226
|
Abstract
Isolated microspore culture is the most efficient technique among those used to induce microspore embryogenesis. In the particular case of Brassica napus, it is also the most widely used and optimized. In this chapter, we describe a protocol for microspore culture in B. napus which includes the steps necessary to isolate and culture microspores, to induce microspore-derived embryos, to produce doubled haploid plants from them, as well as to check for the developmental stage of the microspores isolated, their viability, and the ploidy level of regenerated plantlets.
Collapse
|
227
|
Abstract
The placenta, a hallmark of mammalian embryogenesis, allows nutrients to be exchanged between the mother and the fetus. Vitamin A (VA), an essential nutrient, cannot be synthesized by the embryo, and must be acquired from the maternal circulation through the placenta. Our understanding of how this transfer is accomplished is still in its infancy. In this chapter, we recapitulate the early studies about the relationship between maternal dietary/supplemental VA intake and fetal VA levels. We then describe how the discovery of retinol-binding protein (RBP or RBP4), the development of labeling and detection techniques, and the advent of knockout mice shifted this field from a macroscopic to a molecular level. The most recent data indicate that VA and its derivatives (retinoids) and the pro-VA carotenoid, β-carotene, are transferred across the placenta by distinct proteins, some of which overlap with proteins involved in lipoprotein uptake. The VA status and dietary intake of the mother influence the expression of these proteins, creating feedback signals that control the uptake of retinoids and that may also regulate the uptake of lipids, raising the intriguing possibility of crosstalk between micronutrient and macronutrient metabolism. Many questions remain about the temporal and spatial patterns by which these proteins are expressed and transferred throughout gestation. The answers to these questions are highly relevant to human health, considering that those with either limited or excessive intake of retinoids/carotenoids during pregnancy may be at risk of obtaining improper amounts of VA that ultimately impact the development and health of their offspring.
Collapse
|
228
|
Muthusamy B, Bellad A, Prasad P, Bandari AK, Bhuvanalakshmi G, Kiragasur RM, Girimaj SC, Pandey A. A Novel LINS1 Truncating Mutation in Autosomal Recessive Nonsyndromic Intellectual Disability. Front Psychiatry 2020; 11:354. [PMID: 32499722 PMCID: PMC7247441 DOI: 10.3389/fpsyt.2020.00354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The large majority of cases with intellectual disability are syndromic (i.e. occur with other well-defined clinical phenotypes) and have been studied extensively. Autosomal recessive nonsyndromic intellectual disability is a group of genetically heterogeneous disorders for which a number of potentially causative genes have been identified although the molecular basis of most of them remains unexplored. Here, we report the clinical characteristics and genetic findings of a family with two male siblings affected with autosomal recessive nonsyndromic intellectual disability. Whole exome sequencing was carried out on two affected male siblings and unaffected parents. A potentially pathogenic variant identified in this study was confirmed by Sanger sequencing to be inherited in an autosomal recessive fashion. We identified a novel nonsense mutation (p.Gln368Ter) in the LINS1 gene which leads to loss of 389 amino acids in the C-terminus of the encoded protein. The truncation mutation causes a complete loss of LINES_C domain along with loss of three known phosphorylation sites and a known ubiquitylation site in addition to other evolutionarily conserved regions of LINS1. LINS1 has been reported to cause MRT27 (mental retardation, autosomal recessive 27), a rare autosomal recessive nonsyndromic intellectual disability, with limited characterization of the phenotype. Identification of a potentially pathogenic truncating mutation in LINS1 in two profoundly intellectually impaired patients also confirms its role in cognition.
Collapse
|
229
|
Rogers KW, Müller P. Optogenetic approaches to investigate spatiotemporal signaling during development. Curr Top Dev Biol 2019; 137:37-77. [PMID: 32143750 DOI: 10.1016/bs.ctdb.2019.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Embryogenesis is coordinated by signaling pathways that pattern the developing organism. Many aspects of this process are not fully understood, including how signaling molecules spread through embryonic tissues, how signaling amplitude and dynamics are decoded, and how multiple signaling pathways cooperate to pattern the body plan. Optogenetic approaches can be used to address these questions by providing precise experimental control over a variety of biological processes. Here, we review how these strategies have provided new insights into developmental signaling and discuss how they could contribute to future investigations.
Collapse
|
230
|
Stanney W, Ladam F, Donaldson IJ, Parsons TJ, Maehr R, Bobola N, Sagerström CG. Combinatorial action of NF-Y and TALE at embryonic enhancers defines distinct gene expression programs during zygotic genome activation in zebrafish. Dev Biol 2019; 459:161-180. [PMID: 31862379 DOI: 10.1016/j.ydbio.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 01/20/2023]
Abstract
Animal embryogenesis is initiated by maternal factors, but zygotic genome activation (ZGA) shifts regulatory control to the embryo during blastula stages. ZGA is thought to be mediated by maternally provided transcription factors (TFs), but few such TFs have been identified in vertebrates. Here we report that NF-Y and TALE TFs bind zebrafish genomic elements associated with developmental control genes already at ZGA. In particular, co-regulation by NF-Y and TALE is associated with broadly acting genes involved in transcriptional control, while regulation by either NF-Y or TALE defines genes in specific developmental processes, such that NF-Y controls a cilia gene expression program while TALE controls expression of hox genes. We also demonstrate that NF-Y and TALE-occupied genomic elements function as enhancers during embryogenesis. We conclude that combinatorial use of NF-Y and TALE at developmental enhancers permits the establishment of distinct gene expression programs at zebrafish ZGA.
