1
|
Yi Y, Chen M, Coldea TE, Yang H, Zhao H. Soy protein hydrolysates induce menaquinone-7 biosynthesis by enhancing the biofilm formation of Bacillus subtilis natto. Food Microbiol 2024; 124:104599. [PMID: 39244358 DOI: 10.1016/j.fm.2024.104599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 09/09/2024]
Abstract
Menaquinone-7 (MK-7) is a form of vitamin K2 with health-beneficial effects. A novel fermentation strategy based on combining soy protein hydrolysates (SPHs) with biofilm-based fermentation was investigated to enhance menaquinone-7 (MK-7) biosynthesis by Bacillus subtilis natto. Results showed the SPHs increased MK-7 yield by 199.4% in two-stage aeration fermentation as compared to the SP-based medium in submerged fermentation, which was related to the formation of robust biofilm with wrinkles and the enhancement of cell viability. Moreover, there was a significant correlation between key genes related to MK-7 and biofilm synthesis, and the quorum sensing (QS) related genes, Spo0A and SinR, were downregulated by 0.64-fold and 0.39-fold respectively, which promoted biofilm matrix synthesis. Meanwhile, SPHs also enhanced the MK-7 precursor, isoprene side chain, supply, and MK-7 assembly efficiency. Improved fermentation performances of bacterial cells during fermentation were attributed to abundant oligopeptides (Mw < 1 kDa) and moderate amino acids, particularly Arg, Asp, and Phe in SPHs. All these results revealed that SPHs were a potential and superior nitrogen source for MK-7 production by Bacillus subtilis natto.
Collapse
|
2
|
Li Y, Cao X, Chai Y, Chen R, Zhao Y, Borriss R, Ding X, Wu X, Ye J, Hao D, He J, Wang G, Cao M, Jiang C, Han Z, Fan B. A phosphate starvation induced small RNA promotes Bacillus biofilm formation. NPJ Biofilms Microbiomes 2024; 10:115. [PMID: 39472585 PMCID: PMC11522486 DOI: 10.1038/s41522-024-00586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 10/13/2024] [Indexed: 11/02/2024] Open
Abstract
Currently, almost all known regulators involved in bacterial phosphorus metabolism are proteins. In this study, we identified a conserved new small regulatory RNA (sRNA), named PhoS, encoded in the 3' untranslated region (UTR) of the phoPR genes in Bacillus velezensis and B. subtilis. Expression of phoS is strongly induced upon phosphorus scarcity and stimulated by the transcription factor PhoP. Conversely, PhoS positively regulates PhoP translation by binding to the ribosome binding site (RBS) of phoP mRNA. PhoS can promote Bacillus biofilm formation through, at least in part, enhancing the expression of the matrix-related genes, such as the eps genes and the tapA-sipW-tasA operon. The positive regulation of phoP expression by PhoS contributes to the promoting effect of PhoS on biofilm formation. sRNAs regulating biofilm formation have rarely been reported in gram-positive Bacillus species. Here we highlight the significance of sRNAs involved in two important biological processes: phosphate metabolism and biofilm formation.
Collapse
|
3
|
Alvi S, Mondelo VD, Boyle J, Buck A, Gejo J, Mason M, Matta S, Sheridan A, Kreutzberger MAB, Egelman EH, McLoon A. Flagellar point mutation causes social aggregation in laboratory-adapted Bacillus subtilis under conditions that promote swimming. J Bacteriol 2024; 206:e0019924. [PMID: 39248522 PMCID: PMC11500573 DOI: 10.1128/jb.00199-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Motility allows microbes to explore and maximize success in their environment; however, many laboratory bacterial strains have a reduced or altered capacity for motility. Swimming motility in Bacillus subtilis depends on peritrichous flagella and is carried out individually as cells move by biased random walks toward attractants. Previously, we adapted Bacillus subtilis strain 3610 to the laboratory for 300 generations in lysogeny broth (LB) batch culture and isolated lab-adapted strains. Strain SH2 is motility-defective and in broth culture forms large, frequently spherical aggregates of cells. A single point mutation in the flagellin gene hag that causes amino acid 259 to switch from A to T is necessary and sufficient to cause these social cell aggregates, and aggregation occurs between flagellated cells bearing this point mutation regardless of the strain background. Cells associate when bearing this mutation, but flagellar rotation is needed to pull associating cells into spherical aggregates. Using electron microscopy, we are able to show that the SH2 flagellar filament has limited polymorphism when compared to other flagellar structures. This limited polymorphism hinders the flagellum's ability to function as a motility apparatus but appears to alter its function to that of cell aggregation/adhesion. We speculate that the genotype-specific aggregation of cells producing HagA259T flagella could have increased representation in a batch-culture experiment by allowing similar cells to go through a transfer together and also that this mutation could serve as an early step to evolve sociality in the natural world.IMPORTANCEThe first life forms on this planet were prokaryotic, and the earliest environments were aquatic, and from these relatively simple starting conditions, complex communities of microbes and ultimately multicellular organisms were able to evolve. Usually, motile cells in aqueous environments swim as individuals but become social by giving up motility and secreting extracellular substances to become a biofilm. Here, we identify a single point mutation in the flagellum that is sufficient to allow cells containing this mutation to specifically form large, suspended groups of cells. The specific change in the flagellar filament protein subunits causes a unique change in the flagellar structure. This could represent a distinct way for closely related cells to associate as an early precursor to sociality.
