1
|
Gok GD, Halicioglu K, Keles A, Olgac NV, Kayali D, Kaya OTC. Effects of isotretinoin on tooth movement, orthodontically induced and non-orthodontic root resorption: A micro-CT study. Orthod Craniofac Res 2024; 27:974-984. [PMID: 39133708 DOI: 10.1111/ocr.12840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/07/2024] [Accepted: 07/16/2024] [Indexed: 11/07/2024]
Abstract
OBJECTIVES This study aims to investigate whether cumulative dose-dependent isotretinoin (Roaccutane®) could affect orthodontic tooth movement (OTM) and root resorption. MATERIALS AND METHODS Ninety male Wistar Albino rats were divided into 4 groups. While, the control (SALINE), solvent (SOYBEAN) and orthodontic drug (ISOTM) groups underwent orthodontic force, the non-orthodontic drug group (ISO) did not. The rats were administrated saline, soybean oil (SBO) and isotretinoin diluted in SBO (ISOTM, ISO) for 30 days, respectively. Six rats were euthanized in each orthodontic group. Fifty grams of orthodontic force was applied to the remaining rats' first molars using the incisors as anchorage. Six more rats in each group were euthanized on the 7th, 14th and 21st days of the force application. In the ISO group, six rats were euthanized on the 37th, 44th and 51st days of administration. Six rats that were euthanized for ISOTM on the 30th day were also used for ISO to reduce the number of rats used. Micro-computed tomography (micro-CT) and histological analysis were performed. RESULTS Independent of orthodontic force, isotretinoin caused root resorption in the apical region. However, there was no statistically significant influence of isotretinoin on OTM and orthodontically induced root resorption (OIRR). CONCLUSIONS Despite the lack of strong evidence supporting the orthodontically induced resorptive effect of isotretinoin, this study provided findings regarding the resorptive effects of isotretinoin on non-orthodontic root resorption. Therefore, the present results underscore the importance of close monitoring during orthodontic treatment to mitigate potential root resorption in patients who use isotretinoin because of acne complaints.
Collapse
|
2
|
Steiner-Zitzenbacher B, Velasco J, Gallegos C, Ruiz-Méndez MV. Phytosterol Depletion in Soybean Oil Using a Synthetic Silica Adsorbent. Foods 2024; 13:3172. [PMID: 39410207 PMCID: PMC11475823 DOI: 10.3390/foods13193172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Phytosterols in vegetable oils have gained attention for their nutritional benefits in foods and food supplements. However, the use of vegetable oils in emulsions for infant formulas and parenteral nutrition has raised some concerns, as phytosterols may contribute to phytosterolemia in the case of infant formulas and, in a second scenario, to parenteral nutrition-associated liver disease. The present study proposes removing phytosterols from soybean oil using a synthetic amorphous silica Trisyl® (E551) as an adsorbent material. The process is simple and involves stirring the oil at a high temperature under vacuum conditions followed by filtration to remove the adsorbent. A rotational factorial design of experiments, considering the adsorbent/oil ratio, temperature, and time was carried out to determine the optimal conditions. Additionally, the effects on tocopherols levels and formation of trans fatty acids were explored. The total sterol content in the initial refined soybean oil was 2540 mg/kg, with 32% in ester form (813 mg/kg). The treatments effectively reduced the sterol concentration, achieving a reduction of nearly 70% when 10% Trisyl®, 140 °C, and a 90-min treatment were applied. Under these conditions, nearly 80% of the oil was recovered. Campesterol and stigmasterol levels were almost halved. Tocopherol losses were found to be below 20%. Thermal degradation, as analyzed by triacylglycerol polymers and trans fatty acids, was not observed in the treatments.
Collapse
|
3
|
Gómez-de-Miranda-Jiménez-de-Aberasturi O, Calvo J, Svensson I, Blanco N, Lorenzo L, Rodriguez R. Novel Determination of Functional Groups in Partially Acrylated Epoxidized Soybean Oil. Molecules 2024; 29:4582. [PMID: 39407512 PMCID: PMC11477726 DOI: 10.3390/molecules29194582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
The acrylation degree of vegetable oils plays a relevant role in determining the mechanical properties of the resulting polymers. Both epoxide and acrylate functionalities participate in polymerization reactions, producing various types of chemical bonds in the polymer network, which contribute to specific properties such as molecular size distribution, crosslinking degree, and glass transition temperature (Tg). The accurate identification of epoxide and acrylated groups in triglyceride molecules helps to predict their behavior during the polymerization process. A methodology based on analytical spectrometric techniques, such as direct infusion, mass spectrometry with electrospray ionization, and ultra-high-performance liquid chromatography, is used in combination with FTIR and 1H NMR to characterize the epoxy and acrylic functionalities in the fatty chains with different numbers of carbon atoms of partially acrylated triglycerides obtained by a non-catalytic reaction.