Collapse
|
231
|
Andrikou C, Passamaneck YJ, Lowe CJ, Martindale MQ, Hejnol A. Molecular patterning during the development of Phoronopsis harmeri reveals similarities to rhynchonelliform brachiopods. EvoDevo 2019; 10:33. [PMID: 31867094 PMCID: PMC6907167 DOI: 10.1186/s13227-019-0146-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/22/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Phoronids, rhynchonelliform and linguliform brachiopods show striking similarities in their embryonic fate maps, in particular in their axis specification and regionalization. However, although brachiopod development has been studied in detail and demonstrated embryonic patterning as a causal factor of the gastrulation mode (protostomy vs deuterostomy), molecular descriptions are still missing in phoronids. To understand whether phoronids display underlying embryonic molecular mechanisms similar to those of brachiopods, here we report the expression patterns of anterior (otx, gsc, six3/6, nk2.1), posterior (cdx, bra) and endomesodermal (foxA, gata4/5/6, twist) markers during the development of the protostomic phoronid Phoronopsis harmeri. RESULTS The transcription factors foxA, gata4/5/6 and cdx show conserved expression in patterning the development and regionalization of the phoronid embryonic gut, with foxA expressed in the presumptive foregut, gata4/5/6 demarcating the midgut and cdx confined to the hindgut. Furthermore, six3/6, usually a well-conserved anterior marker, shows a remarkably dynamic expression, demarcating not only the apical organ and the oral ectoderm, but also clusters of cells of the developing midgut and the anterior mesoderm, similar to what has been reported for brachiopods, bryozoans and some deuterostome Bilateria. Surprisingly, brachyury, a transcription factor often associated with gastrulation movements and mouth and hindgut development, seems not to be involved with these patterning events in phoronids. CONCLUSIONS Our description and comparison of gene expression patterns with other studied Bilateria reveals that the timing of axis determination and cell fate distribution of the phoronid shows highest similarity to that of rhynchonelliform brachiopods, which is likely related to their shared protostomic mode of development. Despite these similarities, the phoronid Ph. harmeri also shows particularities in its development, which hint to divergences in the arrangement of gene regulatory networks responsible for germ layer formation and axis specification.
Collapse
|
232
|
Alansi S, Al-Qurainy F, Nadeem M, Khan S, Tarroum M, Alshameri A, Gaafar ARZ. Cryopreservation: A tool to conserve date palm in Saudi Arabia. Saudi J Biol Sci 2019; 26:1896-1902. [PMID: 31762672 PMCID: PMC6864369 DOI: 10.1016/j.sjbs.2019.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 12/02/2022] Open
Abstract
The cryostoring of embryogenic tissue of the date palm (Phoenix dactylifera L. cv. Sagai) was examined through dehydrated-encapsulation, vitrification, and vitrification-encapsulation. The most extreme regeneration rate (53.33%) of epitomized, cryostored liquid nitrogen (+LN) treated embryos was observed when pre-embryonic masses were hatched with 0.5 M sucrose for 48 h pursued by 6 h air drying out. The most noteworthy survival rate (80.0%) of epitomized, cryopreserved embryonic cluster came about when calli were hatched with 0.3 or 0.7 M sucrose for 48 h pursued by four hours of lack of hydration, or with 0.5 M sucrose for 48 h without air drying out or with 2 h of air drying out. Following cryopreservation utilizing the embodiment vitrification convention, the most astounding survival (86.7%) as well as the greatest growth (46.7%) was accomplished when the typified vitrified, cryopreserved calli were treated with Vitrification Solution 2 for plants (PVS2) for 60 min at 25 °C. Cryopreservation utilizing the vitrification convention brought about the most extreme recuperation of 53.3%, when vitrified-cryopreserved calli were subjected to PVS2 solution for 30 min at 25 °C. Most extreme (40%) regeneration of vitrified, cryopreserved embryonic calli was seen when these calli were treated with PVS2 solution for 60 min at 25 °C. The outcome got amid this investigation of regrowth after cryopreservation of the cv. Sagai was over the base suitable for a cryo-germplasm bank. Recovery and regrowth were above 30% for all the techniques developed for the cv. Sagai.