Collapse
|
4
|
Heydenreich R, Delbrück AI, Trunet C, Mathys A. Strategies for effective high pressure germination or inactivation of Bacillus spores involving nisin. Appl Environ Microbiol 2024; 90:e0229923. [PMID: 39311577 PMCID: PMC11505639 DOI: 10.1128/aem.02299-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/10/2024] [Indexed: 10/25/2024] Open
Abstract
The major challenge in employing high pressure (HP) at moderate temperature for sterilization is the remarkable resistance of bacterial spores. High isostatic pressure can initiate spore germination, enabling subsequent inactivation under mild conditions. However, not all spores could be triggered to germinate under pressure at temperatures ≤80°C so far. In this study, germination treatment combinations were evaluated for Bacillus spores involving moderate HP (150 MPa, 37°C, 5 min), very HP (vHP, 550 MPa, 60°C, 2.5 or 9 min), simple and complex nutrient germinants [L-valine, L-alanine, and tryptic soy broth (TSB)], nisin, and incubation at atmospheric pressure (37°C). The most effective combinations for Bacillus subtilis resulted in a reduction of culturable dormant spores by 8 log10 units. The combinations involved nisin, a nutrient germinant (L-valine or TSB), a first vHP treatment (550 MPa, 60°C, 2.5 min), incubation at atmospheric pressure (37°C, 6 h), and a second vHP treatment (550 MPa, 60°C, 2.5 min). Such treatment combination with L-valine reduced Bacillus amyloliquefaciens spores by only 2 log10 units. B. amyloliquefaciens, thus, proved to be substantially more HP-resistant compared to B. subtilis, validating previous studies. Despite combining different germination mechanisms, complete germination could not be achieved for either species. The natural bacteriocin nisin did seemingly not promote HP germination initiation under chosen HP conditions, contrary to previous literature. Nevertheless, nisin might be beneficial to inhibit the growth of HP-germinated or remaining ungerminated spores. Future germination experiments might consider that nisin could not be completely removed from spores by washing, thereby affecting plate count enumeration. IMPORTANCE Extremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of spoilage and food safety. Traditional heat-intensive inactivation methods often negatively affect the product quality. HP germination-inactivation offers a potential solution for better preserving sensitive ingredients while inactivating spores. However, the presence of ungerminated (superdormant) spores hampers the strategy's success and safety. Knowledge of strategies to overcome resistance to HP germination is vital to progress mild spore control technologies. Our study contributes to the evaluation and development of mild preservation processes by evaluating strategies to enhance the HP germination-inactivation efficacy. Mild preservation processes can fulfill the consumers' demand for safe and minimally processed food.
Collapse
|
5
|
Lyng M, Þórisdóttir B, Sveinsdóttir SH, Hansen ML, Jelsbak L, Maróti G, Kovács ÁT. Taxonomy of Pseudomonas spp. determines interactions with Bacillus subtilis. mSystems 2024; 9:e0021224. [PMID: 39254334 PMCID: PMC11494997 DOI: 10.1128/msystems.00212-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Bacilli and pseudomonads are among the most well-studied microorganisms commonly found in soil and frequently co-isolated. Isolates from these two genera are frequently used as plant beneficial microorganisms; therefore, their interaction in the plant rhizosphere is relevant for agricultural applications. Despite this, no systematic approach has been employed to assess the coexistence of members from these genera. Here, we screened 720 fluorescent soil isolates for their effects on Bacillus subtilis pellicle formation in two types of media and found a predictor for interaction outcome in Pseudomonas taxonomy. Interactions were context-dependent, and both medium composition and culture conditions strongly influenced interactions. Negative interactions were associated with Pseudomonas capeferrum, Pseudomonas entomophila, and Pseudomonas protegens, and 2,4-diacetylphloroglucinol was confirmed as a strong (but not exclusive) inhibitor of B. subtilis. Non-inhibiting strains were closely related to Pseudomonas trivialis and Pseudomonas lini. Using such a non-inhibiting isolate, Pseudomonas P9_31, which increased B. subtilis pellicle formation demonstrated that the two species were spatially segregated in cocultures. Our study is the first one to propose an overall negative outcome from pairwise interactions between B. subtilis and fluorescent pseudomonads; hence, cocultures comprising members from these groups are likely to require additional microorganisms for coexistence. IMPORTANCE There is a strong interest in the microbial ecology field to predict interaction among microorganisms, whether two microbial isolates will promote each other's growth or compete for resources. Numerous studies have been performed based on surveying the available literature or testing phylogenetically diverse sets of species in synthetic communities. Here, a high throughput screening has been performed using 720 Pseudomonas isolates, and their impact on the biofilm formation of Bacillus subtilis was tested. The aim was to determine whether a majority of Pseudomonas will promote or inhibit the biofilms of B. subtilis in the co-cultures. This study reports that Pseudomonas taxonomy is a good predictor of interaction outcome, and only a minority of Pseudomonas isolates promote Bacillus biofilm establishment.
Collapse
|
6
|
Updegrove TB, Delerue T, Anantharaman V, Cho H, Chan C, Nipper T, Choo-Wosoba H, Jenkins LM, Zhang L, Su Y, Shroff H, Chen J, Bewley CA, Aravind L, Ramamurthi KS. Altruistic feeding and cell-cell signaling during bacterial differentiation actively enhance phenotypic heterogeneity. SCIENCE ADVANCES 2024; 10:eadq0791. [PMID: 39423260 PMCID: PMC11488536 DOI: 10.1126/sciadv.adq0791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/12/2024] [Indexed: 10/21/2024]
Abstract
Starvation triggers bacterial spore formation, a committed differentiation program that transforms a vegetative cell into a dormant spore. Cells in a population enter sporulation nonuniformly to secure against the possibility that favorable growth conditions, which put sporulation-committed cells at a disadvantage, may resume. This heterogeneous behavior is initiated by a passive mechanism: stochastic activation of a master transcriptional regulator. Here, we identify a cell-cell communication pathway containing the proteins ShfA (YabQ) and ShfP (YvnB) that actively promotes phenotypic heterogeneity, wherein Bacillus subtilis cells that start sporulating early use a calcineurin-like phosphoesterase to release glycerol, which simultaneously acts as a signaling molecule and a nutrient to delay nonsporulating cells from entering sporulation. This produced a more diverse population that was better poised to exploit a sudden influx of nutrients compared to those generating heterogeneity via stochastic gene expression alone. Although conflict systems are prevalent among microbes, genetically encoded cooperative behavior in unicellular organisms can evidently also boost inclusive fitness.
