251
|
Chun J, Blaschke AJ. Identification of neural programmed cell death through the detection of DNA fragmentation in situ and by PCR. ACTA ACUST UNITED AC 2008; Chapter 3:Unit 3.8. [PMID: 18428472 DOI: 10.1002/0471142301.ns0308s00] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A universal feature in the development of multicellular organisms is a physiological form of cell death called programmed cell death (PCD). A subset of PCD is apoptosis, which is defined by characteristic morphological changes and genomic DNA fragmentation producing what are referred to as nucleosomal ladders. To understand how PCD operates in a developing tissue or in a tissue following an experimental procedure, dying cells must be identified in relation to their surviving neighbors. One way to accomplish this is to visualize fragmented DNA in situ, in conjunction with gel electrophoresis of isolated DNA to visualize the nucleosomal ladders associated with apoptosis. Two approaches are presented in this unit: in situ end-labeling plus (ISEL+), a technique to identify dying cells in tissue sections or cell cultures of central nervous system (CNS) tissue (optimized for embryonic samples); and the use of ligation-mediated polymerase chain reaction (LMPCR) to identify nucleosomal ladders from intact tissues. Also included are procedures for preparing thymocyte cell cultures for use as controls in the ISEL+ procedure and for isolating genomic DNA for LMPCR.
Collapse
|
252
|
Rader ME, Chun J, Abraido-Lanza A, Komorowski A, Anker JS, Schnabel F. Breast cancer risk perception in a high-risk population. J Clin Oncol 2008. [DOI: 10.1200/jco.2008.26.15_suppl.1542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
253
|
Tölle M, Pawlak A, Schuchardt M, Kawamura A, Tietge UJ, Lorkowski S, Keul P, Assmann G, Chun J, Levkau B, van der Giet M, Nofer JR. HDL-associated lysosphingolipids inhibit NAD(P)H oxidase-dependent monocyte chemoattractant protein-1 production. Arterioscler Thromb Vasc Biol 2008; 28:1542-8. [PMID: 18483405 DOI: 10.1161/atvbaha.107.161042] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE High-density lipoprotein (HDL) levels are inversely proportional to the risk of atherosclerosis, but mechanisms of HDL atheroprotection remain unclear. Monocyte chemoatractant protein-1 (MCP-1) constitutes an early component of inflammatory response in atherosclerosis. Here we investigated the influence of HDL on MCP-1 production in vascular smooth muscle cells (VSMCs) and rat aortic explants. METHODS AND RESULTS HDL inhibited the thrombin-induced production of MCP-1 in a concentration-dependent manner. The HDL-dependent inhibition of MCP-1 production was accompanied by the suppression of reactive oxygen species (ROS), which regulate the MCP-1 production in VSMCs. HDL inhibited NAD(P)H oxidase, the preponderant source of ROS in the vasculature, and prevented the activation of Rac1, which precedes NAD(P)H-oxidase activation. The HDL capacity to inhibit MCP-1 production, ROS generation, and NAD(P)H-oxidase activation was emulated by sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC), two lysosphingolipids present in HDL, but not by apolipoprotein A-I. HDL-, S1P-, and SPC-induced inhibition of MCP-1 production was attenuated in VSMCs pretreated with VPC23019, an antagonist of lysosphingolipid receptors S1P(1) and S1P(3), but not by JTE013, an antagonist of S1P(2). In addition, HDL, S1P, and SPC failed to inhibit MCP1 production and ROS generation in aortas from S1P(3)- and SR-B1-deficient mice. CONCLUSIONS HDL-associated lysosphingolipids inhibit NAD(P)H oxidase-dependent ROS generation and MCP-1 production in a process that requires coordinate signaling through S1P(3) and SR-B1 receptors.