Collapse
|
233
|
Ansaloni F, Scarpato M, Di Schiavi E, Gustincich S, Sanges R. Exploratory analysis of transposable elements expression in the C. elegans early embryo. BMC Bioinformatics 2019; 20:484. [PMID: 31757208 PMCID: PMC6873666 DOI: 10.1186/s12859-019-3088-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/10/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Transposable Elements (TE) are mobile sequences that make up large portions of eukaryote genomes. The functions they play within the complex cellular architecture are still not clearly understood, but it is becoming evident that TE have a role in several physiological and pathological processes. In particular, it has been shown that TE transcription is necessary for the correct development of mice embryos and that their expression is able to finely modulate transcription of coding and non-coding genes. Moreover, their activity in the central nervous system (CNS) and other tissues has been correlated with the creation of somatic mosaicisms and with pathologies such as neurodevelopmental and neurodegenerative diseases as well as cancers. RESULTS We analyzed TE expression among different cell types of the Caenorhabditis elegans (C. elegans) early embryo asking if, where and when TE are expressed and whether their expression is correlated with genes playing a role in early embryo development. To answer these questions, we took advantage of a public C. elegans embryonic single-cell RNA-seq (sc-RNAseq) dataset and developed a bioinformatics pipeline able to quantify reads mapping specifically against TE, avoiding counting reads mapping on TE fragments embedded in coding/non-coding transcripts. Our results suggest that i) canonical TE expression analysis tools, which do not discard reads mapping on TE fragments embedded in annotated transcripts, may over-estimate TE expression levels, ii) Long Terminal Repeats (LTR) elements are mostly expressed in undifferentiated cells and might play a role in pluripotency maintenance and activation of the innate immune response, iii) non-LTR are expressed in differentiated cells, in particular in neurons and nervous system-associated tissues, and iv) DNA TE are homogenously expressed throughout the C. elegans early embryo development. CONCLUSIONS TE expression appears finely modulated in the C. elegans early embryo and different TE classes are expressed in different cell types and stages, suggesting that TE might play diverse functions during early embryo development.
Collapse
|
234
|
Elias RA, Lando AP, Viana WG, Ortiz J, da Costa CD, Schmidt ÉC, Souza LA, Guerra MP, Steiner N. Structural aspects of cypsela and seed development of Trichocline catharinensis (Cabrera): a Brazilian endemic species. PROTOPLASMA 2019; 256:1495-1506. [PMID: 31144034 DOI: 10.1007/s00709-019-01361-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
This is the first study to describe in a timescale morphohistological and ultrastructural characteristics of fruit (cypsela) and seed development in Trichocline catharinensis, which was completed 21 days after anthesis (DAA). At anthesis, we identified an ovary with three differentiated regions, including the inner epidermis, inner part, and outer epidermis. The mature ovule showed an integument with the outer epidermis, integumentary parenchyma, and endothelium. Cells around the endothelium form the periendothelial zone with thick cell walls that showed Periodic acid-Schiff (PAS)-positive reaction. The periendothelial zone and endothelium showed degradation of the cells during embryogenesis. The main stages of embryo development from fecundation through mature seed were identified. The ripe cypsela showed the pericarp (exocarp), seed coat (exotesta), and remaining endosperm surrounding the embryo. Mature embryos were straight with shoot apical meristem (SAM), and root apical meristem (RAM) was separated by the hypocotyl. Light microscopy (LM) and transmission electron microscopy (TEM) analyses indicate cells with characteristics of meristem cells, as well as proteins and lipid bodies and mitochondria with few cristae in cotyledon cells. Our findings provide insight into taxonomic and physiological studies by detailing cypsela and seed ontogenesis from an endemic and vulnerable Asteraceae from southern Brazil. This study is also a starting point for establishing the biological criteria for seed harvesting and future studies of seed physiology and conservation of plant genetic resource.
Collapse
|
235
|
Mutlu B, Chen HM, Gutnik S, Hall DH, Keppler-Ross S, Mango SE. Distinct functions and temporal regulation of methylated histone H3 during early embryogenesis. Development 2019; 146:dev174516. [PMID: 31540912 PMCID: PMC6803369 DOI: 10.1242/dev.174516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 09/09/2019] [Indexed: 01/25/2023]
Abstract
During the first hours of embryogenesis, formation of higher-order heterochromatin coincides with the loss of developmental potential. Here, we examine the relationship between these two events, and we probe the processes that contribute to the timing of their onset. Mutations that disrupt histone H3 lysine 9 (H3K9) methyltransferases reveal that the methyltransferase MET-2 helps terminate developmental plasticity, through mono- and di-methylation of H3K9 (me1/me2), and promotes heterochromatin formation, through H3K9me3. Although loss of H3K9me3 perturbs formation of higher-order heterochromatin, embryos are still able to terminate plasticity, indicating that the two processes can be uncoupled. Methylated H3K9 appears gradually in developing C. elegans embryos and depends on nuclear localization of MET-2. We find that the timing of H3K9me2 and nuclear MET-2 is sensitive to rapid cell cycles, but not to zygotic genome activation or cell counting. These data reveal distinct roles for different H3K9 methylation states in the generation of heterochromatin and loss of developmental plasticity by MET-2, and identify the cell cycle as a crucial parameter of MET-2 regulation.