Collapse
|
7
|
Xiao J, Xiao J, Gao P, Zhang Y, Yan B, Wu H, Zhang Y. Enhanced salt tolerance in Glycyrrhiza uralensis Fisch. via Bacillus subtilis inoculation alters microbial community. Microbiol Spectr 2024; 12:e0381223. [PMID: 39189758 PMCID: PMC11448385 DOI: 10.1128/spectrum.03812-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/29/2024] [Indexed: 08/28/2024] Open
Abstract
The widespread prevalence of saline environments poses a significant global environmental challenge. Salt stress, induced by saline soils, disrupts soil microecology and affects the plant-microbe-soil cycling process. Utilizing microbial fungicides stands as a primary strategy to mitigate salt stress-induced damage to plants and soils. This study investigated the influence of Bacillus subtilis (Bs) inoculation on the microbial community, assembly processes, and functional changes in bacteria and fungi in Glycyrrhiza uralensis Fisch. (licorice) seedlings under varying salt stress levels, primarily employing microbiomics techniques. Soil enzyme activities displayed a declining trend with increasing salt stress, which was mitigated by Bs inoculation. Microbiome analysis revealed a significant increase in bacterial and fungal operational taxonomic units, particularly in Ascomycetes and Nitrogen-fixing Bacteria, thereby enhancing soil denitrification. The abundance of Proteobacteria, Actinobacteriota, Bacteroidota, and Firmicutes in bacteria, as well as Ascomycota in fungi, increased with higher salt stress levels, a process facilitated by Bs inoculation. However, functional predictions indicated a reduction in the relative abundance of Dung Saprotrophs with Bs inoculation. Salt stress disrupted soil assembly processes, showcasing a continuous decline in diffusion limitation with increased salt concentration, where Bs inoculation reached a peak under moderate stress. In summary, this research elucidates the communication mechanism of Bs in enhancing salt tolerance in licorice from a microbiome perspective, contributing to a comprehensive understanding of abiotic and biotic factors.IMPORTANCELicorice is a herb that grows in deserts or saline soils. Enhancing the salt tolerance of licorice is necessary to maintain the quality of cultivated licorice and to ensure the supply of medicinal herbs. In the past, we have demonstrated the effectiveness of inoculation with Bacillus subtilis (Bs) to enhance the salt tolerance of licorice and revealed the key metabolic pathways for the development of salt tolerance through multi-omics. In this study, we used the microbiomics approach to reveal the plant-microbe-soil interactions at the level of inoculation of Bs affecting the dynamics of soil microbial communities from bacterial and fungal perspectives, thus bridging the interactions between biotic and abiotic factors.
Collapse
|
8
|
Murphy MM, Culligan EP, Murphy CP. Investigating the antimicrobial and antibiofilm properties of marine halophilic Bacillus species against ESKAPE pathogens. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70027. [PMID: 39446085 PMCID: PMC11500616 DOI: 10.1111/1758-2229.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Antimicrobial resistance (AMR), known as the "silent pandemic," is exacerbated by pathogenic bacteria's ability to form biofilms. Marine compounds hold promise for novel antibacterial drug discovery. Two isolates from preliminary saltwater environment screening demonstrated antimicrobial activity and were subsequently identified as Bacillus subtilis MTUA2 and Bacillus velezensis MTUC2. Minimum inhibitory concentrations (MICs), minimum biofilm inhibition concentrations (MBICs) and minimum biofilm eradication concentrations (MBECs) required to prevent and/or disrupt bacterial growth and biofilm formation were established for MRSA, Staphylococcus aureus, Acinetobacter baumannii and Escherichia coli. The metabolic activity within biofilms was determined by the 2,3,5-triphenyltetrazolium chloride assay. Both Bacillus species exhibited unique antimicrobial effects, reducing MRSA and S. aureus planktonic cell growth by 50% and sessile cell growth for S. aureus and E. coli by 50% and 90%, respectively. No effect was observed against A. baumannii. Significant MBIC and MBEC values were achieved, with 99% inhibition and 90% reduction in MRSA and S. aureus biofilms. Additionally, 90% and 50% inhibition was observed in E. coli and A. baumannii biofilms, respectively, with a 50% reduction in E. coli biofilm. These findings suggest that the mode of action employed by B. subtilis MTUA2 and B. velezensis MTUC2 metabolites should be further characterized and could be beneficial if used independently or in combination with other treatments.
