251
|
Rehen SK, Neves DD, Fragel-Madeira L, Britto LR, Linden R. Selective sensitivity of early postmitotic retinal cells to apoptosis induced by inhibition of protein synthesis. Eur J Neurosci 1999; 11:4349-56. [PMID: 10594661 DOI: 10.1046/j.1460-9568.1999.00868.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In previous work we showed that apoptosis in retinal tissue from developing rats can be induced by inhibition of protein synthesis (Rehen et al. 1996, Development, 122, 1439-1448). Here we show that recent postmitotic cells are the cells sensitive to apoptosis triggered by blockade of protein synthesis. To label all proliferating cells in the retina, a series of injections of the nucleotide analogue, bromo-deoxy-uridine (BrdU, 60 mg/kg b.w.), was given in rat pups. Then, explants of the retina were incubated in vitro with the inhibitor of protein synthesis anisomycin (1.0-3.2 microg/mL) for 1 day to induce apoptosis. Detection of apoptotic bodies under differential interference contrast microscopy was combined with immunocytochemistry for BrdU, proliferating cell nuclear antigen (PCNA) or for various markers of retinal cell differentiation. Despite the large number of BrdU- and PCNA-labelled cells in the tissue, the vast majority of the cells that underwent apoptosis were postmitotic cells which have left the mitotic cycle 3-4 days before. However, these cells were not labelled with antibodies to calretinin, calbindin, rhodopsin or to a Muller glial cell marker, suggesting that these are early postmitotic neurons. We suggest that during migration and initial differentiation, the apoptotic machinery is blocked by suppressor proteins, thus allowing recent postmitotic cells to find their final positions and differentiate while protected from apoptosis.
Collapse
|
252
|
Borges HL, Linden R. Gamma irradiation leads to two waves of apoptosis in distinct cell populations of the retina of newborn rats. J Cell Sci 1999; 112 ( Pt 23):4315-24. [PMID: 10564649 DOI: 10.1242/jcs.112.23.4315] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gamma radiation induces apoptosis in the proliferative zone (neuroblastic layer) of the developing rat retina. We asked whether sensitivity to apoptosis might be related to distinct phases of the cell cycle. Explants of newborn rat retina or newborn pups were gamma-irradiated and apoptosis was detected by chromatin condensation, DNA fragmentation in situ and DNA electrophoresis. After 6 hours, early appearing apoptotic bodies were located mainly towards the outer tier of the neuroblastic layer. In contrast, after 24 hours, late-appearing apoptotic cells were located towards the inner margin of the neuroblastic layer, a region associated with the S phase of the cell cycle. Labeling of a cohort of cells with the nucleotide analog bromo-deoxyuridine (BrdU) at the time of irradiation, showed that these cells die in the late wave of apoptosis. BrdU given 3 hours before fixation labeled a large number of late apoptotic cells, but no early apoptotic cells. After labeling of all cycling cells with BrdU, 40% of the early apoptotic profiles were unlabeled, and thus post-mitotic. The same schedules of cell death were identified after gamma irradiation in vivo. The results show that irradiation leads to two waves of apoptosis in distinct cell populations. An early wave comprises both post-mitotic cells and proliferating cells out of the S phase. The late wave comprises cells in S phase, which pass through this phase again to die. The antioxidant pyrrolidinedithiocarbamate prevented the early but not the late wave of apoptosis following irradiation, and blocked lipid peroxidation at 6 hours after the insult, suggesting that the two waves of apoptosis are indeed mediated by distinct mechanisms.