Collapse
|
4
|
Baldino N, Mileti O, Marchesano YM, Lupi FR, Gabriele D, Paolini M. Rheological Performance and Differences between Laboratory-Aged and RAP Bitumen. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3954. [PMID: 39203132 PMCID: PMC11355558 DOI: 10.3390/ma17163954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024]
Abstract
Traditional recycled asphalt pavement (RAP) binder extraction is not a cost-effective and sustainable option for a quick field study because it requires the use of a huge amount of solvent. Hence, most of the studies on asphalt pavement are carried out with laboratory-aged bitumen in accordance with well-established procedures, i.e., the pressure aging vessel (PAV). Unfortunately, some studies highlight the differences between bitumen aged in the laboratory and in service because it is difficult to reproduce extreme conditions such as real conditions, both atmospheric and load; and this also affects the choice and use of rejuvenators, sometimes compromising the interpretation of results. This study aims to compare the thermo-rheological behavior of a 70/100 bitumen aged with the PAV and two different binders extracted by RAPs. The rheological performances of bitumens were compared in temperature and by dynamic oscillatory tests and steady-state tests, resulting in strength and viscosity values higher for samples with RAP binders compared to the PAV sample. The same bitumens were tested with the addition of a 3% w/w of soybean oil (SO). The results show a decrease in the moduli and viscosity at all the temperatures investigated when SO is added to the laboratory-aged bitumen, while no appreciable differences are evident on naturally aged samples added with SO. Differences were evaluated in terms of cross-over frequency and rheological parameters. Furthermore, the SO effect showed substantial differences, especially in viscosity values, indicating that the study of regenerated or modified bitumen from aged bitumen still requires study, as current standard techniques and procedures cannot emulate real aging conditions well.
Collapse
|
5
|
Whitehouse TH, Zaefarian F, Abdollahi MR, Ravindran V. Dietary fat lowers ileal endogenous amino acid losses in broiler chickens. Br Poult Sci 2024; 65:478-483. [PMID: 38828538 DOI: 10.1080/00071668.2024.2346317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/28/2024] [Indexed: 06/05/2024]
Abstract
1. An experiment was conducted to determine the effect of the source of fat (soybean oil or tallow) on the ileal endogenous amino acid (EAA) losses in broilers.2. Three nitrogen (N)-free diets; a control diet with no added fat and test diets with 60 g/kg of either soybean oil or tallow were formulated. Titanium dioxide (5 g/kg) was added to all diets as an indigestible marker. Each diet was assigned to six replicate cages (eight birds per cage) from d 18 to 21 post-hatch. On d 21, the digesta were collected from the lower half of the ileum.3. The endogenous losses of nitrogen and amino acids (AA) were lower (p = 0.08; p = 0.001) in broilers fed diets with soybean oil or tallow, respectively, compared to those fed the diet with no fat. Source of fat had no influence (p > 0.05) on EAA losses.4. The most abundant AA in the ileal endogenous protein was glutamic acid, followed by aspartic acid, threonine, leucine, serine, valine and proline. In general, the concentrations of AA in the endogenous protein were lower (p < 0.05) with added fat. The exceptions were methionine, cysteine, proline and serine, which were unaffected. The effect of fat source on the AA contents of endogenous protein were inconsistent and differed depending on the AA.5. The inclusion of fats decreased EAA losses which implied they have beneficial effects beyond direct energy contribution. It can be proposed that the reduction of EAA flow may be an additional mechanism contributing to the extra-caloric effect of dietary fats.
Collapse
|
6
|
Zhang W, Hui B, Li X, Guo Z, Ma J, Li J. Effects of Different Soybean and Coconut Oil Additions on the Physicochemical and Sensory Properties of Soy Protein-Wheat Protein Mixture Subjected to High-Moisture Extrusion. Foods 2024; 13:2263. [PMID: 39063346 PMCID: PMC11275395 DOI: 10.3390/foods13142263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
A protein mixture was prepared using a blend of soybean protein isolate, soybean protein concentrate, and wheat protein through high-moisture extrusion. This study investigated the effects of soybean oil/coconut oil additions (2%, 5%, and 8%) on the physiochemical properties of a soy protein-wheat protein mixture subjected to high-moisture extrusion. The protein extrudates underwent assessment for textural properties, fiber degree, sensory evaluation, microstructure, protein solubility, and protein secondary structure. The findings indicated that plant oils significantly reduced the hardness, springiness, and chewiness of the extrudates, and 5% plant oil significantly increased the fiber degree of the extrudates. In addition, the highest fiber degree and sensory evaluation score were achieved with 5% coconut oil. Observation of the macro- and microstructure indicated that the presence of unsaturated fatty acids in soybean oil did not benefit the improvement of the fibrous structure of protein extrudates during high-moisture extrusion processing. SDS-PAGE and FTIR results revealed that coconut oil, rich in saturated fatty acids, caused the clustering of medium- and low-molecular-weight subunits in texturized protein. Additionally, coconut oil elevated the ratio of 11S protein subunits containing sulfur-based amino acids and facilitated a shift from β-turn to β-sheet. The inclusion of plant oils increased the development of hydrogen and disulfide bonds, resulting in a denser, fibrous structure. DSC demonstrated that plant oils reduced the thermal stability of the texturized proteins but enhanced the order of protein structure.