Collapse
|
9
|
Eghtesadi N, Olaifa K, Pham TT, Capriati V, Ajunwa OM, Marsili E. Osmoregulation by choline-based deep eutectic solvent induces electroactivity in Bacillus subtilis biofilms. Enzyme Microb Technol 2024; 180:110485. [PMID: 39059288 DOI: 10.1016/j.enzmictec.2024.110485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/23/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Gram-positive Bacillus subtilis is a model organism for the biotechnology industry and has recently been characterized as weakly electroactive in both planktonic cultures and biofilms. Increasing the extracellular electron transfer (EET) rate in B. subtilis biofilms will help to develop an efficient microbial electrochemical technology (MET) and improve the bioproduction of high-value metabolites under electrofermentative conditions. In our previous work, we have shown that the addition of compatible solute precursors such as choline chloride (ChCl) to the growth medium formulation increases current output and biofilm formation in B. subtilis. In this work, we utilized a low-carbon tryptone yeast extract medium with added salts to further expose B. subtilis to salt stress and observe the osmoregulatory and/or nutritional effects of a D-sorbitol/choline chloride (ChCl) (1:1 mol mol-1) deep eutectic solvents (DESs) on the electroactivity of the formed biofilm. The results show that ChCl and D-sorbitol alleviate the osmotic stress induced by the addition of NaH2PO4 and KH2PO4 salts and boost biofilm production. This is probably due to the osmoprotective effect of ChCl, a precursor of the osmoprotectant glycine betaine, and the induction of electroactive exopolymeric substances within the B. subtilis biofilm. Since high ionic strength media are commonly used in microbial biotechnology, the combination of ChCl-containing DESs and salt stress could enhance biofilm-based electrofermentation processes that bring significant benefits for biotechnological applications.
Collapse
|
10
|
Chai L, Zaburdaev V, Kolter R. How bacteria actively use passive physics to make biofilms. Proc Natl Acad Sci U S A 2024; 121:e2403842121. [PMID: 39264745 PMCID: PMC11459164 DOI: 10.1073/pnas.2403842121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Modern molecular microbiology elucidates the organizational principles of bacterial biofilms via detailed examination of the interplay between signaling and gene regulation. A complementary biophysical approach studies the mesoscopic dependencies at the cellular and multicellular levels with a distinct focus on intercellular forces and mechanical properties of whole biofilms. Here, motivated by recent advances in biofilm research and in other, seemingly unrelated fields of biology and physics, we propose a perspective that links the biofilm, a dynamic multicellular organism, with the physical processes occurring in the extracellular milieu. Using Bacillus subtilis as an illustrative model organism, we specifically demonstrate how such a rationale explains biofilm architecture, differentiation, communication, and stress responses such as desiccation tolerance, metabolism, and physiology across multiple scales-from matrix proteins and polysaccharides to macroscopic wrinkles and water-filled channels.
Collapse
|
11
|
Dai H, Wu B, Zhuang Y, Ren H, Chen Y, Zhang F, Chu C, Lv X, Xu J, Ma B. Dynamic in situ detection in iRhizo-Chip reveals diurnal fluctuations of Bacillus subtilis in the rhizosphere. Proc Natl Acad Sci U S A 2024; 121:e2408711121. [PMID: 39325424 PMCID: PMC11459191 DOI: 10.1073/pnas.2408711121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Effective colonization by microbe in the rhizosphere is critical for establishing a beneficial symbiotic relationship with the host plant. Bacillus subtilis, a soil-dwelling bacterium that is commonly found in association with plants and their rhizosphere, has garnered interest for its potential to enhance plant growth, suppress pathogens, and contribute to sustainable agricultural practices. However, research on the dynamic distribution of B. subtilis within the rhizosphere and its interaction mechanisms with plant roots remains insufficient due to limitations in existing in situ detection methodologies. To achieve dynamic in situ detection of the rhizosphere environment, we established iRhizo-Chip, a microfluidics-based platform. Using this device to investigate microbial behavior within the rhizosphere, we found obvious diurnal fluctuations in the growth of B. subtilis in the rhizosphere. Temporal dynamic analysis of rhizosphere dissolved oxygen (DO), pH, dissolved organic carbon, and reactive oxygen species showed that diurnal fluctuations in the growth of B. subtilis are potentially related to a variety of environmental factors. Spatial dynamic analysis also showed that the spatial distribution changes of B. subtilis and DO and pH were similar. Subsequently, through in vitro control experiments, we proved that rhizosphere DO and pH are the main driving forces for diurnal fluctuations in the growth of B. subtilis. Our results show that the growth of B. subtilis is driven by rhizosphere DO and pH, resulting in diurnal fluctuations, and iRhizo-Chip is a valuable tool for studying plant rhizosphere dynamics.
Collapse
|
12
|
Bamford NC, Morris RJ, Prescott A, Murphy P, Erskine E, MacPhee CE, Stanley-Wall NR. TasA Fibre Interactions Are Necessary for Bacillus subtilis Biofilm Structure. Mol Microbiol 2024; 122:598-609. [PMID: 39344640 DOI: 10.1111/mmi.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
The extracellular matrix of biofilms provides crucial structural support to the community and protection from environmental perturbations. TasA, a key Bacillus subtilis biofilm matrix protein, forms both amyloid and non-amyloid fibrils. Non-amyloid TasA fibrils are formed via a strand-exchange mechanism, whereas the amyloid-like form involves non-specific self-assembly. We performed mutagenesis of the N-terminus to assess the role of non-amyloid fibrils in biofilm development. We find that the N-terminal tail is essential for the formation of structured biofilms, providing evidence that the strand-exchange fibrils are the active form in the biofilm matrix. Furthermore, we demonstrate that fibre formation alone is not sufficient to give structure to the biofilm. We build an interactome of TasA with other extracellular protein components, and identify important interaction sites. Our results provide insight into how protein-matrix interactions modulate biofilm development.
