http://dx.doi.org/10.7554/eLife.12997.002
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
422 |
4
|
Damsky W, King BA. JAK inhibitors in dermatology: The promise of a new drug class. J Am Acad Dermatol 2017; 76:736-744. [PMID: 28139263 PMCID: PMC6035868 DOI: 10.1016/j.jaad.2016.12.005] [Citation(s) in RCA: 328] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/30/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022]
Abstract
New molecularly targeted therapeutics are changing dermatologic therapy. Janus kinase-signal transducer and activator of transcription (JAK-STAT) is an intracellular signaling pathway upon which many different proinflammatory signaling pathways converge. Numerous inflammatory dermatoses are driven by soluble inflammatory mediators, which rely on JAK-STAT signaling, and inhibition of this pathway using JAK inhibitors might be a useful therapeutic strategy for these diseases. Growing evidence suggests that JAK inhibitors are efficacious in atopic dermatitis, alopecia areata, psoriasis, and vitiligo. Additional evidence suggests that JAK inhibition might be broadly useful in dermatology, with early reports of efficacy in several other conditions. JAK inhibitors can be administered orally or used topically and represent a promising new class of medications. The use of JAK inhibitors in dermatology is reviewed here.
Collapse
|
Review |
8 |
328 |
5
|
Abstract
Aberrant activation of the JAK/STAT pathway has been reported in a variety of disease states, including inflammatory conditions, hematologic malignancies, and solid tumors. For instance, a large proportion of patients with myeloproliferative neoplasms (MPN) carry the acquired gain-of-function JAK2 V617F somatic mutation. This knowledge has dramatically improved our understanding of the pathogenesis of MPNs and has facilitated the development of therapeutics capable of suppressing the constitutive activation of the JAK/STAT pathway, now recognized as a common underlying biologic abnormality in MPNs. Ruxolitinib is an oral JAK1 and JAK2 inhibitor that has recently been approved for the treatment of myelofibrosis and has been tested against other hematologic malignancies. A series of agents with different specificities against different members of the JAK family of proteins is currently undergoing evaluation in clinical trials for patients with MPNs, lymphoma, and solid tumors such as breast or pancreatic cancer. Despite the significant clinical activity exhibited by these agents in myelofibrosis, some patients fail to respond or progress during JAK kinase inhibitor therapy. Recent reports have shed light into the mechanisms of resistance to JAK inhibitor therapy. Several approaches hold promise to overcome such resistance.
Collapse
|
Review |
12 |
227 |
6
|
Sullivan KD, Lewis HC, Hill AA, Pandey A, Jackson LP, Cabral JM, Smith KP, Liggett LA, Gomez EB, Galbraith MD, DeGregori J, Espinosa JM. Trisomy 21 consistently activates the interferon response. eLife 2016; 5:e16220. [PMID: 27472900 PMCID: PMC5012864 DOI: 10.7554/elife.16220] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022] Open
Abstract
Although it is clear that trisomy 21 causes Down syndrome, the molecular events acting downstream of the trisomy remain ill defined. Using complementary genomics analyses, we identified the interferon pathway as the major signaling cascade consistently activated by trisomy 21 in human cells. Transcriptome analysis revealed that trisomy 21 activates the interferon transcriptional response in fibroblast and lymphoblastoid cell lines, as well as circulating monocytes and T cells. Trisomy 21 cells show increased induction of interferon-stimulated genes and decreased expression of ribosomal proteins and translation factors. An shRNA screen determined that the interferon-activated kinases JAK1 and TYK2 suppress proliferation of trisomy 21 fibroblasts, and this defect is rescued by pharmacological JAK inhibition. Therefore, we propose that interferon activation, likely via increased gene dosage of the four interferon receptors encoded on chromosome 21, contributes to many of the clinical impacts of trisomy 21, and that interferon antagonists could have therapeutic benefits.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
202 |
7
|
Zhu H, Jian Z, Zhong Y, Ye Y, Zhang Y, Hu X, Pu B, Gu L, Xiong X. Janus Kinase Inhibition Ameliorates Ischemic Stroke Injury and Neuroinflammation Through Reducing NLRP3 Inflammasome Activation via JAK2/STAT3 Pathway Inhibition. Front Immunol 2021; 12:714943. [PMID: 34367186 PMCID: PMC8339584 DOI: 10.3389/fimmu.2021.714943] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Background Inflammatory responses play a multiphase role in the pathogenesis of cerebral ischemic stroke (IS). Ruxolitinib (Rux), a selective oral JAK 1/2 inhibitor, reduces inflammatory responses via the JAK2/STAT3 pathway. Based on its anti-inflammatory and immunosuppressive effects, we hypothesized that it may have a protective effect against stroke. The aim of this study was to investigate whether inhibition of JAK2 has a neuroprotective effect on ischemic stroke and to explore the potential molecular mechanisms. Methods Rux, MCC950 or vehicle was applied to middle cerebral artery occlusion (MCAO) mice in vivo and an oxygen-glucose