Collapse
|
253
|
Bosco A, Linden R. BDNF and NT-4 differentially modulate neurite outgrowth in developing retinal ganglion cells. J Neurosci Res 1999; 57:759-69. [PMID: 10467247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
We show here that neurite outgrowth of ganglion cells (RGCs) was selectively enhanced following treatment with BDNF or NT-4 in short-term cultures of dissociated cells derived from the neuroretina of postnatal rats. NT-4 was more effective than BDNF. The effect of NT-3 was variable, whereas NGF and CNTF had no effects upon neurite elongation. The neuritogenic responses of RGCs to both BDNF and NT-4 were prevented by competition with soluble TrkB receptor, and abolished by K252a, a selective inhibitor of the tyrosine kinase activity of Trks. These results indicate that the differentiating effects of BDNF and NT-4 are mediated by TrkB receptors, naturally expressed by RGCs. Developing RGCs treated with these TrkB ligands displayed distinct, albeit partially overlapping, patterns of neurite morphology. BDNF supported predominantly polarized outgrowth, whereas NT-4 induced the appearance of intensely branched symmetrical arbors. The lack of RGCs showing combined morphologies (e.g., highly arborized unipolar cells) suggests distinct mechanisms underlying either elongation or branching, and implicates distinct responses of RGC subsets. We conclude that neurite growth in vitro is extensively promoted by neurotrophins in developing RGCs. Moreover, highly homologous neurotrophins such as BDNF and NT-4, presumably activating via TrkB receptors, selectively control the differentiation of distinct ganglion cell neuritic morphologies.
Collapse
|
254
|
|
255
|
Varella MH, de Mello FG, Linden R. Evidence for an antiapoptotic role of dopamine in developing retinal tissue. J Neurochem 1999; 73:485-92. [PMID: 10428043 DOI: 10.1046/j.1471-4159.1999.0730485.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inhibition of protein synthesis leads to apoptosis in the undifferentiated neuroblastic layer of the retina of newborn rats. We have shown previously that an increase in the intracellular concentration of cyclic AMP prevented apoptosis induced in the retinal neuroblastic layer by inhibition of protein synthesis. In this study, we tested the effects of dopamine on retinal apoptosis and related these effects to the intracellular concentration of cyclic AMP. Both dopamine (100 microM) and the D1-like agonists SKF-38393, 6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (6-Cl-PB), and (+/-)-2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene (100 microM) blocked apoptosis induced in the neuroblastic layer by the protein synthesis inhibitor anisomycin. The antiapoptotic effects of the D1-like agonists were not reversed by the D1-like antagonist SCH-23390 (5-100 microM). Both dopamine and D1-like agonists induced a five- to sevenfold increase in the intracellular concentration of cyclic AMP in the retina of newborn rats. The concentration of cyclic AMP induced by the D1-like agonists in the presence of 100 microM SCH-23390 was still at least two- to threefold as high as control values, showing that the activation of adenylyl cyclase by D1-like agonists was reversed only partially by the specific antagonist. The isoquinolinesulfonamide H-89 (20 microM), an inhibitor of cyclic AMP-dependent protein kinase, partially prevented the antiapoptotic effect of 6-Cl-PB. The data show that an early effect of dopamine in the developing retina is the control of programmed cell death. The antiapoptotic effect of dopamine is mediated, at least in part, through an atypical D1-like receptor coupled to stimulation of adenylyl cyclase, followed by activation of cyclic AMP-dependent protein kinase.
Collapse
|
256
|
Linden R, Chiarini LB. Nuclear exclusion of transcription factors associated with apoptosis in developing nervous tissue. Braz J Med Biol Res 1999; 32:813-20. [PMID: 10454738 DOI: 10.1590/s0100-879x1999000700003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Programmed cell death in the form of apoptosis involves a network of metabolic events and may be triggered by a variety of stimuli in distinct cells. The nervous system contains several neuron and glial cell types, and developmental events are strongly dependent on selective cell interactions. Retinal explants have been used as a model to investigate apoptosis in nervous tissue. This preparation maintains the structural complexity and cell interactions similar to the retina in situ, and contains cells in all stages of development. We review the finding of nuclear exclusion of several transcription factors during apoptosis in retinal cells. The data reviewed in this paper suggest a link between apoptosis and a failure in the nucleo-cytoplasmic partition of transcription factors. It is argued that the nuclear exclusion of transcription factors may be an integral component of apoptosis both in the nervous system and in other types of cells and tissues.