Collapse
|
13
|
Guéneau V, Jiménez G, Castex M, Briandet R. Insights into the genomic and phenotypic characteristics of Bacillus spp. strains isolated from biofilms in broiler farms. Appl Environ Microbiol 2024; 90:e0066324. [PMID: 39158314 PMCID: PMC11409695 DOI: 10.1128/aem.00663-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
The characterization of surface microbiota living in biofilms within livestock buildings has been relatively unexplored, despite its potential impact on animal health. To enhance our understanding of these microbial communities, we characterized 11 spore-forming strains isolated from two commercial broiler chicken farms. Sequencing of the strains revealed them to belong to three species Bacillus velezensis, Bacillus subtilis, and Bacillus licheniformis. Genomic analysis revealed the presence of antimicrobial resistance genes and genes associated with antimicrobial secretion specific to each species. We conducted a comprehensive characterization of the biofilm formed by these strains under various conditions, and we revealed significant structural heterogeneity across the different strains. A macro-colony interaction model was employed to assess the compatibility of these strains to coexist in mixed biofilms. We identified highly competitive B. velezensis strains, which cannot coexist with other Bacillus spp. Using confocal laser scanning microscopy along with a specific dye for extracellular DNA, we uncovered the importance of extracellular DNA for the formation of B. licheniformis biofilms. Altogether, the results highlight the heterogeneity in both genome and biofilm structure among Bacillus spp. isolated from biofilms present within livestock buildings.IMPORTANCELittle is known about the microbial communities that develop on farms in direct contact with animals. Nonpathogenic strains of Bacillus velezensis, Bacillus subtilis, and Bacillus licheniformis were found in biofilm samples collected from surfaces in contact with animals. Significant genetic and phenotypic diversity was described among these Bacillus strains. The strains do not possess mobile antibiotic resistance genes in their genomes and have a strong capacity to form structured biofilms. Among these species, B. velezensis was noted for its high competitiveness compared with the other Bacillus spp. Additionally, the importance of extracellular DNA in the formation of B. licheniformis biofilms was observed. These findings provide insights for the management of these surface microbiota that can influence animal health, such as the use of competitive strains to minimize the establishment of undesirable bacteria or enzymes capable of specifically deconstructing biofilms.
Collapse
|
14
|
Heydenreich R, Delbrück AI, Peternell C, Trunet C, Mathys A. Characterization of high-pressure-treated Bacillus subtilis spore populations using flow cytometry - Shedding light on spore superdormancy at 550 MPa. Int J Food Microbiol 2024; 422:110812. [PMID: 38970996 DOI: 10.1016/j.ijfoodmicro.2024.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/04/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
Mild spore inactivation can be challenging in industry because of the remarkable resistance of bacterial spores. High pressure (HP) can trigger spore germination, which reduces the spore's resistance, and thereby allows mild spore inactivation. However, spore germination is heterogenous. Some slowly germinating or non-germinating spores called superdormant spores remain resistant and can survive. Therefore, superdormant spores need to be characterized to understand the causes of their germination deficiency. Bacillus subtilis spores were pressurized for 50 s - 6 min at a very high pressure (vHP) level of 550 MPa and 60 °C in buffer to trigger germination. For a rapid quantification of the remaining ungerminated superdormant spores, flow cytometry (FCM) analysis was validated using single cell sorting and growth analysis. FCM based on propidium iodide (PI) and SYTO16 can be used for 550 MPa-superdormant spores after short vHP treatments of ≤1 min and post-HP incubation at 37 °C or 60 °C. The need for a post-HP incubation is particular for vHP treatments. The incubation was successful to separate FCM signals from superdormant and germinated spores, thus allowing superdormant spore quantification. The SYTO16 and PI fluorescence levels did not necessarily indicate superdormancy or apparent viability. This highlights the general need for FCM validation for different HP treatment conditions. The ∼7 % of ungerminated, i.e., superdormant, spores were isolated after a vHP treatment (550 MPa, 60 °C, 43-52 s). This allowed the characterization of vHP superdormant spores for the first time. The superdormant spores had a similar dipicolinic acid content as spores of the initial dormant population. Descendants of superdormant spores had a normal vHP germination capacity. The causes of vHP superdormancy were thus unlikely linked to the dipicolinic acid content or a permanent genetic change. Isolated superdormant spores germinated better in a second vHP treatment compared to the initial spore population. This has not been observed for other germination stimuli so far. In addition, the germination capacity of the initial spore population was time-dependent. A vHP germination deficiency can therefore be lost over time and seems to be caused by transient factors. Permanent cellular properties played a minor role as causes of superdormancy under chosen HP treatment conditions. The study gained new fundamental insights in vHP superdormancy which are of applied interest. Understanding superdormancy helps to efficiently develop a strategy to avoid superdormant spores and hence to inactivate all spores. The development of a mild HP spore germination-inactivation process aims at better preserving the food quality.
Collapse
|
15
|
Champidou C, Ellouze M, Campagnoli M, Robin O, Haddad N, Membré JM. Unveiling the matrix effect on Bacillus licheniformis and Bacillus subtilis spores heat inactivation between plant-based milk alternatives, bovine milk and culture medium. Int J Food Microbiol 2024; 422:110807. [PMID: 38970999 DOI: 10.1016/j.ijfoodmicro.2024.110807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/22/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
This study examined the inactivation of spores of Bacillus licheniformis and Bacillus subtilis in four pea-based milk alternatives, semi-skimmed bovine milk and Brain Heart Infusion (BHI) broth to assess the matrix impact on the thermal inactivation of bacterial spores. Heat inactivation was performed with the method of capillary tubes in temperature range 97-110 °C. A four-parameter non-linear model, including initial level, shoulder duration, inactivation rate and tailing, was fitted to the data obtained. D-values were estimated and secondary ZT-value models were developed for both species. A secondary model for the shoulder length of B. licheniformis in a plant-based milk alternative formulation was built too. Models were validated at a higher temperature, 113.5 °C. D-values in the different matrices ranged between 2.3 and 8.2 min at 97 °C and 0.1-0.3 min at 110 °C for B. licheniformis. D-values for B. subtilis ranged between 3.9 and 6.3 min at 97 °C and 0.2-0.3 min at 110 °C. ZT-values in the different matrices ranged between 7.3 and 8.9 °C and 8.9-10.0 °C for B. licheniformis and B. subtilis, respectively. Significant differences in inactivation parameters were found within the pea-based formulations as well as when compared to bovine milk. Heat resistance was higher in pea-based matrices. Shoulders observed were temperature- and matrix-dependent, while no such trend was found for the tailings. These results provide insights, useful on designing safe thermal processing, limiting spoilage in plant-based milk alternatives and thus, reducing global food waste.