Collapse
|
7
|
Wang J, Xu S, Zhu S, Tian Q, Yang X, Pipintakos G, Ren S, Wu S. The Rejuvenation Effect of Bio-Oils on Long-Term Aged Asphalt. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3316. [PMID: 38998397 PMCID: PMC11243304 DOI: 10.3390/ma17133316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
Generally, rejuvenators are used to supply missing components of aged asphalt, reverse the aging process, and are widely used in asphalt maintenance and recycling. However, compared with traditional rejuvenators, bio-oil rejuvenators are environmentally friendly, economical and efficient. This study looks into the effect of the three different bio-oils, namely sunflower oil, soybean oil, and palm oil, on the physical properties, rheological properties and chemical components of aged asphalt at different dosages. The asphalt physical properties and Dynamic Shear Rheological (DSR) test results show that with the increase in bio-oil, the physical properties and rheological properties of rejuvenated asphalt are close to those of virgin asphalt, but the high-temperature rutting resistance needs to be further improved. The results of Fourier Transform Infrared Spectroscopy (FTIR) show that the carbonyl and sulfoxide indices of rejuvenated asphalt are much lower than those of aged asphalt. Moreover, the rejuvenation efficiency of aged asphalt mixed with sunflower oil is better than that with soybean oil and palm oil at the same dosage.
Collapse
|
8
|
Fanalli SL, Gomes JD, de Novais FJ, Gervásio IC, Fukumasu H, Moreira GCM, Coutinho LL, Koltes J, Amaral AJ, Cesar ASM. Key co-expressed genes correlated with blood serum parameters of pigs fed with different fatty acid profile diets. Front Genet 2024; 15:1394971. [PMID: 39021677 PMCID: PMC11252010 DOI: 10.3389/fgene.2024.1394971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
This study investigated how gene expression is affected by dietary fatty acids (FA) by using pigs as a reliable model for studying human diseases that involve lipid metabolism. This includes changes in FA composition in the liver, blood serum parameters and overall metabolic pathways. RNA-Seq data from 32 pigs were analyzed using Weighted Gene Co-expression Network Analysis (WGCNA). Our aim was to identify changes in blood serum parameters and gene expression between diets containing 3% soybean oil (SOY3.0) and a standard pig production diet containing 1.5% soybean oil (SOY1.5). Significantly, both the SOY1.5 and SOY3.0 groups showed significant modules, with a higher number of co-expressed modules identified in the SOY3.0 group. Correlated modules and specific features were identified, including enriched terms and pathways such as the histone acetyltransferase complex, type I diabetes mellitus pathway, cholesterol metabolism, and metabolic pathways in SOY1.5, and pathways related to neurodegeneration and Alzheimer's disease in SOY3.0. The variation in co-expression observed for HDL in the groups analyzed suggests different regulatory patterns in response to the higher concentration of soybean oil. Key genes co-expressed with metabolic processes indicative of diseases such as Alzheimer's was also identified, as well as genes related to lipid transport and energy metabolism, including CCL5, PNISR, DEGS1. These findings are important for understanding the genetic and metabolic responses to dietary variation and contribute to the development of more precise nutritional strategies.
Collapse
|
9
|
Ahmed EM, Attia AI, Ibrahem ZA, Alshehry G, Algarni EH, Aldekhail NM, Abd El-Hack ME. The impacts of dietary inclusion of soybean oil and linseed oil on growth performance, carcass yield, and health status of growing Japanese quail. Poult Sci 2024; 103:103746. [PMID: 38678974 PMCID: PMC11067337 DOI: 10.1016/j.psj.2024.103746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024] Open
Abstract
Polyunsaturated fatty acids (PUFA), including n-6 and n-3 fatty acids, are essential for enhancing the performance and health of poultry. Avian species lack desaturase enzymes for endogenous synthesis of n-6 and n-3 fatty acids. This work aimed to determine the impacts of including soybean oil (SO) and linseed oil (LO) in quail diets on growth, lipid profile, hepatic and renal functions, immunity, and antioxidant status. A total of 350 Japanese quail chicks (1-wk-old) were randomly arranged into 7 dietary treatment groups. Seven isocaloric and isonitrogenous experimental basal diets were formed based on the nutritional requirements of growing Japanese quail. Group 1, the control, received a basal with no oils, while groups 2 to 7 received a basal diet containing either 1% SO, 1.5% SO, 2% SO, 1% LO, 1.5% LO, or 2% LO, respectively. Quail groups that consumed diets containing LO at all levels showed significantly greater live body weight (LBW) at 5th wk of age than other experimental groups. The dietary incorporation of 1.5 or 2% SO or LO at all levels yielded significant improvements in body weight gain (BWG) and feed conversion ratio (FCR) through 3 to 5 and 1 to 5 wk of age. Different dietary oil sources and levels have no significant impacts on feed intake (FI) and carcass yield parameters. Lipid profile parameters were improved by adding SO and LO in quail diets, with LO having a higher effect than SO. The hepatic and renal functionality were improved by adding SO and LO in quail diets. The lowest uric acid (UA) bloodstream concentrations were recorded in the quail group fed a diet with 2% LO. Values of Gamma globulins (G-GLO) and immunoglobulins (G, M, and A) were increased by adding SO or LO to quail diets. Blood levels of MDA and TAC were improved significantly by including LO in quail diets. The activity of the superoxide dismutase (SOD) enzyme was significantly increased by adding SO or LO to quail diets. Generally, adding SO or LO to growing quail diets up to 2% could yield favorable effects on growth performance, blood lipids, hepatic and renal functions, immunity, and antioxidant status; however, LO seems to have better effects than SO.