Collapse
|
236
|
Varshney S, Wei HX, Batista F, Nauman M, Sundaram S, Siminovitch K, Tanwar A, Stanley P. A modifier in the 129S2/SvPasCrl genome is responsible for the viability of Notch1[12f/12f] mice. BMC DEVELOPMENTAL BIOLOGY 2019; 19:19. [PMID: 31590629 PMCID: PMC6781419 DOI: 10.1186/s12861-019-0199-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/06/2019] [Indexed: 12/27/2022]
Abstract
Background Mouse NOTCH1 carries a highly conserved O-fucose glycan at Thr466 in epidermal growth factor-like repeat 12 (EGF12) of the extracellular domain. O-Fucose at this site has been shown by X-ray crystallography to be recognized by both DLL4 and JAG1 Notch ligands. We previously showed that a Notch1 Thr466Ala mutant exhibits very little ligand-induced NOTCH1 signaling in a reporter assay, whereas a Thr466Ser mutation enables the transfer of O-fucose and reverts the NOTCH1 signaling defect. We subsequently generated a mutant mouse with the Thr466Ala mutation termed Notch1[12f](Notch1tm2Pst). Surprisingly, homozygous Notch1[12f/12f] mutants on a mixed background were viable and fertile. Results We now report that after backcrossing to C57BL/6 J mice for 11–15 generations, few homozygous Notch1[12f/12f] embryos were born. Timed mating showed that embryonic lethality occurred by embryonic day (E) ~E11.5, somewhat delayed compared to mice lacking Notch1 or Pofut1 (the O-fucosyltransferase that adds O-fucose to Notch receptors), which die at ~E9.5. The phenotype of C57BL/6 J Notch1[12f/12f] embryos was milder than mutants affected by loss of a canonical Notch pathway member, but disorganized vasculogenesis in the yolk sac, delayed somitogenesis and development were characteristic. In situ hybridization of Notch target genes Uncx4.1 and Dll3 or western blot analysis of NOTCH1 cleavage did not reveal significant differences at E9.5. However, qRT-PCR of head cDNA showed increased expression of Dll3, Uncx4.1 and Notch1 in E9.5 Notch1[12f/12f] embryos. Sequencing of cDNA from Notch1[12f/12f] embryo heads and Southern analysis showed that the Notch1[12f] locus was intact following backcrossing. We therefore looked for evidence of modifying gene(s) by crossing C57BL/6 J Notch1 [12f/+] mice to 129S2/SvPasCrl mice. Intercrosses of the F1 progeny gave viable F2 Notch1[12f/12f] mice. Conclusion We conclude that the 129S2/SvPasCrl genome contains a dominant modifying gene that rescues the functions of NOTCH1[12f] in signaling. Identification of the modifying gene has the potential to illuminate novel factor(s) that promote Notch signaling when an O-fucose glycan is absent from EGF12 of NOTCH1.
Collapse
|
237
|
Wang Q, Kurosaka H, Kikuchi M, Nakaya A, Trainor PA, Yamashiro T. Perturbed development of cranial neural crest cells in association with reduced sonic hedgehog signaling underlies the pathogenesis of retinoic-acid-induced cleft palate. Dis Model Mech 2019; 12:dmm040279. [PMID: 31591086 PMCID: PMC6826016 DOI: 10.1242/dmm.040279] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
Cleft palate (CP) is one of the most common congenital craniofacial anomalies in humans and can be caused by either single or multiple genetic and environmental factor(s). With respect to environmental factors, excessive intake of vitamin A during early pregnancy is associated with increased incidence of CP in offspring both in humans and in animal models. Vitamin A is metabolized to retinoic acid (RA); however, the pathogenetic mechanism of CP caused by altered RA signaling during early embryogenesis is not fully understood. To investigate the detailed cellular and molecular mechanism of RA-induced CP, we administered all-trans RA to pregnant mice at embryonic day (E)8.5. In the RA-treated group, we observed altered expression of Sox10, which marks cranial neural crest cells (CNCCs). Disruption of Sox10 expression was also observed at E10.5 in the maxillary component of the first branchial arch, which gives rise to secondary palatal shelves. Moreover, we found significant elevation of CNCC apoptosis in RA-treated embryos. RNA-sequencing comparisons of RA-treated embryos compared to controls revealed alterations in Sonic hedgehog (Shh) signaling. More specifically, the expression of Shh and its downstream genes Ptch1 and Gli1 was spatiotemporally downregulated in the developing face of RA-treated embryos. Consistent with these findings, the incidence of CP in association with excessive RA signaling was reduced by administration of the Shh signaling agonist SAG (Smoothened agonist). Altogether, our results uncovered a novel mechanistic association between RA-induced CP with decreased Shh signaling and elevated CNCC apoptosis.