Collapse
|
254
|
Ye X, Chun J. Lysophosphatidic Acid Receptor-Specific Functions in Uterine Receptivity and Spermatogenesis. Biol Reprod 2008. [DOI: 10.1093/biolreprod/78.s1.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
255
|
Ye X, Skinner MK, Kennedy G, Chun J. Age-dependent loss of sperm production in mice via impaired lysophosphatidic acid signaling. Biol Reprod 2008; 79:328-36. [PMID: 18448840 DOI: 10.1095/biolreprod.108.068783] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Approximately half of all infertility cases can be attributed to male reproductive dysfunction for which low sperm count is a major contributing factor. The current study identified receptor-mediated lysophosphatidic acid (LPA) signaling as a new molecular component influencing male fertility. LPA is a small signaling phospholipid, the effects of which are mediated through at least five G protein-coupled receptors, named LPA 1-5. LPA1/2/3, but not LPA4/5, show high expression in mouse testis. Mice deficient in LPA1/2/3 showed a testosterone-independent reduction of mating activity and sperm production, with an increased prevalence of azoospermia in aging animals. A significant increase of germ cell apoptosis also was observed in testes. Germ cell apoptosis led to a reduction in germ cell proliferation. These data demonstrate a novel in vivo function for LPA signaling as a germ cell survival factor during spermatogenesis.
Collapse
|
256
|
Westra JW, Peterson SE, Yung YC, Mutoh T, Barral S, Chun J. Aneuploid mosaicism in the developing and adult cerebellar cortex. J Comp Neurol 2008; 507:1944-51. [PMID: 18273885 DOI: 10.1002/cne.21648] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuroprogenitor cells (NPCs) in several telencephalic proliferative regions of the mammalian brain, including the embryonic cerebral cortex and postnatal subventricular zone (SVZ), display cell division "defects" in normal cells that result in aneuploid adult progeny. Here, we identify the developing cerebellum as a major, nontelencephalic proliferative region of the vertebrate central nervous system (CNS) that also produces aneuploid NPCs and nonmitotic cells. Mitotic NPCs assessed by metaphase chromosome analyses revealed that 15.3% and 20.8% of cerebellar NPCs are aneuploid at P0 and P7, respectively. By using immunofluorescent analysis of cerebellar NPCs, we show that chromosome segregation defects contribute to the generation of cells with an aneuploid genomic complement. Nonmitotic cells were assessed by fluorescence-activated cell sorting (FACS) coupled with fluorescence in situ hybridization (FISH), which revealed neuronal and nonneuronal aneuploid populations in both the adult mouse and human cerebellum. Taken together, these results demonstrate that the prevalence of neural aneuploidy includes nontelencephalic portions of the neuraxis and suggest that the generation and maintenance of aneuploid cells is a widespread, if not universal, property of central nervous system development and organization.
Collapse
|
257
|
Spohr TCS, de Sampaio E Spohr TC, Choi JW, Gardell SE, Herr DR, Rehen SK, Gomes FCA, Chun J. Lysophosphatidic acid receptor-dependent secondary effects via astrocytes promote neuronal differentiation. J Biol Chem 2008; 283:7470-9. [PMID: 18198181 PMCID: PMC2276323 DOI: 10.1074/jbc.m707758200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 12/20/2007] [Indexed: 12/11/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a simple phospholipid derived from cell membranes that has extracellular signaling properties mediated by at least five G protein-coupled receptors referred to as LPA(1)-LPA(5). In the nervous system, receptor-mediated LPA signaling has been demonstrated to influence a range of cellular processes; however, an unaddressed aspect of LPA signaling is its potential to produce specific secondary effects, whereby LPA receptor-expressing cells exposed to, or "primed," by LPA may then act on other cells via distinct, yet LPA-initiated, mechanisms. In the present study, we examined cerebral cortical astrocytes as possible indirect mediators of the effects of LPA on developing cortical neurons. Cultured astrocytes express at least four LPA receptor subtypes, known as LPA(1)-LPA(4). Cerebral cortical astrocytes primed by LPA exposure were found to increase neuronal differentiation of cortical progenitor cells. Treatment of unprimed astrocyte-progenitor cocultures with conditioned medium derived from LPA-primed astrocytes yielded similar results, suggesting the involvement of an astrocyte-derived soluble factor induced by LPA. At least two LPA receptor subtypes are involved in LPA priming, since the priming effect was lost in astrocytes derived from LPA receptor double-null mice (LPA(1)((-/-))/LPA(2)((-/-))). Moreover, the loss of LPA-dependent differentiation in receptor double-null astrocytes could be rescued by retrovirally transduced expression of a single deleted receptor. These data demonstrate that receptor-mediated LPA signaling in astrocytes can induce LPA-dependent, indirect effects on neuronal differentiation.