deprivation/reoxygenation (OGD/R) model in vitro. After 3 days of reperfusion, neurological deficit scores, infarct volume and brain water content were assessed. Immunofluorescence staining and western blots were used to measure the expression of NLRP3 inflammasome components. The infiltrating cells were investigated by flow cytometry. Proinflammatory cytokines were assessed by RT-qPCR. The expression of the JAK2/STAT3 pathway was measured by western blots. Local STAT3 deficiency in brain tissue was established with a lentiviral vector carrying STAT3 shRNA, and chromatin immunoprecipitation (ChIP) assays were used to investigate the interplay between NLRP3 and STAT3 signaling. Results Rux treatment improved neurological scores, decreased the infarct size and ameliorated cerebral edema 3 days after stroke. In addition, immunofluorescence staining and western blots showed that Rux application inhibited the expression of proteins related to the NLRP3 inflammasome and phosphorylated STAT3 (P-STAT3) in neurons and microglia/macrophages. Furthermore, Rux administration inhibited the expression of proinflammatory cytokines, including TNF-α, IFN-γ, HMGB1, IL-1β, IL-2, and IL-6, suggesting that Rux may alleviate IS injury by inhibiting proinflammatory reactions via JAK2/STAT3 signaling pathway regulation. Infiltrating macrophages, B, T, cells were also reduced by Rux. Local STAT3 deficiency in brain tissue decreased histone H3 and H4 acetylation on the NLRP3 promoter and NLRP3 inflammasome component expression, indicating that the NLRP3 inflammasome may be directly regulated by STAT3 signaling. Rux application suppressed lipopolysaccharide (LPS)-induced NLRP3 inflammasome secretion and JAK2/STAT3 pathway activation in the OGD/R model in vitro. Conclusion JAK2 inhibition by Rux in MCAO mice decreased STAT3 phosphorylation, thus inhibiting the expression of downstream proinflammatory cytokines and the acetylation of histones H3 and H4 on the NLRP3 promoter, resulting in the downregulation of NLRP3 inflammasome expression.
Collapse
|
Journal Article |
4 |
191 |
8
|
Felgenhauer U, Schoen A, Gad HH, Hartmann R, Schaubmar AR, Failing K, Drosten C, Weber F. Inhibition of SARS-CoV-2 by type I and type III interferons. J Biol Chem 2020; 295:13958-13964. [PMID: 32587093 PMCID: PMC7549028 DOI: 10.1074/jbc.ac120.013788] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
The recently emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of the devastating COVID-19 lung disease pandemic. Here, we tested the inhibitory activities of the antiviral interferons of type I (IFN-α) and type III (IFN-λ) against SARS-CoV-2 and compared them with those against SARS-CoV-1, which emerged in 2003. Using two mammalian epithelial cell lines (human Calu-3 and simian Vero E6), we found that both IFNs dose-dependently inhibit SARS-CoV-2. In contrast, SARS-CoV-1 was restricted only by IFN-α in these cell lines. SARS-CoV-2 generally exhibited a broader IFN sensitivity than SARS-CoV-1. Moreover, ruxolitinib, an inhibitor of IFN-triggered Janus kinase/signal transducer and activator of transcription signaling, boosted SARS-CoV-2 replication in the IFN-competent Calu-3 cells. We conclude that SARS-CoV-2 is sensitive to exogenously added IFNs. This finding suggests that type I and especially the less adverse effect-prone type III IFN are good candidates for the management of COVID-19.
Collapse
|
research-article |
5 |
183 |
9
|
Efficacy and safety of ruxolitinib cream for the treatment of atopic dermatitis: Results from 2 phase 3, randomized, double-blind studies. J Am Acad Dermatol 2021; 85:863-872. [PMID: 33957195 DOI: 10.1016/j.jaad.2021.04.085] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Ruxolitinib (RUX) cream demonstrated potent anti-inflammatory and antipruritic efficacy in a phase 2 study in adults with atopic dermatitis (AD). OBJECTIVE To evaluate 8-week efficacy and safety in 2 phase 3 studies of RUX cream in patients with AD. METHODS Topical Ruxolitinib Evaluation in Atopic Dermatitis Study 1 (NCT03745638) and Study 2 (NCT03745651) enrolled patients aged ≥12 years with AD for ≥2 years, an Investigator's Global Assessment score of 2/3, and 3%-20% affected body surface area. Patients were randomized 2:2:1 to twice-daily 0.75% RUX cream, 1.5% RUX cream, or vehicle cream for 8 continuous weeks. The primary endpoint was Investigator's Global Assessment treatment success at week 8 (Investigator's Global Assessment score of 0/1 and ≥2-grade improvement from baseline). RESULTS In the Topical Ruxolitinib Evaluation in Atopic Dermatitis Study 1 and 2, 631 and 618 patients were randomized (631/577 analyzed for efficacy). Significantly more patients achieved Investigator's Global Assessment treatment success with 0.75% RUX cream (50.0%/39.0%) and 1.5% RUX cream (53.8%/51.3%) versus vehicle (15.1%/7.6%; P < .0001) at week 8. Significant itch reductions versus vehicle were reported within 12 hours of first application of 1.5% RUX (P < .05). Application site reactions were infrequent (<1%) and lower with RUX versus vehicle; none were clinically significant. LIMITATIONS Longer-term safety data are not yet available. CONCLUSIONS RUX cream showed anti-inflammatory and prompt antipruritic effects with superior efficacy versus vehicle and was well tolerated.