Collapse
|
238
|
Germline knockdown of spargel (PGC-1) produces embryonic lethality in Drosophila. Mitochondrion 2019; 49:189-199. [PMID: 31473309 DOI: 10.1016/j.mito.2019.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 11/22/2022]
Abstract
The PGC-1 transcriptional coactivators have been proposed as master regulators of mitochondrial biogenesis and energy metabolism. Here we show that the single member of the family in Drosophila, spargel (srl) has an essential role in early development. Female germline-specific RNAi knockdown resulted in embryonic semilethality. Embryos were small, with most suffering a catastrophic derangement of cellularization and gastrulation, although genes dependent on localized determinants were expressed normally. The abundance of mtDNA, representative mitochondrial proteins and mRNAs were not decreased in knockdown ovaries or embryos, indicating that srl has a more general role in early development than specifically promoting mitochondrial biogenesis.
Collapse
|
239
|
Oda H, Akiyama-Oda Y. Microarray data on the comparison of transcript expression between normal and Pt-Delta RNAi embryos in the common house spider Parasteatoda tepidariorum. Data Brief 2019; 25:104350. [PMID: 31453303 PMCID: PMC6702388 DOI: 10.1016/j.dib.2019.104350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 12/29/2022] Open
Abstract
We conducted a custom microarray experiment to detect the differences in the transcript expression levels between untreated (normal) and Pt-Delta-RNAi embryos at late stage 6 in the common house spider Parasteatoda tepidariorum. The array probes were designed based on accumulated EST and cDNA sequences. The microarray dataset has been deposited in the Gene Expression Omnibus (GEO) Database at the National Center for Biotechnology Information (NCBI) under the accession GSE113064. The expression of the transcripts selected based on the detected differences was examined in embryos by whole-mount in situ hybridization.
Collapse
|
240
|
McLennan R, Kulesa PM. In Ovo Electroporation of Plasmid DNA and Morpholinos into Specific Tissues During Early Embryogenesis. Methods Mol Biol 2019; 1976:71-82. [PMID: 30977066 DOI: 10.1007/978-1-4939-9412-0_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In ovo electroporation enables transfection of non-viral plasmid DNA and/or morpholinos to fluorescently label and/or perturb gene function in cells of interest. However, targeted electroporation into specific subregions of the embryo can be challenging due to placement and size limitations of the electrodes. Here we describe the basic techniques for in ovo electroporation in the chick embryo and suggest parameters to electroporate cells within different target tissues that with some modifications may be applicable to a wide range of developmental stages and other embryo model organisms.
Collapse
|
241
|
Schulte D, Geerts D. MEIS transcription factors in development and disease. Development 2019; 146:146/16/dev174706. [PMID: 31416930 DOI: 10.1242/dev.174706] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
MEIS transcription factors are key regulators of embryonic development and cancer. Research on MEIS genes in the embryo and in stem cell systems has revealed novel and surprising mechanisms by which these proteins control gene expression. This Primer summarizes recent findings about MEIS protein activity and regulation in development, and discusses new insights into the role of MEIS genes in disease, focusing on the pathogenesis of solid cancers.
Collapse
|
242
|
Ohnishi Y, Kokubu I, Kinoshita T, Okamoto T. Sperm Entry into the Egg Cell Induces the Progression of Karyogamy in Rice Zygotes. PLANT & CELL PHYSIOLOGY 2019; 60:1656-1665. [PMID: 31076767 DOI: 10.1093/pcp/pcz077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 04/16/2019] [Indexed: 05/11/2023]
Abstract
Karyogamy is a prerequisite event for plant embryogenesis, in which dynamic changes in nuclear architecture and the establishment of appropriate gene expression patterns must occur. However, the precise role of the male and female gametes in the progression of karyogamy still remains elusive. Here, we show that the sperm cell possesses the unique property to drive steady and swift nuclear fusion. When we fertilized egg cells with sperm cells in vitro, the immediate fusion of the male and female nuclei in the zygote progressed. This rapid nuclear fusion did not occur when two egg cells were artificially fused. However, the nuclear fusion of two egg nuclei could be accelerated by additional sperm entry or the exogenous application of calcium, suggesting that possible increase of cytosolic Ca2+ level via sperm entry into the egg cell efficiently can facilitate karyogamy. In contrast to zygotes, the egg-egg fusion cells failed to proliferate beyond an early developmental stage. Our transcriptional analyses also revealed the rapid activation of zygotic genes in zygotes, whereas there was no expression in fused cells without the male contribution. Thus, the male sperm cell has the ability to cause immediate karyogamy and to establish appropriate gene expression patterns in the zygote.