Collapse
|
10
|
Saedi S, Sobhan A, Hoff M, Wang S, Muthukumarappan K. Development of Halloysite Nanotube-Infused Thermoset Soybean Bio-Resin for Advanced Medical Packaging. Polymers (Basel) 2024; 16:1616. [PMID: 38931966 PMCID: PMC11207658 DOI: 10.3390/polym16121616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The development of eco-friendly, mechanically stable, and biocompatible materials for medical packaging has gained significant attention in recent years. Halloysite nanotubes (HNTs) have emerged as a promising nanomaterial due to their unique tubular structure, high aspect ratio, and biocompatibility. We aim to develop a novel soybean oil-based thermoset bio-resin incorporating HNTs and to characterize its physical and functional properties for medical packaging. Soybean oil was epoxidized using an eco-friendly method and used as a precursor for preparing the thermoset resin (ESOR). Different amounts of HNTs (0.25, 0.50, and 1.0 wt.%) were used to prepare the ESOR/HNTs blends. Various characteristics such as transparency, tensile strength, thermal resistance, and water absorption were investigated. While incorporating HNTs improved the tensile strength and thermal properties of the ESOR, it noticeably reduced its transparency at the 1.0 wt.% level. Therefore, HNTs were modified using sodium hydroxide and (3-Aminopropyl) triethoxysilane (APTES) and ESOR/HNTs blends were made using 1.0 wt.% of modified HNTs. It was shown that modifying HNTs using NaOH improved the transparency and mechanical properties of prepared blends compared to those with the same amount of unmodified HNTs. However, modifying using (3-Aminopropyl) triethoxysilane (APTES) decreased the transparency but improved the water absorption of prepared resins. This study provides valuable insights into the design of HNT-based ESOR blends as a sustainable material for medical packaging, contributing to the advancement of eco-friendly packaging solutions in the healthcare industry.
Collapse
|
11
|
Morales-González M, Valero MF, Díaz LE. Physicochemical and Mechanical Properties of Non-Isocyanate Polyhydroxyurethanes (NIPHUs) from Epoxidized Soybean Oil: Candidates for Wound Dressing Applications. Polymers (Basel) 2024; 16:1514. [PMID: 38891461 PMCID: PMC11174685 DOI: 10.3390/polym16111514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Only 0.1% of polyurethanes available on the market are from renewable sources. With increasing concern about climate change, the substitution of monomers derived from petrochemical sources and the application of eco-friendly synthesis processes is crucial for the development of biomaterials. Therefore, polyhydroxyurethanes have been utilized, as their synthesis route allows for the carbonation of vegetable oils with carbon dioxide and the substitution of isocyanates known for their high toxicity, carcinogenicity, and petrochemical origin. In this study, polyhydroxyurethanes were obtained from carbonated soybean oil in combination with two diamines, one that is aliphatic (1,4-butadiamine (putrescine)) and another that is cycloaliphatic (1,3-cyclohexanobis(methylamine)). Four polyhydroxyurethanes were obtained, showing stability in hydrolytic and oxidative media, thermal stability above 200 °C, tensile strength between 0.9 and 1.1 MPa, an elongation at break between 81 and 222%, a water absorption rate up 102%, and contact angles between 63.70 and 101.39. New formulations of bio-based NIPHUs can be developed with the inclusion of a cycloaliphatic diamine (CHM) for the improvement of mechanical properties, which represents a more sustainable process for obtaining NIPHUs with the physicochemical, mechanical, and thermal properties required for the preparation of wound dressings.
Collapse
|
12
|
Khankhum S, Khamkaew K, Li H, Prakitchaiwattana C, Siriamornpun S. Impact of Plant Oil Supplementation on Lipid Production and Fatty Acid Composition in Cunninghamella elegans TISTR 3370. Microorganisms 2024; 12:992. [PMID: 38792821 PMCID: PMC11124419 DOI: 10.3390/microorganisms12050992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
The Cunninghamella genus has been utilized for the production of PUFA-rich lipids. Therefore, we investigate the impact of plant oil supplementation in the culture medium (soybean oil, rice bran oil, and perilla oil), selected based on their different fatty acid predominant, on lipid production and fatty acid composition in C. elegans (TISTR 3370). All oils significantly boosted fungal growth, each influencing distinct patterns of lipid accumulation within the cells. The cells exhibited distinct patterns of lipid accumulation, forming intracellular lipid bodies, influenced by the different oils. Monounsaturated fatty acids (MUFAs) were found to be the most abundant, followed by polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) in the fungal lipid cultures. Oleic acid was identified as the primary MUFA, while palmitic acid was the predominant SFA in perilla oil supplements. Remarkably, perilla oil supplement provided the highest total lipid production with arachidonic acid being exclusively detected. The percentage of PUFAs ranged from 12% in the control to 33% in soybean oil, 32% in rice bran oil, and 61% in perilla oil supplements. These findings offer valuable opportunities for advancing biotechnological applications in lipid production and customization, with implications for food and nutrition as well as pharmaceuticals and cosmetics.