Collapse
|
Journal Article |
4 |
163 |
10
|
Elli EM, Baratè C, Mendicino F, Palandri F, Palumbo GA. Mechanisms Underlying the Anti-inflammatory and Immunosuppressive Activity of Ruxolitinib. Front Oncol 2019; 9:1186. [PMID: 31788449 PMCID: PMC6854013 DOI: 10.3389/fonc.2019.01186] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022] Open
Abstract
The JAK-STAT signaling pathway plays a central role in signal transduction in hematopoietic cells, as well as in cells of the immune system. The occurrence in most patients affected by myeloproliferative neoplasms (MPNs) of driver mutations resulting in the constitutive activation of JAK2-dependent signaling identified the deregulated JAK-STAT signal transduction pathway as the major pathogenic mechanism of MPNs. It also prompted the development of targeted drugs for MPNs. Ruxolitinib is a potent and selective oral inhibitor of both JAK2 and JAK1 protein kinases. Its use in patients with myelofibrosis is associated with a substantial reduction in spleen volume, attenuation of symptoms and decreased mortality. With growing clinical experience, concerns about infectious complications, and increased risk of B-cell lymphoma, presumably caused by the effects of JAK1/2 inhibition on immune response and immunosurveillance, have been raised. Evidence shows that ruxolitinib exerts potent anti-inflammatory and immunosuppressive effects. Cellular targets of ruxolitinib include various components of both the innate and adaptive immune system, such as natural killer cells, dendritic cells, T helper, and regulatory T cells. On the other hand, immunomodulatory properties have proven beneficial in some instances, as highlighted by the successful use of ruxolitinib in corticosteroid-resistant graft vs. host disease. The objective of this article is to provide an overview of published evidence addressing the key question of the mechanisms underlying ruxolitinib-induced immunosuppression.
Collapse
|
Review |
6 |
152 |
11
|
Liu LY, Strassner JP, Refat MA, Harris JE, King BA. Repigmentation in vitiligo using the Janus kinase inhibitor tofacitinib may require concomitant light exposure. J Am Acad Dermatol 2017; 77:675-682.e1. [PMID: 28823882 DOI: 10.1016/j.jaad.2017.05.043] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/19/2017] [Accepted: 05/21/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Vitiligo is an autoimmune disease in which cutaneous depigmentation occurs. Existing therapies are often inadequate. Prior reports have shown benefit of the Janus kinase (JAK) inhibitors. OBJECTIVE To evaluate the efficacy of the JAK 1/3 inhibitor tofacitinib in the treatment of vitiligo. METHOD This is a retrospective case series of 10 consecutive patients with vitiligo treated with tofacitinib. Severity of disease was assessed by body surface area of depigmentation. RESULTS Ten consecutive patients were treated with tofacitinib. Five patients achieved some repigmentation at sites of either sunlight exposure or low-dose narrowband ultraviolet B phototherapy. Suction blister sampling revealed that the autoimmune response was inhibited during treatment in both responding and nonresponding lesions, suggesting that light rather than immunosuppression was primarily required for melanocyte regeneration. LIMITATIONS Limitations include the small size of the study population, retrospective nature of the study, and lack of a control group. CONCLUSION Treatment of vitiligo with JAK inhibitors appears to require light exposure. In contrast to treatment with phototherapy alone, repigmentation during treatment with JAK inhibitors may require only low-level light. Maintenance of repigmentation may be achieved with JAK inhibitor monotherapy. These results support a model wherein JAK inhibitors suppress T cell mediators of vitiligo and light exposure is necessary for stimulation of melanocyte regeneration.
Collapse
|
Journal Article |
8 |
146 |
12
|
Ruxolitinib reverses dysregulated T helper cell responses and controls autoimmunity caused by a novel signal transducer and activator of transcription 1 (STAT1) gain-of-function mutation. J Allergy Clin Immunol 2017; 139:1629-1640.e2. [PMID: 28139313 DOI: 10.1016/j.jaci.2016.11.022] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 10/18/2016] [Accepted: 11/02/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Gain-of-function (GOF) mutations in the human signal transducer and activator of transcription 1 (STAT1) manifest in immunodeficiency and autoimmunity with impaired TH17 cell differentiation and exaggerated responsiveness to type I and II interferons. Allogeneic bone marrow transplantation has been attempted in severely affected patients, but outcomes have been poor. OBJECTIVE We sought to define the effect of increased STAT1 activity on T helper cell polarization and to investigate the therapeutic potential of ruxolitinib in treating autoimmunity secondary to STAT1 GOF mutations. METHODS We used in vitro polarization assays, as well as phenotypic and functional analysis of STAT1-mutated patient cells. RESULTS We report a child with a novel mutation in the linker domain of STAT1 who had life-threatening autoimmune cytopenias and chronic mucocutaneous candidiasis. Naive lymphocytes from the affected patient displayed increased TH1 and follicular T helper cell and suppressed TH17 cell responses. The mutation augmented cytokine-induced STAT1 phosphorylation without affecting dephosphorylation kinetics. Treatment with the Janus kinase 1/2 inhibitor ruxolitinib reduced hyperresponsiveness to type I and II interferons, normalized TH1 and follicular T helper cell responses, improved TH17 differentiation, cured mucocutaneous candidiasis, and maintained remission of immune-mediated cytopenias. CONCLUSIONS Autoimmunity and infection caused by STAT1 GOF mutations are the result of dysregulated T helper cell responses. Janus kinase inhibitor therapy could represent an effective targeted treatment for long-term disease control in severely affected patients for whom hematopoietic stem cell transplantation is not available.