Collapse
|
243
|
Abstract
Extracellular matrices (ECMs) are structurally and compositionally diverse networks of collagenous and noncollagenous glycoproteins, glycosaminoglycans, proteoglycans, and associated molecules that together comprise the metazoan matrisome. Proper deposition and assembly of ECM is of profound importance to cell proliferation, survival, and differentiation, and the morphogenesis of tissues and organ systems that define sequential steps in the development of all animals. Importantly, it is now clear that the instructive influence of a particular ECM at various points in development reflects more than a simple summing of component parts; cellular responses also reflect the dynamic assembly and changing topology of embryonic ECM, which in turn affect its biomechanical properties. This review highlights recent advances in understanding how biophysical features attributed to ECM, such as stiffness and viscoelasticity, play important roles in the sculpting of embryonic tissues and the regulation of cell fates. Forces generated within cells and tissues are transmitted both through integrin-based adhesions to ECM, and through cadherin-dependent cell-cell adhesions; the resulting short- and long-range deformations of embryonic tissues drive morphogenesis. This coordinate regulation of cell-ECM and cell-cell adhesive machinery has emerged as a common theme in a variety of developmental processes. In this review we consider select examples in the embryo where ECM is implicated in setting up tissue barriers and boundaries, in resisting pushing or pulling forces, or in constraining or promoting cell and tissue movement. We reflect on how each of these processes contribute to morphogenesis.
Collapse
|
244
|
Kwiatkowska M, Kadłuczka D, Wędzony M, Dedicova B, Grzebelus E. Refinement of a clearing protocol to study crassinucellate ovules of the sugar beet ( Beta vulgaris L., Amaranthaceae). PLANT METHODS 2019; 15:71. [PMID: 31316582 PMCID: PMC6613245 DOI: 10.1186/s13007-019-0452-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/26/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Clearing methods allow relatively quick processing of plant material and examination of cellular structures by rendering tissues and organs translucent. They have been adapted for plant embryology, primarily to study ovule development, megasporogenesis, megagametogenesis and embryogenesis. Such clearing methods overcome several disadvantages of the conventional embedding-sectioning techniques that are arduous and time-consuming. Although numerous protocols with different clearing solutions have been described, there have been no reports to date proposing a reliable method to clear the crassinucellate ovules of the sugar beet (Beta vulgaris L.), an economically important crop. Therefore, this study aims to find a suitable approach to improve the tissue transparency of sugar beet ovules at different developmental stages. RESULTS We established a methyl salicylate-based protocol that significantly improved the transparency of the B. vulgaris ovule structures, which allowed us to observe the megagameto- and embryogenesis of that species. This was achieved by (1) chemical softening of the tissues; (2) vacuum pump-assisted infiltration step; (3) shaking-assisted incubation with clearing mixtures; and (4) manual removal of the chemically softened seed coat. CONCLUSIONS The effectiveness of our method is due to the strategy combining various approaches at different stages of the procedure aiming at increasing the accessibility of the internal ovule structures to the clearing solution. The results of this study may be applied in sugar beet breeding programs, and it will provide a basis for further investigation of numerous aspects of the species' embryology. Moreover, that unique approach may be easily adapted to other species developing crassinucellate ovules.
Collapse
|
245
|
Guo Y, Gong JT, Mo PW, Huang HJ, Hong XY. Wolbachia localization during Laodelphax striatellus embryogenesis. JOURNAL OF INSECT PHYSIOLOGY 2019; 116:125-133. [PMID: 31128084 DOI: 10.1016/j.jinsphys.2019.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/28/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Wolbachia are intracellular bacteria carried by thousands of arthropod species. The success of Wolbachia is due to efficient vertical transmission by the host maternal germline. Wolbachia's behavior during host oogenesis is well characterized, although their behavior during embryogenesis is unclear. Vertical transmission of Wolbachia wStri in the small brown planthopper, Laodelphax striatellus is extraordinarily efficient. To understand why, we investigated its localization and dynamics in L. striatellus embryos. Microscopic observations indicated that the Wolbachia were mainly localized at the anterior region of the embryo during early embryogenesis. The distribution of Wolbachia within the anterior region was established during oogenesis, and according to a phylogenetic analysis, may be due to intrinsic factors in Wolbachia. We observed that wStri migrated to the posterior part cells during late embryogenesis, in the region where gonads were formed. An expression profile of Wolbachia-infected host embryonic development genes revealed Ddx1 mRNAs, which is required for host viability and in the germ line, accumulated in the posterior region of 3-day-old embryos, while other development genes mRNAs were significantly more abundant in the posterior region of 6-day-old embryos. These genes thus appear to be associated with the localization of Wolbachia wStri in the anterior region, although their functions remain unclear. These results can explain Wolbachia wStri high prevalence in L. striatellus.