Collapse
|
16
|
Brengi SH, Moubarak M, El-Naggar HM, Osman AR. Promoting salt tolerance, growth, and phytochemical responses in coriander (Coriandrum sativum L. cv. Balady) via eco-friendly Bacillus subtilis and cobalt. BMC PLANT BIOLOGY 2024; 24:848. [PMID: 39256685 PMCID: PMC11384715 DOI: 10.1186/s12870-024-05517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
In plant production, evaluation of salt stress protectants concerning their potential to improve growth and productivity under saline stress is critical. Bacillus subtilis (Bs) and cobalt (Co) have been proposed to optimize salt stress tolerance in coriander (Coriandrum sativum L. cv. Balady) plants by influencing some physiological activities. The main aim of this work is to investigate the response of (Bs) and (Co) as eco-safe salt stress protectants to resist the effect of salinity, on growth, seed, and essential oil yield, and the most important biochemical constituents of coriander produced under salt stress condition. Therefore, in a split-plot factorial experiment design in the RCBD (randomized complete block design), four levels of salinity of NaCl irrigation water (SA) were assigned to the main plots; (0.5, 1.5, 4, and 6 dS m-1); and six salt stress protectants (SP) were randomly assigned to the subplots: distilled water; 15 ppm (Co1); 30 ppm (Co2); (Bs); (Co1 + Bs); (Co2 + Bs). The study concluded that increasing SA significantly reduced coriander growth and yield by 42.6%, which could be attributed to ion toxicity, oxidative stress, or decreased vital element content. From the results, we recommend that applying Bs with Co (30 ppm) was critical for significantly improving overall growth parameters. This was determined by the significant reduction in the activity of reactive oxygen species scavenging enzymes: superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) and non-enzyme: proline by 5, 11.3, 14.7, and 13.8% respectively, while increasing ascorbic acid by 8% and preserving vital nutrient levels and enhancing plant osmotic potential to buffer salt stress, seed yield per plant, and essential oil yield increased by 12.6 and 18.8% respectively. The quality of essential oil was indicated by highly significant quantities of vital biological phytochemicals such as linalool, camphor, and protein which increased by 10.3, 3.6, and 9.39% respectively. Additional research is suggested to determine the precise mechanism of action of Bs and Co's dual impact on medicinal and aromatic plant salt stress tolerance.
Collapse
|
17
|
Niron H, Vienne A, Frings P, Poetra R, Vicca S. Exploring the synergy of enhanced weathering and Bacillus subtilis: A promising strategy for sustainable agriculture. GLOBAL CHANGE BIOLOGY 2024; 30:e17511. [PMID: 39295254 DOI: 10.1111/gcb.17511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024]
Abstract
Climate change is one of the most urgent environmental challenges that humanity faces. In addition to the reduction of greenhouse gas emissions, safe and robust carbon dioxide removal (CDR) technologies that capture atmospheric CO2 and ensure long-term sequestration are required. Among CDR technologies, enhanced silicate weathering (ESW) has been suggested as a promising option. While ESW has been demonstrated to depend strongly on pH, water, and temperature, recent studies suggest that biota may accelerate mineral weathering rates. Bacillus subtilis is a plant growth-promoting rhizobacterium that can facilitate weathering to obtain mineral nutrients. It is a promising agricultural biofertilizer, as it helps plants acquire nutrients and protects them from environmental stresses. Given that croplands are optimal implementation fields for ESW, any synergy between ESW and B. subtilis can hold great potential for further practice. B. subtilis was reported to enhance weathering under laboratory conditions, but there is a lack of data for soil applications. In a soil-mesocosm experiment, we examined the effect of B. subtilis on basalt weathering. B. subtilis-basalt interaction stimulated basalt weathering and increased soil extractable Fe. The combined application displayed higher CDR potential compared to basalt-only application (3.7 vs. 2.3 tons CO2 ha-1) taking solid and liquid cation pools into account. However, the cumulative CO2 efflux decreased by approximately 2 tons CO2 ha-1 with basalt-only treatment, while the combined application did not affect the CO2 efflux. We found limited mobilization of cations to the liquid phase as most were retained in the soil. Additionally, we found substantial mobilization of basalt-originated Mg, Fe, and Al to oxide- and organic-bound soil fractions. We, therefore, conclude that basalt addition showed relatively low inorganic CDR potential but a high capacity for SOM stabilization. The outcomes indicated the importance of weathering rate-GHG emission integration and the high potential of SOM stabilization in ESW studies.
Collapse
|
18
|
Charron‐Lamoureux V, Lebel‐Beaucage S, Pomerleau M, Beauregard PB. Rooting for success: Evolutionary enhancement of Bacillus for superior plant colonization. Microb Biotechnol 2024; 17:e70001. [PMID: 39212139 PMCID: PMC11362836 DOI: 10.1111/1751-7915.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
Many strains from the Bacillus subtilis species complex exert strong plant growth-promoting activities. However, their efficacy in relevant conditions is variable, due in part to their inability to establish a strong interaction with roots in stressful environmental conditions. Adaptative laboratory evolution (ALE) is a powerful tool to generate novel strains with traits of interest. Many Bacillus evolved isolates, stemming from ALE performed with plants, possess a stronger root colonization capacity. An in-depth analysis of these isolates also allowed the identification of key features influencing the interaction with plant roots. However, many variables can influence the outcome of these assays, and thus, caution should be taken when designing ALE destined to generate better root colonizers.