Collapse
|
Journal Article |
8 |
117 |
13
|
Palandri F, Breccia M, Bonifacio M, Polverelli N, Elli EM, Benevolo G, Tiribelli M, Abruzzese E, Iurlo A, Heidel FH, Bergamaschi M, Tieghi A, Crugnola M, Cavazzini F, Binotto G, Isidori A, Sgherza N, Bosi C, Martino B, Latagliata R, Auteri G, Scaffidi L, Griguolo D, Trawinska M, Cattaneo D, Catani L, Krampera M, Lemoli RM, Cuneo A, Semenzato G, Foà R, Di Raimondo F, Bartoletti D, Cavo M, Palumbo GA, Vianelli N. Life after ruxolitinib: Reasons for discontinuation, impact of disease phase, and outcomes in 218 patients with myelofibrosis. Cancer 2019; 126:1243-1252. [PMID: 31860137 DOI: 10.1002/cncr.32664] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND After discontinuing ruxolitinib, the outcome of patients with myelofibrosis reportedly has been poor. The authors investigated whether disease characteristics before the receipt of ruxolitinib may predict drug discontinuation in patients with myelofibrosis and whether reasons for drug discontinuation, disease phase at discontinuation, and salvage therapies may influence the outcome. METHODS A centralized electronic clinical database was created in 20 European hematology centers, including clinical and laboratory data for 524 patients who received ruxolitinib for myelofibrosis. RESULTS At 3 years, 40.8% of patients had stopped ruxolitinib. Baseline predictors of drug discontinuation were: intermediate-2-risk/high-risk category (Dynamic International Prognostic Score System), a platelet count <100 ×109 per liter, transfusion dependency, and unfavorable karyotype. At last contact, 268 patients (51.1%) had discontinued therapy, and the median drug exposure was 17.5 months. Fifty patients (18.7%) died while taking ruxolitinib. The reasons for discontinuation in the remaining 218 patients were the lack (22.9%) or loss (11.9%) of a spleen response, ruxolitinib-related adverse events (27.5%), progression to blast phase (23.4%), ruxolitinib-unrelated adverse events (9.2%), and allogeneic transplantation during response (5.1%). The median survival after ruxolitinib was 13.2 months and was significantly better in the 167 patients who discontinued ruxolitinib in chronic phase (27.5 vs 3.9 months for those who discontinued in blast phase; P < .001). No survival differences were observed among patients who discontinued ruxolitinib in chronic phase because of lack of response, loss of response, or ruxolitinib-related adverse events. The use of investigational agents and/or ruxolitinib rechallenge were associated with improved outcome. CONCLUSIONS The survival of patients with myelofibrosis after discontinuation of ruxolitinib is poor, particularly for those who discontinue in blast phase. Salvage therapies can improve outcome, emphasizing the need for novel therapies.
Collapse
|
Observational Study |
6 |
111 |
14
|
Keenan C, Nichols KE, Albeituni S. Use of the JAK Inhibitor Ruxolitinib in the Treatment of Hemophagocytic Lymphohistiocytosis. Front Immunol 2021; 12:614704. [PMID: 33664745 PMCID: PMC7923355 DOI: 10.3389/fimmu.2021.614704] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rare hyperinflammatory syndrome driven by overactive T cells and macrophages that abundantly secrete numerous pro-inflammatory cytokines, including interferon (IFN)-gamma, interleukin (IL)-1-beta, IL-2, IL-6, IL-10, IL-18, and tumor necrosis factor (TNF). The release of these and other cytokines underlies many of the clinical and pathologic manifestations of HLH, which if left untreated, can lead to multi-organ failure and death. The advent of etoposide-based regimens, such as the Histiocyte Society HLH-94 and HLH-2004 protocols, has substantially decreased the mortality associated with HLH. Nevertheless, the 5-year survival remains low at ~60%. To improve upon these results, studies have focused on the use of novel cytokine-directed therapies to dampen inflammation in HLH. Among the agents being tested is ruxolitinib, a potent inhibitor of the Janus Kinase (JAK) and Signal Transducer and Activation of Transcription (STAT) pathway, which functions downstream of many HLH-associated cytokines. Here, we review the basic biology of HLH, including the role of cytokines in disease pathogenesis, and discuss the use of ruxolitinib in the treatment of HLH.