Collapse
|
246
|
Cervera J, Pai VP, Levin M, Mafe S. From non-excitable single-cell to multicellular bioelectrical states supported by ion channels and gap junction proteins: Electrical potentials as distributed controllers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:39-53. [PMID: 31255702 DOI: 10.1016/j.pbiomolbio.2019.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022]
Abstract
Endogenous bioelectric patterns within tissues are an important driver of morphogenesis and a tractable component of a number of disease states. Developing system-level understanding of the dynamics by which non-neural bioelectric circuits regulate complex downstream cascades is a key step towards both, an evolutionary understanding of ion channel genes, and novel strategies in regenerative medicine. An important capability gap is deriving rational modulation strategies targeting individual cells' bioelectric states to achieve global (tissue- or organ-level) outcomes. Here, we develop an ion channel-based model that describes multicellular states on the basis of spatio-temporal patterns of electrical potentials in aggregates of non-excitable cells. The model is of biological interest because modern techniques allow to associate bioelectrical signals with specific ion channel proteins in the cell membrane that are central to embryogenesis, regeneration, and tumorigenesis. As a complementary approach to the usual biochemical description, we have studied four biophysical questions: (i) how can single-cell bioelectrical states be established; (ii) how can a change in the cell potential caused by a transient perturbation of the cell state be maintained after the stimulus is gone (bioelectrical memory); (iii) how can a single-cell contribute to the control of multicellular ensembles based on the spatio-temporal pattern of electrical potentials; and (iv) how can oscillatory patterns arise from the single-cell bioelectrical dynamics. Experimentally, endogenous bioelectric gradients have emerged as instructive agents for morphogenetic processes. In this context, the simulations can guide new procedures that may allow a distributed control of the multicellular ensemble.
Collapse
|
247
|
Ishimoto K, Sohonahra S, Kishi-Kaboshi M, Itoh JI, Hibara KI, Sato Y, Watanabe T, Abe K, Miyao A, Nosaka-Takahashi M, Suzuki T, Ta NK, Shimizu-Sato S, Suzuki T, Toyoda A, Takahashi H, Nakazono M, Nagato Y, Hirochika H, Sato Y. Specification of basal region identity after asymmetric zygotic division requires mitogen-activated protein kinase 6 in rice. Development 2019; 146:dev.176305. [PMID: 31118231 DOI: 10.1242/dev.176305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/13/2019] [Indexed: 01/31/2023]
Abstract
Asymmetric cell division is a key step in cellular differentiation in multicellular organisms. In plants, asymmetric zygotic division produces the apical and basal cells. The mitogen-activated protein kinase (MPK) cascade in Arabidopsis acts in asymmetric divisions such as zygotic division and stomatal development, but whether the effect on cellular differentiation of this cascade is direct or indirect following asymmetric division is not clear. Here, we report the analysis of a rice mutant, globular embryo 4 (gle4). In two- and four-cell-stage embryos, asymmetric zygotic division and subsequent cell division patterns were indistinguishable between the wild type and gle4 mutants. However, marker gene expression and transcriptome analyses showed that specification of the basal region was compromised in gle4 We found that GLE4 encodes MPK6 and that GLE4/MPK6 is essential in cellular differentiation rather than in asymmetric zygotic division. Our findings provide a new insight into the role of MPK in plant development. We propose that the regulation of asymmetric zygotic division is separate from the regulation of cellular differentiation that leads to apical-basal polarity.
Collapse
|
248
|
Embryogenesis of flattened colonies implies the innovation required for the evolution of spheroidal colonies in volvocine green algae. BMC Evol Biol 2019; 19:120. [PMID: 31185890 PMCID: PMC6560780 DOI: 10.1186/s12862-019-1452-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022] Open
Abstract
Background Volvocine algae provide a suitable model for investigation of the evolution of multicellular organisms. Within this group, evolution of the body plan from flattened to spheroidal colonies is thought to have occurred independently in two different lineages, Volvocaceae and Astrephomene. Volvocacean species undergo inversion to form a spheroidal cell layer following successive cell divisions during embryogenesis. During inversion, the daughter protoplasts change their shape and develop acute chloroplast ends (opposite to basal bodies). By contrast, Astrephomene does not undergo inversion; rather, its daughter protoplasts rotate during successive cell divisions to form a spheroidal colony. However, the evolutionary pathways of these cellular events involved in the two tactics for formation of spheroidal colony are unclear, since the embryogenesis of extant volvocine genera with ancestral flattened colonies, such as Gonium and Tetrabaena, has not previously been investigated in detail. Results We conducted time-lapse imaging by light microscopy and indirect immunofluorescence microscopy with staining of basal bodies, nuclei, and microtubules to observe embryogenesis in G. pectorale and T. socialis, which form 16-celled or 4-celled flattened colonies, respectively. In G. pectorale, a cup-shaped cell layer of the 16-celled embryo underwent gradual expansion after successive cell divisions, with the apical ends (position of basal bodies) of the square embryo’s peripheral protoplasts separated from each other. In T. socialis, on the other hand, there was no apparent expansion of the daughter protoplasts in 4-celled embryos after successive cell divisions, however the two pairs of diagonally opposed daughter protoplasts shifted slightly and flattened after hatching. Neither of these two species exhibited rotation of daughter protoplasts during successive cell divisions as in Astrephomene or the formation of acute chloroplast ends of daughter protoplasts as in volvocacean inversion. Conclusions The present results indicate that the ancestor of Astrephomene might have newly acquired the rotation of daughter protoplasts after it diverged from the ancestor of Gonium, while the ancestor of Volvocaceae might have newly acquired the formation of acute chloroplast ends to complete inversion after divergence from the ancestor of Goniaceae (Gonium and Astrephomene). Electronic supplementary material The online version of this article (10.1186/s12862-019-1452-x) contains supplementary material, which is available to authorized users.