Collapse
|
13
|
Mohamed AMA, Ramaswamy HS. Effect of Soybean Oil on the Improvement of the Functionality of Edible Membrane-Type Food Packaging Films Based on Caseinate-Carboxymethyl Chitosan Compositions. MEMBRANES 2024; 14:104. [PMID: 38786938 PMCID: PMC11123354 DOI: 10.3390/membranes14050104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
Edible film biopolymers are gaining attention to tackle problems of plastic waste and food safety to alleviate environmental problems associated with plastic products in food packaging. In this study, caseinate-carboxymethyl chitosan (CA-CMCH) composite films were made with the incorporation of soybean oil (SO) using a casting technique. The influence of different soybean oil concentrations at 0, 0.5, and 1% (w/w) on physical, mechanical, barrier, and surface characteristics of films composed of caseinate-carboxymethyl chitosan (CA-CMCH) was evaluated. The brightest film (L* value of 95.95 ± 0.30) was obtained with the edible film made from the control group of samples with sodium caseinate (NaCA-100; 100% NaCA). The results also indicated that samples with 1% SO in NaCA-75 and CaCA-75 had lower water vapor permeability (WVP), while those with NaCA-50 and CaCA-50 showed higher values of WVP. For mechanical properties, this study found that incorporating soybean oil into the caseinate-carboxymethyl (CA-CMCH) composite films led to an enhancement of both tensile strength and elongation at break. The morphological structures, determined using SEM, of control and composite films showed compact and homogenous surfaces. Overall, the addition of soybean oil contributed to the improvement of the functional properties of the edible films, offering potential solutions to the environmental issues associated with plastic packaging and enhancing the safety and performance of food packaging.
Collapse
|
14
|
Lee GR, Lee EJ, Shin HS, Kim J, Kim I, Hong SC. Preparation of Non-Isocyanate Polyurethanes from Mixed Cyclic-Carbonated Compounds: Soybean Oil and CO 2-Based Poly(ether carbonate). Polymers (Basel) 2024; 16:1171. [PMID: 38675090 PMCID: PMC11053720 DOI: 10.3390/polym16081171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
This study presents the synthesis and characterization of non-isocyanate polyurethanes (NIPU) derived from the copolymerization of cyclic-carbonated soybean oil (CSBO) and cyclic carbonate (CC)-terminated poly(ether carbonate) (RCC). Using a double-metal cyanide catalyst, poly(ether carbonate) polyol was first synthesized through the copolymerization of carbon dioxide and propylene oxide. The terminal hydroxyl group was then subjected to a substitution reaction with a five-membered CC group using glycerol-1,2-carbonate and oxalyl chloride, yielding RCC. Attempts to prepare NIPU solely using RCC and diamine were unsuccessful, possibly due to the low CC functionality and the aminolysis of RCC's linear carbonate repeating units. However, when combined with CSBO, solid NIPUs were successfully obtained, exhibiting good thermal stability along with enhanced mechanical properties compared to conventional CSBO-based NIPU formulations. Overall, this study underscores the potential of leveraging renewable resources and carbon capture technologies to develop sustainable NIPUs with tailored properties, thereby expanding their range of applications.
Collapse
|
15
|
Gao T, Zhao H, Wang L, Song D, Zhao X. Preparation and characterisation of kaempferol composite carrier solid dispersion: evaluation of its application in preventing soybean oil spoilage. Nat Prod Res 2024:1-8. [PMID: 38597177 DOI: 10.1080/14786419.2024.2338811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Kaempferol (KPF) can be used as a natural antioxidant and food additive in food processing. However, the poor solubility of KPF limited its bioavailability and application. In order to improve the solubility of KPF, kaempferol composite carrier solid dispersion (KPF-CC-SD) was prepared and the process was optimised. When the ratio of KPF: CA (citric acid): Soluplus reached 1:4:6, the dissolution rate was the highest, and the sample was stable over 12 weeks. The characterisation results indicated that KPF-CC-SD exists in an amorphous form. Peroxidation value and acid value of soybean oil showed that the preservation effect of KPF-CC-SD was better than that of KPF, and the inhibition effect of KPF-CC-SD on acid value was better than that of butylated hydroxytoluene. In conclusion, KPF-CC-SD can change the solubility, crystal form and spatial stability of KPF through the carrier, which has a great application prospect in the field of food preservation.