Collapse
|
Review |
4 |
106 |
15
|
Loh ML, Tasian SK, Rabin KR, Brown P, Magoon D, Reid JM, Chen X, Ahern CH, Weigel BJ, Blaney SM. A phase 1 dosing study of ruxolitinib in children with relapsed or refractory solid tumors, leukemias, or myeloproliferative neoplasms: A Children's Oncology Group phase 1 consortium study (ADVL1011). Pediatr Blood Cancer 2015; 62:1717-24. [PMID: 25976292 PMCID: PMC4546537 DOI: 10.1002/pbc.25575] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/16/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND Ruxolitinib, an orally bioavailable JAK1/JAK2 inhibitor, may treat cancers with CRLF2 and/or JAK pathway mutations. PROCEDURE A phase 1 trial of ruxolitinib was performed to determine the maximum tolerated or recommended phase 2 dose, dose-limiting toxicities (DLTs), pharmacokinetics (PK), and pharmacodynamics (PD) in children with recurrent/refractory solid tumors (STs). Ruxolitinib was administered twice daily (BID) in 28-day cycles at five dose levels (15, 21, 29, 39, and 50 mg/m(2)/dose). PK and PD studies were performed during cycle 1. Toxicity, preliminary efficacy, and PK/PD were also assessed in children with relapsed/refractory hematologic malignancies (HMs). RESULTS Forty-nine patients were enrolled, 28 with STs (dose escalation cohort) and 21 with HMs. Ruxolitinib was well-tolerated with one DLT per cohort of six patients at dose levels (DLs) 2-5. One patient with an ST had grade 5 multi-organ failure at DL2. One patient each at DL3 and DL4 had a grade 4 neutropenia, and one patient at DL5 had a grade 4 creatinine phosphokinase elevation. No objective responses were observed in patients with STs. One patient with polycythemia vera achieved a partial response and received 18 cycles of ruxolitinib. The PK of ruxolitinib were similar to that in adults. Partial inhibition of phosphorylated JAK2, STAT5, and S6 was observed in in vitro plasma inhibitory activity PD assay. CONCLUSION Ruxolitinib was well tolerated in children with refractory cancer. The recommended phase 2 dose for continuous BID oral administration is 50 mg/m(2)/dose. Subsequent evaluation of ruxolitinib in combination with cytotoxic chemotherapy in children, adolescents, and young adults with JAK-mutant leukemias is planned.
Collapse
|
research-article |
10 |
99 |
16
|
Talpaz M, Paquette R, Afrin L, Hamburg SI, Prchal JT, Jamieson K, Terebelo HR, Ortega GL, Lyons RM, Tiu RV, Winton EF, Natrajan K, Odenike O, Claxton D, Peng W, O’Neill P, Erickson-Viitanen S, Leopold L, Sandor V, Levy RS, Kantarjian HM, Verstovsek S. Interim analysis of safety and efficacy of ruxolitinib in patients with myelofibrosis and low platelet counts. J Hematol Oncol 2013; 6:81. [PMID: 24283202 PMCID: PMC4176265 DOI: 10.1186/1756-8722-6-81] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/06/2013] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Ruxolitinib, a Janus kinase 1 and 2 inhibitor, demonstrated improvements in spleen volume, symptoms, and survival over placebo and best available therapy in intermediate-2 or high-risk myelofibrosis patients with baseline platelet counts ≥100 × 109/L in phase III studies. The most common adverse events were dose-dependent anemia and thrombocytopenia, which were anticipated because thrombopoietin and erythropoietin signal through JAK2. These events were manageable, rarely leading to treatment discontinuation. Because approximately one-quarter of MF patients have platelet counts <100 × 109/L consequent to their disease, ruxolitinib was evaluated in this subset of patients using lower initial doses. Interim results of a phase II study of ruxolitinib in myelofibrosis patients with baseline platelet counts of 50-100 × 109/L are reported. METHODS Ruxolitinib was initiated at a dose of 5 mg twice daily (BID), and doses could be increased by 5 mg once daily every 4 weeks to 10 mg BID if platelet counts remained adequate. Additional dosage increases required evidence of suboptimal efficacy. Assessments included measurement of spleen volume by MRI, MF symptoms by MF Symptom Assessment Form v2.0 Total Symptom Score [TSS]), Patient Global Impression of Change (PGIC); EORTC QLQ-C30, and safety/tolerability. RESULTS By week 24, 62% of patients achieved stable doses ≥10 mg BID. Median reductions in spleen volume and TSS were 24.2% and 43.8%, respectively. Thrombocytopenia necessitating dose reductions and dose interruptions occurred in 12 and 8 patients, respectively, and occurred mainly in patients with baseline platelet counts ≤75 × 109/L. Seven patients experienced platelet count increases ≥15 × 109/L. Mean hemoglobin levels remained stable over the treatment period. Two patients discontinued for adverse events: 1 for grade 4 retroperitoneal hemorrhage secondary to multiple and suspected pre-existing renal artery aneurysms and 1 for grade 4 thrombocytopenia. CONCLUSIONS Results suggest that a low starting dose of ruxolitinib with escalation to 10 mg BID may be appropriate in myelofibrosis patients with low platelet counts.
Collapse
|
Clinical Trial, Phase II |
12 |
85 |
17
|
Cotter DG, Schairer D, Eichenfield L. Emerging therapies for atopic dermatitis: JAK inhibitors. J Am Acad Dermatol 2017; 78:S53-S62. [PMID: 29248518 DOI: 10.1016/j.jaad.2017.12.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 02/06/2023]
Abstract
The Janus kinase-signal transducer and activator of transcription pathway is a conserved master regulator of immunity and myeloproliferation. Advanced understanding of this pathway has led to development of targeted inhibitors of Janus kinases (Jakinibs). As a class, JAK inhibitors effectively treat a multitude of hematologic and inflammatory diseases. Given such success, use of JAK inhibitors for mitigation of atopic dermatitis is under active investigation. Herein, we review the evolving data on the safety and efficacy of JAK inhibitors in treatment of atopic dermatitis. Although it is still early in the study of JAK inhibitors for atopic dermatitis, evidence identifies JAK inhibitors as effective alternatives to conventional therapies. Nonetheless, multiple large safety and efficacy trials are needed before widespread use of JAK inhibitors can be advocated for atopic dermatitis.