Collapse
|
249
|
Frohberger SJ, Ajendra J, Surendar J, Stamminger W, Ehrens A, Buerfent BC, Gentil K, Hoerauf A, Hübner MP. Susceptibility to L. sigmodontis infection is highest in animals lacking IL-4R/IL-5 compared to single knockouts of IL-4R, IL-5 or eosinophils. Parasit Vectors 2019; 12:248. [PMID: 31109364 PMCID: PMC6528299 DOI: 10.1186/s13071-019-3502-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Background Mice are susceptible to infections with the rodent filarial nematode Litomosoides sigmodontis and develop immune responses that resemble those of human filarial infections. Thus, the L. sigmodontis model is used to study filarial immunomodulation, protective immune responses against filariae and to screen drug candidates for human filarial diseases. While previous studies showed that type 2 immune responses are protective against L. sigmodontis, the present study directly compared the impact of eosinophils, IL-5, and the IL-4R on the outcome of L. sigmodontis infection. Methods Susceptible wildtype (WT) BALB/c mice, BALB/c mice lacking eosinophils (dblGATA mice), IL-5−/− mice, IL-4R−/− mice and IL-4R−/−/IL-5−/− mice were infected with L. sigmodontis. Analyses were performed during the peak of microfilaremia in WT animals (71 dpi) as well as after IL-4R−/−/IL-5−/− mice showed a decline in microfilaremia (119 dpi) and included adult worm counts, peripheral blood microfilariae levels, cytokine production from thoracic cavity lavage, the site of adult worm residence, and quantification of major immune cell types within the thoracic cavity and spleen. Results Our study reveals that thoracic cavity eosinophil numbers correlated negatively with the adult worm burden, whereas correlations of alternatively activated macrophage (AAM) numbers with the adult worm burden (positive correlation) were likely attributed to the accompanied changes in eosinophil numbers. IL-4R−/−/IL-5−/− mice exhibited an enhanced embryogenesis achieving the highest microfilaremia with all animals becoming microfilariae positive and had an increased adult worm burden combined with a prolonged adult worm survival. Conclusions These data indicate that mice deficient for IL-4R−/−/IL-5−/− have the highest susceptibility for L. sigmodontis infection, which resulted in an earlier onset of microfilaremia, development of microfilaremia in all animals with highest microfilariae loads, and an extended adult worm survival. Electronic supplementary material The online version of this article (10.1186/s13071-019-3502-z) contains supplementary material, which is available to authorized users.
Collapse
|
250
|
Bialistoky T, Manry D, Smith P, Ng C, Kim Y, Zamir S, Moyal V, Kalifa R, Schedl P, Gerlitz O, Deshpande G. Functional analysis of Niemann-Pick disease type C family protein, NPC1a, in Drosophila melanogaster. Development 2019; 146:dev.168427. [PMID: 31092503 DOI: 10.1242/dev.168427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 04/01/2019] [Indexed: 01/20/2023]
Abstract
During embryonic gonad coalescence, primordial germ cells (PGCs) follow a carefully choreographed migratory route circumscribed by guidance signals towards somatic gonadal precursor cells (SGPs). In Drosophila melanogaster, SGP-derived Hedgehog (Hh), which serves as a guidance cue for the PGCs, is potentiated by mesodermally restricted HMGCoA-reductase (Hmgcr) and the ABC transporter Multi-drug-resistant-49 (Mdr49). Given the importance of cholesterol modification in the processing and long-distance transmission of the Hh ligand, we have analyzed the involvement of the Niemann-Pick disease type C-1a (NPC1a) protein, a cholesterol transporter, in germ cell migration and Hedgehog signaling. We show that mesoderm-specific inactivation of Npc1a results in germ cell migration defects. Similar to Mdr49, PGC migration defects in the Npc1a embryos are ameliorated by a cholesterol-rich diet. Consistently, reduction in Npc1a weakens the ability of ectopic HMG Coenzyme A reductase (Hmgcr) to induce germ cell migration defects. Moreover, compromising Npc1a levels influences Hh signaling adversely during wing development, a process that relies upon long-range Hh signaling. Last, doubly heterozygous embryos (Mdr49/Npc1a) display enhanced germ cell migration defects when compared with single mutants (Npc1a/+ or Mdr49/+), supporting cooperative interaction between the two.
Collapse
|