Collapse
|
16
|
Tang Z, Yu F, Hsu JC, Shi J, Cai W. Soybean Oil-Derived Lipids for Efficient mRNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302901. [PMID: 38113460 PMCID: PMC10996393 DOI: 10.1002/adma.202302901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/04/2023] [Indexed: 12/21/2023]
Abstract
The rapid progress in the development of COVID-19 mRNA vaccines during the initial year of the pandemic has highlighted the significance of lipid nanoparticles in therapeutic delivery. Various lipid types have been investigated for the effective delivery of mRNA, each with unique functions and versatile applications. These range from their use in cancer immunotherapy and gene editing to their role in developing vaccines against infectious diseases. Nonetheless, continued exploration of novel lipids and synthetic approaches is necessary to further advance the understanding and expand the techniques for optimizing mRNA delivery. In this work, new lipids derived from FDA-approved soybean oil are facilely synthesized and these are employed for efficient mRNA delivery. EGFP and Fluc mRNA are used to evaluate the delivery efficacy of the lipid formulations both in vitro and in vivo. Furthermore, organ-specific targeting capabilities are observed in certain formulations, and their outstanding performance is demonstrated in delivering Cre mRNA for gene editing. These results showcase the potential of soybean oil-derived lipids in mRNA delivery, offering utility across a broad spectrum of bioapplications.
Collapse
|
17
|
Görbe Á, Kohári A, Bárány T. Rubber Compounds from Devulcanized Ground Tire Rubber: Recipe Formulation and Characterization. Polymers (Basel) 2024; 16:455. [PMID: 38399833 PMCID: PMC10892430 DOI: 10.3390/polym16040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, our focus was on developing and investigating rubber recipes that are suitable for devulcanized ground tire rubber (dGTR). Devulcanized rubber has a powdery or sticky uncured rubber-like appearance depending on the extent of main-chain degradation that occurs with selective crosslinking scission. Still, it has a significantly shorter scorch time than a new rubber compound. Therefore, our primary goal was to slow down the vulcanization process of dGTR and improve its mechanical properties via recipe development. We formulated several recipes (sulfur-, peroxide-, and phenolic resin-based) and studied the vulcanization process and the main properties of the revulcanized rubber sheets. We observed that the vulcanization process could be altered with different vulcanization methods: using peroxide and vulcanizing resin extended the process significantly. Peroxide vulcanization also provided enhanced elongation compared to sulfuric systems. With a balance of properties in mind, we selected a semi-efficient sulfur-based recipe and studied the characteristics of natural rubber/dGTR mixtures with the help of plasticizer oils. We successfully replaced a notable portion of natural rubber with dGTR, maintaining its properties without much compromise.
Collapse
|
18
|
Zhou W, Peng Y, Wu Z, Zhang W, Cong Y. Study on the Frying Performance Evaluation of Refined Soybean Oil after PLC Enzymatic Degumming. Foods 2024; 13:275. [PMID: 38254576 PMCID: PMC10815329 DOI: 10.3390/foods13020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
It is known that phospholipase C (PLC) enzymatic degumming can hydrolyze phospholipids into diacylglycerol (DAG), which improves the efficiency of oil processing. However, it is unclear whether the presence of DAG and the use of enzymes affect the performance of the oil. This paper evaluated the frying performance of PLC-degummed refined soybean oil. Following the chicken wings and potato chips frying trials, results revealed that after 30 cycles of frying, free fatty acid (FFA) levels were 0.22% and 0.21%, with total polar compounds (TPC) at 23.75% and 24.00%, and peroxide value (PV) levels were 5.90 meq/kg and 6.45 meq/kg, respectively. Overall, PLC-degummed refined soybean oil showed almost the same frying properties as traditional water-degummed refined oil in terms of FFA, PV, TPC, polymer content, viscosity, color, foaming of frying oils, and appearance of foods. Moreover, FFA, TPC, polymer content, foaming, and color showed significant positive correlations with each other (p < 0.05) in soybean oil intermittent frying processing.
Collapse
|
19
|
Bukowski MR, Goslee S. Climate-based variability in the essential fatty acid composition of soybean oil. Am J Clin Nutr 2024; 119:58-68. [PMID: 38176781 DOI: 10.1016/j.ajcnut.2023.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Soybean oil is a major dietary source of the essential fatty acids linoleic acid (LA) and α-linolenic acid (ALA); however, high-daytime temperatures during seed development reduce desaturase activity in soybeans. The resultant reduction in LA and ALA levels is a phenomenon well-known to soybean breeders, although the impact of this interaction between plants and environment on human nutrition is poorly understood. OBJECTIVES Using data from the literature, we developed a model for soybean essential fatty acid composition. Combining this model with contemporary agricultural and meteorological data sets, we determined whether insufficiency of essential fatty acids could result from geographic, intrayear, or interyear variability. METHODS We modeled this change using 233 data points from 16 studies that provided fatty acid composition data from plants grown under daytime high temperatures ranging from 15°C to 40°C. RESULTS As temperature increased, LA and ALA concentrations decreased from 55% to 30% and 13% to 3.5%, respectively. Application of the model to daytime high temperatures from 2 growth periods over 6 y showed significant regional, interyear, and intrayear variation in essential fatty acid content (P < 0.05). Using county yield data, we developed oil fatty acid models for the 3 top-producing regions of the United States. From this work, it was determined that soybean oil manufactured from soybeans in the southern United States may contain insufficient ALA to meet human nutritional needs because of high-daytime temperatures. CONCLUSIONS This work suggests that climate-based variation may result in many human populations not achieving an adequate daily intake of ALA.