Collapse
|
Review |
8 |
75 |
18
|
Selective targeting of JAK/STAT signaling is potentiated by Bcl-xL blockade in IL-2-dependent adult T-cell leukemia. Proc Natl Acad Sci U S A 2015; 112:12480-5. [PMID: 26396258 DOI: 10.1073/pnas.1516208112] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Adult T-cell leukemia (ATL) develops in individuals infected with human T-cell lymphotropic virus-1 (HTLV-1). Presently there is no curative therapy for ATL. HTLV-1-encoded protein Tax (transactivator from the X-gene region) up-regulates Bcl-xL (B-cell lymphoma-extra large) expression and activates interleukin-2 (IL-2), IL-9, and IL-15 autocrine/paracrine systems, resulting in amplified JAK/STAT signaling. Inhibition of JAK signaling reduces cytokine-dependent ex vivo proliferation of peripheral blood mononuclear cells (PBMCs) from ATL patients in smoldering/chronic stages. Currently, two JAK inhibitors are approved for human use. In this study, we examined activity of multiple JAK inhibitors in ATL cell lines. The selective JAK inhibitor ruxolitinib was examined in a high-throughput matrix screen combined with >450 potential therapeutic agents, and Bcl-2/Bcl-xL inhibitor navitoclax was identified as a strong candidate for multicomponent therapy. The combination was noted to strongly activate BAX (Bcl-2-associated X protein), effect mitochondrial depolarization, and increase caspase 3/7 activities that lead to cleavage of PARP (poly ADP ribose polymerase) and Mcl-1 (myeloid cell leukemia 1). Ruxolitinib and navitoclax independently demonstrated modest antitumor efficacy, whereas the combination dramatically lowered tumor burden and prolonged survival in an ATL murine model. This combination strongly blocked ex vivo proliferation of five ATL patients' PBMCs. These studies provide support for a therapeutic trial in patients with smoldering/chronic ATL using a drug combination that inhibits JAK signaling and antiapoptotic protein Bcl-xL.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
74 |
19
|
Vargas-Hernández A, Mace EM, Zimmerman O, Zerbe CS, Freeman AF, Rosenzweig S, Leiding JW, Torgerson T, Altman MC, Schussler E, Cunningham-Rundles C, Chinn IK, Carisey AF, Hanson IC, Rider NL, Holland SM, Orange JS, Forbes LR. Ruxolitinib partially reverses functional natural killer cell deficiency in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations. J Allergy Clin Immunol 2017; 141:2142-2155.e5. [PMID: 29111217 DOI: 10.1016/j.jaci.2017.08.040] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/09/2017] [Accepted: 08/19/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Natural killer (NK) cells are critical innate effector cells whose development is dependent on the Janus kinase-signal transducer and activator of transcription (STAT) pathway. NK cell deficiency can result in severe or refractory viral infections. Patients with STAT1 gain-of-function (GOF) mutations have increased viral susceptibility. OBJECTIVE We sought to investigate NK cell function in patients with STAT1 GOF mutations. METHODS NK cell phenotype and function were determined in 16 patients with STAT1 GOF mutations. NK cell lines expressing patients' mutations were generated with clustered regularly interspaced short palindromic repeats (CRISPR-Cas9)-mediated gene editing. NK cells from patients with STAT1 GOF mutations were treated in vitro with ruxolitinib. RESULTS Peripheral blood NK cells from patients with STAT1 GOF mutations had impaired terminal maturation. Specifically, patients with STAT1 GOF mutations have immature CD56dim NK cells with decreased expression of CD16, perforin, CD57, and impaired cytolytic function. STAT1 phosphorylation was increased, but STAT5 was aberrantly phosphorylated in response to IL-2 stimulation. Upstream inhibition of STAT1 signaling with the small-molecule Janus kinase 1/2 inhibitor ruxolitinib in vitro and in vivo restored perforin expression in CD56dim NK cells and partially restored NK cell cytotoxic function. CONCLUSIONS Properly regulated STAT1 signaling is critical for NK cell maturation and function. Modulation of increased STAT1 phosphorylation with ruxolitinib is an important option for therapeutic intervention in patients with STAT1 GOF mutations.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
74 |
20
|
Mead AJ, Milojkovic D, Knapper S, Garg M, Chacko J, Farquharson M, Yin J, Ali S, Clark RE, Andrews C, Dawson MK, Harrison C. Response to ruxolitinib in patients with intermediate-1-, intermediate-2-, and high-risk myelofibrosis: results of the UK ROBUST Trial. Br J Haematol 2015; 170:29-39. [PMID: 25824940 DOI: 10.1111/bjh.13379] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/26/2015] [Indexed: 12/15/2022]
Abstract