Collapse
|
258
|
Means C, Miyamoto S, Chun J, Brown JH. S1P receptor localization confers selectivity for G
i
mediated signaling pathways. FASEB J 2008. [DOI: 10.1096/fasebj.22.1_supplement.727.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
259
|
Niessen F, Schaffner F, Furlan-Freguia C, Pawlinski R, Bhattacharjee G, Chun J, Derian CK, Andrade-Gordon P, Rosen H, Ruf W. Dendritic cell PAR1-S1P3 signalling couples coagulation and inflammation. Nature 2008; 452:654-8. [PMID: 18305483 DOI: 10.1038/nature06663] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 01/04/2008] [Indexed: 01/19/2023]
Abstract
Defining critical points of modulation across heterogeneous clinical syndromes may provide insight into new therapeutic approaches. Coagulation initiated by the cytokine-receptor family member known as tissue factor is a hallmark of systemic inflammatory response syndromes in bacterial sepsis and viral haemorrhagic fevers, and anticoagulants can be effective in severe sepsis with disseminated intravascular coagulation. The precise mechanism coupling coagulation and inflammation remains unresolved. Here we show that protease-activated receptor 1 (PAR1) signalling sustains a lethal inflammatory response that can be interrupted by inhibition of either thrombin or PAR1 signalling. The sphingosine 1-phosphate (S1P) axis is a downstream component of PAR1 signalling, and by combining chemical and genetic probes for S1P receptor 3 (S1P3) we show a critical role for dendritic cell PAR1-S1P3 cross-talk in regulating amplification of inflammation in sepsis syndrome. Conversely, dendritic cells sustain escalated systemic coagulation and are the primary hub at which coagulation and inflammation intersect within the lymphatic compartment. Loss of dendritic cell PAR1-S1P3 signalling sequesters dendritic cells and inflammation into draining lymph nodes, and attenuates dissemination of interleukin-1beta to the lungs. Thus, activation of dendritic cells by coagulation in the lymphatics emerges as a previously unknown mechanism that promotes systemic inflammation and lethality in decompensated innate immune responses.
Collapse
|
260
|
Means CK, Miyamoto S, Chun J, Brown JH. S1P1 receptor localization confers selectivity for Gi-mediated cAMP and contractile responses. J Biol Chem 2008; 283:11954-63. [PMID: 18296752 DOI: 10.1074/jbc.m707422200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adult mouse ventricular myocytes express S1P(1), S1P(2), and S1P(3) receptors. S1P activates Akt and ERK in adult mouse ventricular myocytes through a pertussis toxin-sensitive (G(i/o)-mediated) pathway. Akt and ERK activation by S1P are reduced approximately 30% in S1P(3) and 60% in S1P(2) receptor knock-out myocytes. With combined S1P(2,3) receptor deletion, activation of Akt is abolished and ERK activation is reduced by nearly 90%. Thus the S1P(1) receptor, while present in S1P(2,3) receptor knock-out myocytes, is unable to mediate Akt or ERK activation. In contrast, S1P induces pertussis toxin-sensitive inhibition of isoproterenol-stimulated cAMP accumulation in both WT and S1P(2,3) receptor knock-out myocytes demonstrating that the S1P(1) receptor can functionally couple to G(i). An S1P(1) receptor selective agonist, SEW2871, also decreased cAMP accumulation but failed to activate ERK or Akt. To determine whether localization of the S1P(1) receptor mediates this signaling specificity, methyl-beta-cyclodextrin (MbetaCD) treatment was used to disrupt caveolae. The S1P(1) receptor was concentrated in caveolar fractions, and associated with caveolin-3 and this localization was disrupted by MbetaCD. S1P-mediated activation of ERK or Akt was not diminished but inhibition of cAMP accumulation by S1P and SEW2871 was abolished by MbetaCD treatment. S1P inhibits the positive inotropic response to isoproterenol and this response is also mediated through the S1P(1) receptor and lost following caveolar disruption. Thus localization of S1P(1) receptors to caveolae is required for the ability of this receptor to inhibit adenylyl cyclase and contractility but compromises receptor coupling to Akt and ERK.