Collapse
|
257
|
|
258
|
Rocha M, Martins RA, Linden R. Activation of NMDA receptors protects against glutamate neurotoxicity in the retina: evidence for the involvement of neurotrophins. Brain Res 1999; 827:79-92. [PMID: 10320696 DOI: 10.1016/s0006-8993(99)01307-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activation of glutamate receptors has been implicated in excitotoxicity. Here, we have investigated whether subtoxic concentrations of glutamate can modulate neuronal death in the developing retina. Explants of rat retinas were pre-incubated with glutamate, N-methyl-d-aspartate (NMDA), kainate, quisqualate or trans-1-amino-1,3-cyclopentanedicarboxylic acid (t-ACPD) for 18 h. Then, glutamate (6 mM) was added to the explants for an additional 6 h. Glutamate-induced degeneration was restricted to the emerging inner nuclear layer. Pre-incubation with glutamate, NMDA, or both, reduced glutamate-induced neuronal death and protected against neuronal death induced by irradiation (2 Gy). The NMDA receptor antagonists, 2-amino-5-phosphonovaleric acid (d-APV; 30 microM) or 5-methyl-10,11-dihydro-5H-dibenzocyclohepten-5,10-imine hydrogen maleate (MK-801; 30 microM), prevented glutamate-induced neuroprotection. To investigate whether this neuroprotection was mediated by neurotrophins, we incubated retinal explants with either brain-derived neurotrophic factor or neurotrophin-4. Both treatments resulted in partial protection against glutamate-induced neurotoxicity. Furthermore, NMDA mediated neuroprotection was totally reversed when a soluble form of the specific tyrosine kinase receptor B was simultaneously added to the explants. Our results suggest that activation of NMDA receptors may control neuronal death in the retina during development. This modulation seems to depend, at least in part, on the release of neurotrophins within the retina.
Collapse
|
259
|
Linden R, Embery G, Kent G, Croucher R, Craven R, Ørstavik D, Pitt Ford T, Carrotte P. Br Dent J 1999; 186:478-478. [DOI: 10.1038/sj.bdj.4800145a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
260
|
Abstract
The mechanisms of apoptosis are strongly dependent on cell-cell interactions typical of organized tissues. Experimental studies of apoptosis using a histotypical preparation of retinal explants are reported in the present article. We found that various characteristics of apoptosis are selectively associated with retinal cell death depending on cell type, stage of maturation, and means of induction of apoptosis. Among these were: (1) the requirements of protein synthesis; (2) the role of cAMP; (3) the expression of certain apoptosis-associated proteins; and (4) the sensitivity to excitotoxicity, modulation of protein phosphatases and calcium mobilization. Dividing cells undergo apoptosis in response to several inducers in specific phases of the cell cycle, and in distinct regions within their pathway of interkinetic nuclear migration. Recent post-mitotic cells are selectively sensitive to apoptosis induced by blockade of protein synthesis, while both proliferating and differentiated cells are more resistant. We also studied the association of several proteins, some of which play critical roles in the cell cycle, with both differentiation and apoptosis in the retinal tissue. Detection of cell cycle markers did not support the hypothesis that retinal cells re-enter the cell cycle on their pathway to apoptosis, although some proteins associated with cell proliferation re-appeared in degenerating cells. The transcription factors c-Jun, c-Fos and c-Myc were found associated with apoptosis in retinal cells, but their sub-cellular location in apoptotic bodies is not consistent with their canonical functions in the control of gene expression. The bifunctional redox factor/AP endonuclease Ref-1 and the transcription factor Max are associated with progressive cell differentiation, and both are down-regulated during cell death in the retina. The data suggest that Ref-1 and Max may normally function as negative modulators of retinal apoptosis. The results indicate that nuclear exclusion of transcription factors and other important control proteins is a hallmark of retinal apoptosis. Histotypical explants may be a choice preparation for the experimental analysis of the mechanisms of apoptosis, in the context both of cell-cell interactions and of the dynamic behavior of developing cells within the organized retinal tissue.