Myelofibrosis is characterized by splenomegaly and debilitating constitutional symptoms that negatively impact patients' quality of life. ROBUST, a UK, open-label, phase II study, evaluated the safety and efficacy of ruxolitinib in patients with myelofibrosis (N = 48), including intermediate-1 risk patients. The primary composite endpoint was the proportion of patients achieving treatment success [≥ 50% reduction in palpable spleen length and/or a ≥ 50% decrease in Myelofibrosis Symptom Assessment Form Total Symptom Score (MF-SAF TSS)] at 48 weeks. This was the first time that efficacy of ruxolitinib in myelofibrosis has been evaluated based on these criteria and the first time the MF-SAF was used in a population of patients solely from the United Kingdom. Overall, 50% of patients and 57% of intermediate-1 risk patients, achieved treatment success; reductions in spleen length and symptoms were observed in all risk groups. The majority of patients (66.7%) experienced ≥ 50% reductions from baseline in spleen length at any time. Improvements in MF-SAF TSS were seen in 80.0%, 72.7%, and 72.2% of intermediate-1, intermediate-2, and high-risk patients, respectively. Consistent with other studies of ruxolitinib, the most common haematological adverse events were anaemia and thrombocytopenia. Results indicate that most patients with myelofibrosis, including intermediate-1 risk patients, may benefit from ruxolitinib treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
74 |
21
|
Baris S, Alroqi F, Kiykim A, Karakoc-Aydiner E, Ogulur I, Ozen A, Charbonnier LM, Bakır M, Boztug K, Chatila TA, Barlan IB. Severe Early-Onset Combined Immunodeficiency due to Heterozygous Gain-of-Function Mutations in STAT1. J Clin Immunol 2016; 36:641-8. [PMID: 27379765 DOI: 10.1007/s10875-016-0312-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/26/2016] [Indexed: 01/19/2023]
Abstract
PURPOSE Loss and gain-of-function (GOF) mutations in human signal transducer and activator of transcription 1 (STAT1) lead to distinct phenotypes. Although recurrent infections are common to both types of STAT1 mutations, GOF mutations are distinguished by chronic mucocutaneous candidiasis and autoimmunity. However, the clinical spectra of STAT1 GOF mutations continue to expand. We here describe two patients with STAT1 GOF mutations presenting early in life with combined immunodeficiency (CID). METHODS Clinical data and laboratory findings including immunophenotyping, level of interferon (IFN)-γ/IL-17(+) T cells, interferon-induced STAT1 phosphorylation, and JAK inhibitor assays were evaluated. Sequencing of STAT1 gene was performed by Sanger sequencer. RESULTS Patient 1 (P1) had persistent oral candidiasis and cytomegalovirus (CMV) infection since 2 months of age and later developed cavitary lung lesions due to Mycobacterium tuberculosis. Patient 2 (P2) presented with oral candidiasis and recurrent pneumonia at 4 months of age and subsequently developed CMV pneumonitis. Both patients suffered heterozygous missense mutations in STAT1, leading to deleterious amino acid substitutions in the DNA binding domain (P1: c.1154C > T; p.T385M; P2. c.971G > T; p.C324F). Circulating CD4(+) T cells of both patients exhibited increased interferon-γ and decreased IL-17 expression as compared to controls. They also exhibited increased IFN-β and -γ-induced STAT1 phosphorylation that was reversed upon treatment with the JAK kinase inhibitor ruxolitinib. CONCLUSION STAT1 GOF mutations may present early in life with CID, consistent with the clinical heterogeneity of the disease. JAK kinase inhibitors may potentially be useful in some patients as adjunct therapy pending definitive treatment with bone marrow transplantation.
Collapse
|
Journal Article |
9 |
74 |
22
|
Mascarenhas J, Mughal TI, Verstovsek S. Biology and clinical management of myeloproliferative neoplasms and development of the JAK inhibitor ruxolitinib. Curr Med Chem 2012; 19:4399-413. [PMID: 22830345 PMCID: PMC3480698 DOI: 10.2174/092986712803251511] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/10/2012] [Accepted: 07/18/2012] [Indexed: 12/16/2022]
Abstract
Myeloproliferative neoplasms (MPN) are debilitating stem cell-derived clonal myeloid malignancies. Conventional treatments for the BCR-ABL1-negative MPN including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) have, so far, been unsatisfactory. Following the discovery of dysregulated JAK-STAT signaling in patients with MPN, many efforts have been directed toward the development of molecularly targeted therapies, including inhibitors of JAK1 and JAK2. Ruxolitinib (previously known as INCB018424; Incyte Corporation, Wilmington, Delaware, USA) is a rationally designed potent oral JAK1 and JAK2 inhibitor that has undergone clinical trials in patients with PV, ET, and PMF. Ruxolitinib was approved on November 16, 2011 by the United States Food and Drug Administration for the treatment of intermediate or high-risk myelofibrosis (MF), including patients with PMF, post-PV MF, and post-ET MF. In randomized phase III studies, ruxolitinib treatment resulted in significant and durable reductions in splenomegaly and improvements in disease-related symptoms in patients with MF compared with placebo or best available therapy. The most common adverse events were anemia and thrombocytopenia, which were manageable and rarely led to discontinuation. This review addresses the cellular and molecular biology, and the clinical management of MPN.