Collapse
|
261
|
Inoue M, Ma L, Aoki J, Chun J, Ueda H. Autotaxin, a synthetic enzyme of lysophosphatidic acid (LPA), mediates the induction of nerve-injured neuropathic pain. Mol Pain 2008; 4:6. [PMID: 18261210 PMCID: PMC2277392 DOI: 10.1186/1744-8069-4-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Accepted: 02/08/2008] [Indexed: 11/30/2022] Open
Abstract
Recently, we reported that lysophosphatidic acid (LPA) induces long-lasting mechanical allodynia and thermal hyperalgesia as well as demyelination and upregulation of pain-related proteins through one of its cognate receptors, LPA1. In addition, mice lacking the LPA1 receptor gene (lpa1-/- mice) lost these nerve injury-induced neuropathic pain behaviors and phenomena. However, since lpa1-/- mice did not exhibit any effects on the basal nociceptive threshold, it is possible that nerve injury-induced neuropathic pain and its machineries are initiated by LPA via defined biosynthetic pathways that involve multiple enzymes. Here, we attempted to clarify the involvement of a single synthetic enzyme of LPA known as autotaxin (ATX) in nerve injury-induced neuropathic pain. Wild-type mice with partial sciatic nerve injury showed robust mechanical allodynia starting from day 3 after the nerve injury and persisting for at least 14 days, along with thermal hyperalgesia. On the other hand, heterozygous mutant mice for the autotaxin gene (atx+/-), which have 50% ATX protein and 50% lysophospholipase D activity compared with wild-type mice, showed approximately 50% recovery of nerve injury-induced neuropathic pain. In addition, hypersensitization of myelinated Aβ˜- or Aδ-fiber function following nerve injury was observed in electrical stimuli-induced paw withdrawal tests using a Neurometer®. The hyperalgesia was completely abolished in lpa1-/- mice, and reduced by 50% in atx+/- mice. Taken together, these findings suggest that LPA biosynthesis through ATX is the source of LPA for LPA1 receptor-mediated neuropathic pain. Therefore, targeted inhibition of ATX-mediated LPA biosynthesis as well as LPA1 receptor and its downstream pathways may represent a novel way to prevent nerve injury-induced neuropathic pain.
Collapse
|
262
|
|
263
|
Inoue M, Xie W, Matsushita Y, Chun J, Aoki J, Ueda H. Lysophosphatidylcholine induces neuropathic pain through an action of autotaxin to generate lysophosphatidic acid. Neuroscience 2008; 152:296-8. [PMID: 18280050 DOI: 10.1016/j.neuroscience.2007.12.041] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 12/24/2007] [Accepted: 12/27/2007] [Indexed: 10/22/2022]
Abstract
Lysophosphatidic acid receptor (LPA(1)) signaling initiates neuropathic pain and several pathological events in a partial sciatic nerve injury model. Recently, we reported that lysophosphatidic acid (LPA) induces neuropathic pain as well as demyelination and pain-related protein expression changes via LPA(1) receptor signaling. Lysophosphatidylcholine (LPC), also known as lysolecithin, which is hydrolyzed by autotaxin/ATX into LPA, induces similar plastic changes. Here, we attempted to clarify whether ATX and LPA(1) receptor signaling is involved in the LPC-induced neuropathic pain. In wild-type mice, a single intrathecal (i.t.) injection of LPC induced mechanical allodynia and thermal hyperalgesia 2 days after injection; this persisted for 7 days at least. On the other hand, LPC-induced mechanical allodynia and thermal hyperalgesia were completely abolished in mice lacking an LPA(1) receptor gene. Furthermore, the LPC-induced response was also significantly, but partially reduced in heterozygous mutant mice for the ATX gene. These findings suggest that intrathecally-injected LPC is converted to LPA by ATX, and this LPA activates the LPA(1) receptor to initiate neuropathic pain.