Collapse
|
20
|
Petrauskas R, Grauzeliene S, Ostrauskaite J. Thermo-Responsive Shape-Memory Dual-Cured Polymers Based on Vegetable Oils. MATERIALS (BASEL, SWITZERLAND) 2023; 17:24. [PMID: 38203878 PMCID: PMC10780134 DOI: 10.3390/ma17010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024]
Abstract
The development of thermo-responsive shape-memory polymers has attracted attention due to their ability to undergo reversible deformations based on temperature changes. Vegetable oils are confirmed to be an excellent biorenewable source of starting materials for the synthesis of polymers. Therefore, the objective of this research was to synthesize thermo-responsive shape-memory polymers based on vegetable oils by using the dual-curing technique and obtaining polymers with tailorable properties. Acrylated epoxidized soybean oil and two epoxidized vegetable oils, linseed oil and camelina oil, were chosen for dual curing with m-xylylenediamine. Rheological tests were used to analyze the curing kinetics of systems undergoing radical photopolymerization, thermal cationic polymerization, and dual-curing processes. The rheological, mechanical, and thermal characteristics of the polymers were enhanced by the second curing stage. Dual-cured vegetable oil-based polymers had shape-memory properties with a recovery ratio of 100%, making them suitable for a variety of applications, including electronics, biomedical devices, and robotics.
Collapse
|
21
|
Mehmet AH, Mehmet AY, Tugce A, Oguz K. The effectiveness of organic vegetable oils with high biocompatibility in preventing epidural fibrosis: An experimental study. IDEGGYOGYASZATI SZEMLE 2023; 76:379-384. [PMID: 38051691 DOI: 10.18071/isz.76.0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Background and purpose Epidural fibrosis after all spinal surgeries is an important surgical issue. Various biological and non-biological materials have been tried to inhibit epidural fibrosis, which is deemed to be the most important cause of pain after spinal surgery. Olive oil, nigella sativa oil and soybean oil employed in oral nutrition in clinics involving liquid fatty acids, palmatic acid, linoleic acid, stearic acid and palmitoleic acid. The effectiveness of olive oil, nigella sativa oil and soybean oil on epidural fibrosis was researched on for the first time in laminectomy model. . Methods Fifty adult male Wistar albino rats weighing between 300 and 400 grams were used in the research. A total of 5 groups were formed: sham (Group I) (n = 10), no application was created; Group II (n = 10) 1 cc saline; Group III (n = 10) 1 cc olive oil; Group IV (n = 10) 1 cc nigella sativa oil; Group V (n = 10); 1 cc soybean oil was applied topically to the epidural region after laminectomy. The total spine of the rats was dissected, histopathological and immunochemical measurements were conducted. Neuro-histopathological results were scored semi-quantitatively in terms of vascular modification, neuron degeneration, gliosis and bleeding criteria. . Results The lowest level of fibrosis and connective tissue proliferation was observed in the group where nigella sativa oil was used after the operation, followed by the group treated with olive oil and lastly with the group given soybean oil. . Conclusion Nigella sativa oil and olive oil are very efficient for lowering the degree of epidural fibrosis and adhesions following laminectomy and can be employed as a simple, inexpensive and highly biocompatible material in clinical practice. .
Collapse
|
22
|
Liu Z, Song Z, Lv B, Qiu Z. Rapid Reassembly, Biomass-Derived Adhesive Based on Soybean Oil and Diels-Alder Bonds. Polymers (Basel) 2023; 15:4428. [PMID: 38006151 PMCID: PMC10674686 DOI: 10.3390/polym15224428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Synthetic adhesives play a crucial role in holding together solid materials through interfacial interactions. Thermoplastic and thermosetting adhesives are important types of synthetic adhesives, with thermoplastic adhesives being reassemblable and thermosetting adhesives exhibiting high adhesive strength and creep resistance. However, there is a need to combine the advantages of both types and develop high bonding strength, reassemblable adhesives. Here, epoxidized soybean oil (ESO) was used to prepare adhesive networks and Diels-Alder bonds were incorporated to enhance reassembly ability. The ESO was functionalized with furyl groups and cross-linked via the reaction between furyl and imide groups to involve the Diels-Alder bonds. The resulting adhesive exhibited good solvent resistance and mechanical properties, which could be regulated by adjusting the quantity of cross-linker. The prepared adhesives also demonstrated self-healing capabilities, as the scratch on the surface gradually diminished with heating. Additionally, the adhesives showed the ability to undergo recycling without significant changes in properties. The prepared adhesives exhibited hydrophilicity and the flow characteristics during reassembly were characterized by a decrease in torque. This study provides a promising approach for the development of synthetic adhesives with reassembly ability, which has important implications for the field of bonding.