Collapse
|
19
|
Gilhar O, Ben-Navi LR, Olender T, Aharoni A, Friedman J, Kolodkin-Gal I. Multigenerational inheritance drives symbiotic interactions of the bacterium Bacillus subtilis with its plant host. Microbiol Res 2024; 286:127814. [PMID: 38954993 DOI: 10.1016/j.micres.2024.127814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Bacillus subtilis is a beneficial bacterium that supports plant growth and protects plants from bacterial, fungal, and viral infections. Using a simplified system of B. subtilis and Arabidopsis thaliana interactions, we studied the fitness and transcriptome of bacteria detached from the root over generations of growth in LB medium. We found that bacteria previously associated with the root or exposed to its secretions had greater stress tolerance and were more competitive in root colonization than bacteria not previously exposed to the root. Furthermore, our transcriptome results provide evidence that plant secretions induce a microbial stress response and fundamentally alter signaling by the cyclic nucleotide c-di-AMP, a signature maintained by their descendants. The changes in cellular physiology due to exposure to plant exudates were multigenerational, as they allowed not only the bacterial cells that colonized a new plant but also their descendants to have an advance over naive competitors of the same species, while the overall plasticity of gene expression and rapid adaptation were maintained. These changes were hereditary but not permanent. Our work demonstrates a bacterial memory manifested by multigenerational reversible adaptation to plant hosts in the form of activation of the stressosome, which confers an advantage to symbiotic bacteria during competition.
Collapse
|
20
|
Lyu F, Yang D, Rao L, Liao X. Alanine and glutamate catabolism collaborate to ensure the success of Bacillus subtilis sporulation. Microbiol Res 2024; 286:127828. [PMID: 38991478 DOI: 10.1016/j.micres.2024.127828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Sporulation as a typical bacterial differentiation process has been studied for decades. However, two crucial aspects of sporulation, (i) the energy sources supporting the process, and (ii) the maintenance of spore dormancy throughout sporulation, are scarcely explored. Here, we reported the crucial role of RocG-mediated glutamate catabolism in regulating mother cell lysis, a critical step for sporulation completion of Bacillus subtilis, likely by providing energy metabolite ATP. Notably, rocG overexpression resulted in an excessive ATP accumulation in sporulating cells, leading to adverse effects on future spore properties, e.g. increased germination efficiency, reduced DPA content, and lowered heat resistance. Additionally, we revealed that Ald-mediated alanine metabolism was highly related to the inhibition of premature germination and the maintenance of spore dormancy during sporulation, which might be achieved by decreasing the typical germinant L-alanine concentration in sporulating environment. Our data inferred that sporulation of B. subtilis was a highly orchestrated biological process requiring a delicate balance in diverse metabolic pathways, hence ensuring both the completion of sporulation and production of high-quality spores.
Collapse
|
21
|
Moroz N, Colvin B, Jayasinghe S, Gleason C, Tanaka K. Phytocytokine StPep1-Secreting Bacteria Suppress Potato Powdery Scab Disease. PHYTOPATHOLOGY 2024; 114:2055-2063. [PMID: 38970808 DOI: 10.1094/phyto-01-24-0019-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Powdery scab is an important potato disease caused by the soilborne pathogen Spongospora subterranea f. sp. subterranea. Currently, reliable chemical control and resistant cultivars for powdery scab are unavailable. As an alternative control strategy, we propose a novel approach involving the effective delivery of a phytocytokine to plant roots by the rhizobacterium Bacillus subtilis. The modified strain is designed to secrete the plant elicitor peptide StPep1. In our experiments employing a hairy root system, we observed a significant reduction in powdery scab pathogen infection when we directly applied the StPep1 peptide. Furthermore, our pot assay, which involved pretreating potato roots with StPep1-secreting B. subtilis, demonstrated a substantial decrease in disease symptoms, including reduced root galling and fewer tuber lesions. These findings underscore the potential of engineered bacteria as a promising strategy for safeguarding plants against powdery scab.
Collapse
|
22
|
Iwańska O, Latoch P, Kopik N, Kovalenko M, Lichocka M, Serwa R, Starosta AL. Translation in Bacillus subtilis is spatially and temporally coordinated during sporulation. Nat Commun 2024; 15:7188. [PMID: 39169056 PMCID: PMC11339384 DOI: 10.1038/s41467-024-51654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
The transcriptional control of sporulation in Bacillus subtilis is reasonably well understood, but its translational control is underexplored. Here, we use RNA-seq, ribosome profiling and fluorescence microscopy to study the translational dynamics of B. subtilis sporulation. We identify two events of translation silencing and describe spatiotemporal changes in subcellular localization of ribosomes during sporulation. We investigate the potential regulatory role of ribosomes during sporulation using a strain lacking zinc-independent paralogs of three zinc-dependent ribosomal proteins (L31, L33 and S14). The mutant strain exhibits delayed sporulation, reduced germination efficiency, dysregulated translation of metabolic and sporulation-related genes, and disruptions in translation silencing, particularly in late sporulation.