Collapse
|
264
|
Kim JH, Kim KY, Hahm YT, Kim BS, Chun J, Cha CJ. Actibacter sediminis gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from tidal flat sediment. Int J Syst Evol Microbiol 2008; 58:139-43. [DOI: 10.1099/ijs.0.65346-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
265
|
Abstract
Neural stem and progenitor cells (referred to here as NSCs), located in the proliferative zones of embryonic brains, can be seen undergoing mitosis at the ventricular surface. Mitotic NSCs can be arrested in metaphase and chromosome "spreads" produced to reveal their chromosomal complement. Studies in mice and humans have revealed a prominent developmental presence of aneuploid NSCs, whereas other chromosomal defects, such as interchromosomal translocations and partial chromosomal deletions/insertions, are extremely rare (1,2). Aneuploidy is defined as the loss or gain of whole chromosomes, resulting in cells that deviate from the normal diploid number of chromosomes (46 in humans, 40 in mice). In NSCs, aneuploidy can occur as a result of mis-segregation during mitosis, through events such as lagging chromosomes, supernumerary centrosomes, and nondisjunction events (3). The percentage of aneuploid NSCs can be altered by in vivo and in vitro growth conditions as well as through genetic deletion of genes involved in DNA surveillance and repair (1,4). Aneuploidy can be detected by classical cytogenetic methods such as counting the number of chromosomes visualized by DNA dyes (e.g., 4,6-diamidino-2-phenylindole) by using standard light or fluorescence microscopy. Precise chromosome identification is much more difficult: classical methods using banding patterns or size to assign identity are very time consuming even under ideal conditions, and they are notoriously difficult in mice, which often have ambiguous banding patterns and acrocentric chromosomes. A comparatively new technique that allows the unambiguous identification of chromosomes in mice and humans is "spectral karyotyping" or SKY, developed by Ried et al. at the National Institutes of Health for the study of cancer cells (5). This technique uses chromosomal "paints" that are hybridized to chromosome spreads to produce a distinct spectral output for each chromosome. SKY offers superior speed and sensitivity in its ability to detect many types of chromosomal defects, including deletions, insertions, translocations, and aneuploidy.
Collapse
|
266
|
Salomone S, Potts EM, Tyndall S, Ip PC, Chun J, Brinkmann V, Waeber C. Analysis of sphingosine 1-phosphate receptors involved in constriction of isolated cerebral arteries with receptor null mice and pharmacological tools. Br J Pharmacol 2007; 153:140-7. [PMID: 18026125 DOI: 10.1038/sj.bjp.0707581] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND PURPOSE Sphingosine 1-phosphate (S1P) selectively and potently constricts isolated cerebral arteries, but this response has not been pharmacologically characterized. EXPERIMENTAL APPROACH The receptor subtype(s) involved in S1P-induced cerebrovascular constriction were characterized using genetic (S1P(2) and S1P(3) receptor null mice) and pharmacological tools (phospho-FTY720, a S1P(1/3/4/5) receptor agonist; SEW2871, a S1P(1) receptor agonist, JTE-013, a S1P(2) receptor antagonist, VPC23019, a S1P(1/3) receptor antagonist). Isolated basilar or peripheral (femoral, mesenteric resistance) arteries, from either rat or mouse, were studied in a wire myograph. KEY RESULTS S1P concentration-dependently constricted basilar artery in rat, wild-type (WT) and S1P(2) null mice, but barely affected vascular tone in S1P(3) null mice. Vasoconstriction to U46619 (a thromboxane analogue) or to endothelin-1 did not differ between WT, S1P(2) and S1P(3) null mice. JTE-013 inhibited not only S1P-induced vasoconstriction, but also KCl-, U46619- and endothelin-1-induced constriction. This effect was observed in WT as well as in S1P(2) null mice. VPC23019 increased the concentration-dependent vasoconstriction to S1P in both rat and mouse basilar arteries with intact endothelium, but not in rat basilar artery without endothelium. Phospho-FTY720 concentration-dependently constricted rat basilar arteries, but not femoral or mesenteric resistance arteries, while SEW2871 did not induce any response in the same arteries. CONCLUSIONS AND IMPLICATIONS S1P constricts cerebral arteries through S1P(3) receptors. The purported S1P(2) receptor antagonist JTE-013 does not appear to be selective, at least in rodents. Enhancement of S1P-induced contraction by VPC23019 might be related to blockade of S1P(1) receptors and NO generation.