Collapse
|
Review |
13 |
72 |
23
|
Damsky W, Peterson D, Ramseier J, Al-Bawardy B, Chun H, Proctor D, Strand V, Flavell RA, King B. The emerging role of Janus kinase inhibitors in the treatment of autoimmune and inflammatory diseases. J Allergy Clin Immunol 2020; 147:814-826. [PMID: 33129886 DOI: 10.1016/j.jaci.2020.10.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Autoimmune and inflammatory diseases are common and diverse, and they can affect nearly any organ system. Much of the pathogenesis of these diseases is related to dysregulated cytokine activity. Historically, autoimmune and inflammatory diseases have been treated with medications that nonspecifically suppress the immune system. mAbs that block the action of pathogenic cytokines emerged 2 decades ago and have become widely useful. More recently, agents that simultaneously block multiple pathogenic cytokines via inhibition of the downstream Janus kinase (JAK)-signal transducer and activator of transcription pathway have emerged and are becoming increasingly important. These small-molecule inhibitors, collectively termed JAK inhibitors, are US Food and Drug Administration-approved in a few autoimmune/inflammatory disorders and are being evaluated in many others. Here, we review the biology of the JAK-signal transducer and activator of transcription pathway and the use of JAK inhibitors to treat autoimmune and inflammatory diseases across medical subspecialties.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
67 |
24
|
Harrison CN, Mesa RA, Kiladjian JJ, Al-Ali HK, Gisslinger H, Knoops L, Squier M, Sirulnik A, Mendelson E, Zhou X, Copley-Merriman C, Hunter DS, Levy RS, Cervantes F, Passamonti F, Barbui T, Barosi G, Vannucchi AM. Health-related quality of life and symptoms in patients with myelofibrosis treated with ruxolitinib versus best available therapy. Br J Haematol 2013; 162:229-39. [PMID: 23672349 DOI: 10.1111/bjh.12375] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/03/2013] [Indexed: 01/10/2023]
Abstract
Patients with myelofibrosis (MF) have significant debilitating symptoms, physical disabilities, and poor health-related quality of life (HRQoL). Here, we report post-hoc analyses of the impact of ruxolitinib, a potent and selective JAK1 and JAK2 inhibitor, on disease-related symptoms and HRQoL in MF patients from the large phase 3 COMFORT-II study (N = 219). During the follow-up period of 48 weeks, HRQoL and MF-associated symptoms improved from baseline for ruxolitinib-treated patients but remained the same or worsened for best available therapy (BAT)-treated patients. Based on the European Organization for Research and Treatment of Cancer QoL Questionnaire core 30 items (EORTC QLQ-C30), treatment-induced differences in physical and role functioning, fatigue, and appetite loss significantly favoured ruxolitinib versus BAT from week 8 (P < 0·05) up to week 48 (P < 0·05). Ruxolitinib resulted in significantly higher response rates in global health status/QoL and Functional Assessment of Cancer Therapy-Lymphoma (FACT-Lym) summary scores versus BAT at most time points (P < 0·05). Significant improvements in the Lymphoma subscale (including symptoms of pain, fever, itching, fatigue, weight loss, loss of appetite, and other patient concerns), FACT-General, FACT-Lym trial outcome index, and FACT-Lym total were also observed with ruxolitinib versus BAT starting at week 8 and continuing thereafter. Overall, these data demonstrated that ruxolitinib improved HRQoL in MF patients and further support the use of ruxolitinib for the treatment of symptomatic MF.
Collapse
|
Randomized Controlled Trial |
12 |
65 |
25
|
Ricard L, Jachiet V, Malard F, Ye Y, Stocker N, Rivière S, Senet P, Monfort JB, Fain O, Mohty M, Gaugler B, Mekinian A. Circulating follicular helper T cells are increased in systemic sclerosis and promote plasmablast differentiation through the IL-21 pathway which can be inhibited by ruxolitinib. Ann Rheum Dis 2019; 78:539-550. [PMID: 30760472 DOI: 10.1136/annrheumdis-2018-214382] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is an autoimmune disease characterised by widespread fibrosis, microangiopathy and autoantibodies. Follicular helper T (Tfh) cells CD4+CXCR5+PD-1+ cooperate with B lymphocytes to induce the differentiation of plasmocytes secreting immunoglobulins (Ig). Circulating Tfh (cTfh) cells are increased in several autoimmune diseases. However, there are no data about cTfh cells and their interaction with B cells in SSc. The aim of this study was to perform a quantitative and functional analysis of cTfh cells in SSc. METHODS Using flow cytometry, we analysed cTfh cells from 50 patients with SSc and 32 healthy controls (HC). In vitro coculture experiments of sorted cTfh and B cells were performed for functional analysis. IgG and IgM production were measured by ELISA. RESULTS We observed that cTfh cell numbers are increased in patients with SSc compared with HC. Furthermore, the increase in cTfh cells was more potent in patients with severe forms of SSc such as diffuse SSc and in the presence of arterial pulmonary hypertension. cTfh cells from patients with SSc present an activated Tfh phenotype, with high expression of BCL-6, increased capacity to produce IL-21 in comparison with healthy controls. In vitro, cTfh cells from patients with SSc had higher capacity to stimulate the differentiation of CD19+CD27+CD38hi B cells and their secretion of IgG and IgM through the IL-21 pathway than Tfh cells from healthy controls. Blocking IL-21R or using the JAK1/2 inhibitor ruxolitinib reduced the Tfh cells' capacity to stimulate the plasmablasts and decreased the Ig production. CONCLUSIONS Circulating Tfh cells are increased in SSc and correlate with SSc severity. The IL-21 pathway or JAK1/2 blockade by ruxolitinib could be a promising strategy in the treatment of SSc.
Collapse
|
|
6 |
65 |