Collapse
|
23
|
Barbotin A, Billaudeau C, Sezgin E, Carballido-López R. Quantification of membrane fluidity in bacteria using TIR-FCS. Biophys J 2024; 123:2484-2495. [PMID: 38877702 PMCID: PMC11365102 DOI: 10.1016/j.bpj.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Plasma membrane fluidity is an important phenotypic feature that regulates the diffusion, function, and folding of transmembrane and membrane-associated proteins. In bacterial cells, variations in membrane fluidity are known to affect respiration, transport, and antibiotic resistance. Membrane fluidity must therefore be tightly regulated to adapt to environmental variations and stresses such as temperature fluctuations or osmotic shocks. Quantitative investigation of bacterial membrane fluidity has been, however, limited due to the lack of available tools, primarily due to the small size and membrane curvature of bacteria that preclude most conventional analysis methods used in eukaryotes. Here, we develop an assay based on total internal reflection-fluorescence correlation spectroscopy (TIR-FCS) to directly measure membrane fluidity in live bacteria via the diffusivity of fluorescent membrane markers. With simulations validated by experiments, we could determine how the small size, high curvature, and geometry of bacteria affect diffusion measurements and correct subsequent measurements for unbiased diffusion coefficient estimation. We used this assay to quantify the fluidity of the cytoplasmic membranes of the Gram-positive bacteria Bacillus subtilis (rod-shaped) and Staphylococcus aureus (coccus) at high (37°C) and low (20°C) temperatures in a steady state and in response to a cold shock, caused by a shift from high to low temperature. The steady-state fluidity was lower at 20°C than at 37°C, yet differed between B. subtilis and S. aureus at 37°C. Upon cold shock, the membrane fluidity decreased further below the steady-state fluidity at 20°C and recovered within 30 min in both bacterial species. Our minimally invasive assay opens up exciting perspectives for the study of a wide range of phenomena affecting the bacterial membrane, from disruption by chemicals or antibiotics to viral infection or change in nutrient availability.
Collapse
|
24
|
Gray DA, Wang B, Sidarta M, Cornejo FA, Wijnheijmer J, Rani R, Gamba P, Turgay K, Wenzel M, Strahl H, Hamoen LW. Membrane depolarization kills dormant Bacillus subtilis cells by generating a lethal dose of ROS. Nat Commun 2024; 15:6877. [PMID: 39128925 PMCID: PMC11317493 DOI: 10.1038/s41467-024-51347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/02/2024] [Indexed: 08/13/2024] Open
Abstract
The bactericidal activity of several antibiotics partially relies on the production of reactive oxygen species (ROS), which is generally linked to enhanced respiration and requires the Fenton reaction. Bacterial persister cells, an important cause of recurring infections, are tolerant to these antibiotics because they are in a dormant state. Here, we use Bacillus subtilis cells in stationary phase, as a model system of dormant cells, to show that pharmacological induction of membrane depolarization enhances the antibiotics' bactericidal activity and also leads to ROS production. However, in contrast to previous studies, this results primarily in production of superoxide radicals and does not require the Fenton reaction. Genetic analyzes indicate that Rieske factor QcrA, the iron-sulfur subunit of respiratory complex III, seems to be a primary source of superoxide radicals. Interestingly, the membrane distribution of QcrA changes upon membrane depolarization, suggesting a dissociation of complex III. Thus, our data reveal an alternative mechanism by which antibiotics can cause lethal ROS levels, and may partially explain why membrane-targeting antibiotics are effective in eliminating persisters.
Collapse
|
25
|
Heitkämper T, Roth R, Harteneck S, Berger F, Salam S, Fey-Du C, Flöck C, Tschierske N, Vonderbank V, Martin A, Erren S, Zimmermann J, Lutz M, Kujala K. Flying microbes-survival in the extreme conditions of the stratosphere during a stratospheric balloon flight experiment. Microbiol Spectr 2024; 12:e0398223. [PMID: 38869294 PMCID: PMC11302731 DOI: 10.1128/spectrum.03982-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/16/2024] [Indexed: 06/14/2024] Open
Abstract
Earth's stratosphere is characterized by hypobaric conditions, low temperatures, and high intensities of ultraviolet (UV) and cosmic radiation as well as low water and nutrient availability. While it is not considered a permanent habitat for microorganisms, they can be transported to the stratosphere by storms, volcanic action, or human activity. The impact of those extreme conditions on microorganisms and their survival were tested by sending a sample gondola to the stratosphere. The sample gondola was built to allow exposure of Bacillus subtilis endospores at different angles to the sun. It moreover had holders for three environmental samples to test the effect of stratospheric conditions on complex microbial communities. The gondola attached to a stratospheric balloon was launched near Kiruna, Sweden, ascended to ~25 km, and drifted eastward for ~200 km. Samples were exposed to pressures as low as 2 kPa and temperatures as low as -50°C as well as high UV radiation. Survival rates of B. subtilis were determined by comparing the numbers of colony-forming units (CFUs) for the different exposure angles. Survival was negatively correlated with exposure angle, indicating the significant impact of UV radiation. The effect of stratospheric conditions on environmental samples was assessed by comparing most probable numbers, microbial community composition, and substrate-use profiles to controls that had stayed on the ground. Cultivation was possible from all samples with survival rates of at least 1%, and differences in community composition were observed. Survival of environmental microorganisms might have been supported by the sample matrix, which provided protection from radiation and desiccation. IMPORTANCE Earth's stratosphere is a hostile environment that has challenged microbial survival. We set out to test the effect of stratosphere exposure on survival of single species (Bacillus subtilis) and complex microbial communities from soils and sediment. B. subtilis survival was strongly impacted by sun exposure, i.e., ultraviolet (UV) radiation, with only 1% survival at full sun exposure. Complex microbial communities had high survival rates, and the soil or sediment matrix may have provided protection against radiation and desiccation, supporting the survival of environmental microorganisms.
Collapse
|