Collapse
|
267
|
Pradère JP, Klein J, Grès S, Guigné C, Neau E, Valet P, Calise D, Chun J, Bascands JL, Saulnier-Blache JS, Schanstra JP. LPA1 receptor activation promotes renal interstitial fibrosis. J Am Soc Nephrol 2007; 18:3110-8. [PMID: 18003779 DOI: 10.1681/asn.2007020196] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tubulointerstitial fibrosis in chronic renal disease is strongly associated with progressive loss of renal function. We studied the potential involvement of lysophosphatidic acid (LPA), a growth factor-like phospholipid, and its receptors LPA(1-4) in the development of tubulointerstitial fibrosis (TIF). Renal fibrosis was induced in mice by unilateral ureteral obstruction (UUO) for up to 8 d, and kidney explants were prepared from the distal poles to measure LPA release into conditioned media. After obstruction, the extracellular release of LPA increased approximately 3-fold. Real-time reverse transcription PCR (RT-PCR) analysis demonstrated significant upregulation in the expression of the LPA(1) receptor subtype, downregulation of LPA3, and no change of LPA2 or LPA4. TIF was significantly attenuated in LPA1 (-/-) mice compared to wild-type littermates, as measured by expression of collagen III, alpha-smooth muscle actin (alpha-SMA), and F4/80. Furthermore, treatment of wild-type mice with the LPA1 antagonist Ki16425 similarly reduced fibrosis and significantly attenuated renal expression of the profibrotic cytokines connective tissue growth factor (CTGF) and transforming growth factor beta (TGFbeta). In vitro, LPA induced a rapid, dose-dependent increase in CTGF expression that was inhibited by Ki16425. In conclusion, LPA, likely acting through LPA1, is involved in obstruction-induced TIF. Therefore, the LPA1 receptor might be a pharmaceutical target to treat renal fibrosis.
Collapse
|
268
|
Rivera R, Chun J. Potential therapeutic roles of lysophospholipid signaling in autoimmune-related disease. ACTA ACUST UNITED AC 2007. [DOI: 10.2217/17460875.2.5.535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
269
|
Hama K, Aoki J, Inoue A, Endo T, Amano T, Motoki R, Kanai M, Ye X, Chun J, Matsuki N, Suzuki H, Shibasaki M, Arai H. Embryo spacing and implantation timing are differentially regulated by LPA3-mediated lysophosphatidic acid signaling in mice. Biol Reprod 2007; 77:954-9. [PMID: 17823089 DOI: 10.1095/biolreprod.107.060293] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In polytocous animals, blastocysts are evenly distributed along each uterine horn and implant. The molecular mechanisms underlying these precise events remain elusive. We recently showed that lysophosphatidic acid (LPA) has critical roles in the establishment of early pregnancy by affecting embryo spacing and subsequent implantation through its receptor, LPA3. Targeted deletion of Lpa3 in mice resulted in delayed implantation and embryo crowding, which is associated with a dramatic decrease in the prostaglandins and prostaglandin-endoperoxide synthase 2 expression levels. Exogenous administration of prostaglandins rescued the delayed implantation but did not rescue the defects in embryo spacing, suggesting the role of prostaglandins in implantation downstream of LPA3 signaling. In the present study, to know how LPA3 signaling regulates the embryo spacing, we determined the time course distribution of blastocysts during the preimplantation period. In wild-type (WT) uteri, blastocysts were distributed evenly along the uterine horns at Embryonic Day 3.8 (E3.8), whereas in the Lpa3-deficient uteri, they were clustered in the vicinity of the cervix, suggesting that the mislocalization and resulting crowding of the embryos are the cause of the delayed implantation. However, embryos transferred singly into E2.5 pseudopregnant Lpa3-deficient uterine horns still showed delayed implantation but on-time implantation in WT uteri, indicating that embryo spacing and implantation timing are two segregated events. We also found that an LPA3-specific agonist induced rapid uterine contraction in WT mice but not in Lpa3-deficient mice. Because the uterine contraction is critical for embryo spacing, our results suggest that LPA3 signaling controls embryo spacing via uterine contraction around E3.5.