Collapse
|
23
|
Shen Z, Gao H, Peng W, Wang F, Liu Y, Wu J, Wang S, Li X. Cryoprotective effect of soybean oil on surimi gels and the mechanism based on molecular dynamics simulation. J Texture Stud 2023. [PMID: 37968073 DOI: 10.1111/jtxs.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 10/19/2023] [Indexed: 11/17/2023]
Abstract
The effect of soybean oil (SO) on freeze-thaw (F-T)-treated surimi was investigated and its related mechanism was revealed by molecular dynamics (MD) simulations. The results displayed that SO has a disrupting effect on the structure of fresh samples. However, in the F-T-treated samples, surimi gels supplemented with SO had a more uniform microstructure. Simultaneously, when SO was added from 0% to 7% in the F-T-treated samples, the gel strength increased from46.66 to 51.86 N · mm $$ 46.66\ \mathrm{to}\ 51.86\;\mathrm{N}\cdotp \mathrm{mm} $$ (p < .05), the physically bound water was increased from 92.90% to 94.15% (p < .05), and storage modulus was increased from 5939 to 6523 Pa. Triglycerides of SO generated hydrophobic interactions with myosin mainly in carbon chains. Computational results from MD simulations illustrated that the structure of myosin combined with triglycerides was more stable than that of myosin alone during temperature fluctuations (-20 to 4°C). During ice crystal growth, triglycerides absorbed on the myosin surface inhibited the growth of surrounding ice crystals and mitigated the ice crystal growth rate (from 7.54 to 5.99 cm/s). The addition of SO during the F-T treatments allowed myosin to be less negatively affected by ice crystal formation and temperature fluctuations and ultimately contributed to the formation of a more uniform network gel structure.
Collapse
|
24
|
Sobhan A, Saedi S, Hoff M, Liang Y, Muthukumarappan K. Evaluation and Improvement of Bio-Based Sustainable Resin Derived from Formic-Acid-Modified Epoxidized Soybean Oil for Packaging Applications. Polymers (Basel) 2023; 15:4255. [PMID: 37959934 PMCID: PMC10650099 DOI: 10.3390/polym15214255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Bio-based epoxy resin materials have obtained significant attention in the packaging industry due to concerns about the environmental and economic impacts of traditional petroleum-based plastics. The aim of this research is to improve bio-based resins' properties by investigating varying formic acid contents in the presence of a green catalyst and characterizing their physical, chemical, and mechanical properties for further scaled-up bio-based resin production for industrial packaging applications. The crude soybean oil was epoxidized with formic acid as an oxidizing agent at varying equivalent weights of 10:1 to 10:10 of soybean oil: formic acid in the presence of hydrogen peroxide and choline chloride-oxalic acid as a bi-functional green catalyst. The effect of increasing the amount of formic acid used to epoxidize crude soybean oil was evaluated with infrared (IR) spectroscopy, rheological, and epoxy yield measurements. The results demonstrated that formic acid significantly influenced the epoxidation of soybean oil, leading to a higher conversion of carbon-carbon double bonds, with a selectivity of 98% when the ratio of soybean oil to formic acid was between 10:5 and 10:10. The bio-resin film was formulated using the improved epoxidized soybean oils-from ESO (10:2.5) to ESO (10:10)-and equal amounts of acrylic acid. The results showed that resin films led to an improvement in tensile strength (ca. 180 MPa) and thermal stability at 360 °C. Although further research is necessary, this study provides valuable insights for designing an effective epoxidation process for renewable sources and developing bio-resin materials for future packaging applications.
Collapse
|
25
|
Ringseis R, Marschall MJM, Grundmann SM, Schuchardt S, Most E, Gessner DK, Wen G, Eder K. Effect of Hermetia illucens Fat, Compared with That of Soybean Oil and Palm Oil, on Hepatic Lipid Metabolism and Plasma Metabolome in Healthy Rats. Animals (Basel) 2023; 13:3356. [PMID: 37958111 PMCID: PMC10649396 DOI: 10.3390/ani13213356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Palm oil (PO) is currently the most widely used fat source for food production, but insect fat from Hermetia illucens larvae (HF) might be a suitable alternative fat source, because its production is less harmful to the environment. The present study investigated the effect of HF, as compared to PO and soybean oil (SO), on the hepatic lipid metabolism and the plasma metabolome of healthy rats, which were randomly assigned to three groups (n = 10 rats/group), and fed three different semi-synthetic diets containing either SO, PO, or HF as the main fat source for 4 weeks. Feed intake, body weight gain, liver and plasma lipid concentrations, and the hepatic mRNA levels of genes involved in lipid metabolism and inflammation did not differ between groups. Targeted plasma metabolomics revealed 294 out of 630 metabolites analyzed to be different between groups. Principal component analysis showed a clear separation of the plasma metabolomes of the SO group and the other two groups, but no separation of those of the PO and the HF groups. The present study shows that HF exerts no adverse metabolic effects in healthy rats, compared to PO or SO, indicating that HF is a safe alternative fat source to PO for food production.
Collapse
|