Collapse
|
270
|
Chan LC, Peters W, Xu Y, Chun J, Farese RV, Cases S. LPA3 receptor mediates chemotaxis of immature murine dendritic cells to unsaturated lysophosphatidic acid (LPA). J Leukoc Biol 2007; 82:1193-200. [PMID: 17709403 DOI: 10.1189/jlb.0407221] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence supports roles for lipids in the biology of immune cells. In particular, bioactive lipids such as sphingosine-1-phosphate (S1P) bind to cognate G protein-coupled receptors (GPCRs) and modulate leukocyte trafficking and homeostasis. Lysophosphatidic acid (LPA) represents a family of bioactive lipids, which differ in the length and degree of saturation of the fatty acyl chain. LPA is structurally related to S1P and exerts cellular effects by binding to five known GPCRs (LPA(1-5)). Its function in the immune system is less clear, although it was shown to induce chemotaxis of human dendritic cells (DCs) and activated T cells. In this study, we show that LPA can induce chemotaxis of immature but not mature mouse DCs and that only unsaturated and not saturated LPA species are efficient chemoattractants. However, both LPA species do not alter DC maturation or chemotaxis to other chemokines. The loss of DC migration capability correlated with the down-regulation of expression of the receptors LPA(3) and LPA(5), and expression of LPA(1), LPA(2), and LPA(4) did not change. A LPA(3) antagonist reduced immature DC migration to LPA by 70%, suggesting that LPA(3) mediates immature DC chemotaxis to unsaturated species of LPA. Furthermore, isolated, immature DCs from mice lacking LPA(3) exhibited a 50% reduction in migration to LPA. In summary, our results indicate that immature mouse DCs migrate preferentially in response to unsaturated LPA and that LPA(3) is important in this response.
Collapse
|
271
|
Estivill-Torrús G, Llebrez-Zayas P, Matas-Rico E, Santín L, Pedraza C, De Diego I, Del Arco I, Fernández-Llebrez P, Chun J, De Fonseca FR. Absence of LPA1 signaling results in defective cortical development. ACTA ACUST UNITED AC 2007; 18:938-50. [PMID: 17656621 DOI: 10.1093/cercor/bhm132] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lysophosphatidic acid (LPA) is a simple phospholipid with extracellular signaling properties mediated by specific G protein-coupled receptors. At least 2 LPA receptors, LPA(1) and LPA(2), are expressed in the developing brain, the former enriched in the neurogenic ventricular zone (VZ), suggesting a normal role in neurogenesis. Despite numerous studies reporting the effects of exogenous LPA using in vitro neural models, the first LPA(1) loss-of-function mutants reported did not show gross cerebral cortical defects in the 50% that survived perinatal demise. Here, we report a role for LPA(1) in cortical neural precursors resulting from analysis of a variant of a previously characterized LPA(1)-null mutant that arose spontaneously during colony expansion. These LPA(1)-null mice, termed maLPA(1), exhibit almost complete perinatal viability and show a reduced VZ, altered neuronal markers, and increased cortical cell death that results in a loss of cortical layer cellularity in adults. These data support LPA(1) function in normal cortical development and suggest that the presence of genetic modifiers of LPA(1) influences cerebral cortical development.
Collapse
|
272
|
Shano S, Moriyama R, Chun J, Fukushima N. Lysophosphatidic acid stimulates astrocyte proliferation through LPA1. Neurochem Int 2007; 52:216-20. [PMID: 17692995 PMCID: PMC3265988 DOI: 10.1016/j.neuint.2007.07.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 07/03/2007] [Accepted: 07/03/2007] [Indexed: 11/29/2022]
Abstract
Lysophosphatidic acid (LPA) is an extracellular lipid mediator that regulates nervous system development and functions through multiple types of LPA receptors. Here we explore the role of LPA receptor subtypes in cortical astrocyte functions. Astrocytes cultured under serum-free conditions were found to express the genes of five LPA receptor subtypes, lpa1 to lpa5. When astrocytes were treated with dibutyryl cyclic adenosine monophosphate, a reagent inducing astrocyte differentiation or activation, lpa1 expression levels remained unchanged, but those of other LPA receptor subtypes were relatively reduced. LPA stimulated DNA synthesis in both undifferentiated and differentiated astrocytes, but failed to do so in astrocytes prepared from mice lacking lpa1 gene. LPA also inhibited [3H]-glutamate uptake in both undifferentiated and differentiated astrocytes; and LPA-induced inhibition of glutamate uptake was still observed in lpa1-deficient astrocytes. Taken together, these observations demonstrate that LPA1 mediates LPA-induced stimulation of cell proliferation but not inhibition of glutamate uptake in astrocytes.
Collapse
|
273
|
|
274
|
Herr DR, Chun J. Effects of LPA and S1P on the nervous system and implications for their involvement in disease. Curr Drug Targets 2007; 8:155-67. [PMID: 17266539 DOI: 10.2174/138945007779315669] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are two well-studied lysophospholipids that are known to be important regulators of cellular events. Their actions are mediated by activating a family of G-protein coupled receptors present in many cell types and tissues. These receptors have diverse biological roles owing to the heterogeneity of their signal transduction pathways. Many of these receptors are expressed in subsets of cells in the developing and mature mammalian nervous system and are thought to have important functions in its formation and maintenance. They are also widely expressed within other organ systems such as the immune system. Growing interest in the field has stimulated the development of a number of molecules that act as agonists or antagonists to LPA and S1P receptors. These molecules may lead to the development of new therapeutic compounds. Indeed, one such compound (FTY720) is currently in clinical trials for use in preventing transplant rejection and treating multiple sclerosis. The purpose of this manuscript is to: 1) review effects elicited by LPA and S1P on cells and tissues with a particular emphasis on the nervous system, 2) examine possible roles of these lipids in the development of disease, and 3) summarize the existing literature describing their agonists/antagonists.
Collapse
|
275
|
Herr DR, Grillet N, Schwander M, Rivera R, Müller U, Chun J. Sphingosine 1-phosphate (S1P) signaling is required for maintenance of hair cells mainly via activation of S1P2. J Neurosci 2007; 27:1474-8. [PMID: 17287522 PMCID: PMC6673597 DOI: 10.1523/jneurosci.4245-06.2007] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hearing requires the transduction of vibrational forces by specialized epithelial cells in the cochlea known as hair cells. The human ear contains a finite number of terminally differentiated hair cells that, once lost by noise-induced damage or toxic insult, can never be regenerated. We report here that sphingosine 1-phosphate (S1P) signaling, mainly via activation of its cognate receptor S1P2, is required for the maintenance of vestibular and cochlear hair cells in vivo. Two S1P receptors, S1P2 and S1P3, were found to be expressed in the cochlea by reverse transcription-PCR and in situ hybridization. Mice that are null for both these receptors uniformly display progressive cochlear and vestibular defects with hair cell loss, resulting in complete deafness by 4 weeks of age and, with complete penetrance, balance defects of increasing severity. This study reveals the previously unknown role of S1P signaling in the maintenance of cochlear and vestibular integrity and suggests a means for therapeutic intervention in degenerative hearing loss.
Collapse
MESH Headings
- Acoustic Stimulation
- Aging/pathology
- Animals
- Cell Survival
- Cochlea/growth & development
- Cochlea/metabolism
- Cochlea/pathology
- Cochlea/physiopathology
- Deafness/genetics
- Deafness/pathology
- Exploratory Behavior
- Hair Cells, Auditory/cytology
- Hair Cells, Auditory/physiology
- Hair Cells, Vestibular/cytology
- Hair Cells, Vestibular/physiology
- Hearing/physiology
- In Situ Hybridization
- Lysophospholipids
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Degeneration/metabolism
- Nerve Degeneration/pathology
- Organ of Corti/metabolism
- Organ of Corti/pathology
- Postural Balance/physiology
- Receptors, Lysosphingolipid/biosynthesis
- Receptors, Lysosphingolipid/deficiency
- Receptors, Lysosphingolipid/genetics
- Receptors, Lysosphingolipid/physiology
- Reflex, Startle
- Reverse Transcriptase Polymerase Chain Reaction
- Sensation Disorders/genetics
- Sensation Disorders/pathology
- Sphingosine/analogs & derivatives
- Sphingosine-1-Phosphate Receptors
- Spiral Ganglion/metabolism
- Spiral Ganglion/pathology
- Vestibule, Labyrinth/metabolism
- Vestibule, Labyrinth/pathology
- Vestibule, Labyrinth/physiopathology
Collapse
|