Collapse
|
261
|
|
262
|
Varella MH, Correa DF, Campos CB, Chiarini LB, Linden R. Protein kinases selectively modulate apoptosis in the developing retina in vitro. Neurochem Int 1997; 31:217-27. [PMID: 9220454 DOI: 10.1016/s0197-0186(96)00151-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the retina of newborn rats there is evidence for two mechanisms of programmed cell death. Apoptosis of ganglion cells (RGCs) following axotomy depends on protein synthesis. In contrast, inhibition of protein synthesis leads to apoptosis in the neuroblastic layer (NBL). The induction of apoptosis following translational arrest suggests that post-translational modifications of apoptosis-associated proteins may be crucial to the cell death programs in the developing retina. We investigated the possible role of protein kinases upon apoptosis in retinal explants in vitro. An increase in the intracellular concentration of cAMP produced either by the adenylyl-cyclase activator forskolin (10 microM) or by 8-Br-cAMP (1 mM), prevented apoptosis induced in the NBL by inhibition of protein synthesis, but had no statistically significant effect upon RGC death. In contrast, neither 8-Br-cGMP (1 mM) nor the specific cGMP-phosphodiesterase inhibitor zaprinast (10-100 microM) had significant effects on apoptosis in the retina. The cAMP-phosphodiesterase inhibitors isobutylmethylxantine (IBMX, 0.1-1 mM) and Ro-201724 (50-200 microM) also prevented apoptosis in the NBL. The isoquinolinesulfonamide H89 (20 microM), a specific cAMP-dependent protein kinase inhibitor, partially reverted the protective effect of either forskolin or IBMX within the NBL. Neither 12-O-tetradecanoyl phorbol-13-acetate (TPA, 10 nM) nor bisindolylmaleimide (0.2-0.5 microM), respectively an activator and an inhibitor of protein kinase C had significant effects upon the retinal explants. The protein kinase inhibitor 2-aminopurine (2-AP, 10 mM) prevented apoptosis of axotomized ganglion cells and induced apoptosis in the NBL. Forskolin prevented the apoptosis induced by 2-AP in the NBL, whereas TPA had no effect. The effects of 2-AP were, however, not dependent on inhibition of protein synthesis. The data indicate that modulation of the activity of both cAMP-dependent protein kinase and several protein kinases sensitive to 2-aminopurine selectively affect apoptosis in distinct cell layers of the developing retina.
Collapse
|
263
|
Ary-Pires R, Nakatani M, Rehen SK, Linden R. Developmentally regulated release of intraretinal neurotrophic factors in vitro. Int J Dev Neurosci 1997; 15:239-55. [PMID: 9178042 DOI: 10.1016/s0736-5748(96)00087-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The effects of conditioned media either from aggregates or from explants of embryonic chick retinae and of recombinant neurotrophins were tested upon the survival in vitro of ganglion cells in dissociated cell cultures from the retina of newborn rats. Ganglion cells were identified by the detection of retrogradely transported horseradish peroxidase injected bilaterally into the superior colliculus. Conditioned media increased significantly the survival of ganglion cells after 2 days in culture, at a wide range of plating densities, and had no effect upon adhesion of rat retinal cells. Media conditioned by cell ensembles from chick retinae from embryonic day 8 (E8) to E16 had neurotrophic effects. Release of neurotrophic activity peaked at E10 E12, irrespective of the numbers of cells or total concentration of protein in the conditioned media. The active molecules were non-dialyzable and were released either in the presence or in the absence of fetal calf serum. The neurotrophic activity was abolished by trypsinization, and recovered by salting-out with 25 75% ammonium sulfate. NT-4, BDNF and, to a lesser extent, NT-3, increased the survival of ganglion cells in our assay, while NGF had no effect. The data show that chick retinal cells release soluble trophic proteins according to a developmentally regulated pattern. These neurotrophic factors may be involved in local competitive interactions that help control naturally occurring neuron death among ganglion cells of the vertebrate retina.
Collapse
|
264
|
Linden R, Rehen SK, Chiarini LB, Nakatani M, Rocha M, Campos CB, Borges HL, Varella MH, Freitas FG, Correa DF, Guimarães CA. Death in a dish: controls of apoptosis within the developing retinal tissue. REVISTA BRASILEIRA DE BIOLOGIA 1996; 56 Su 1 Pt 1:89-103. [PMID: 9394492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Studies of programmed cell death in the developing retina in vitro are currently reviewed. The results of inhibiting protein synthesis in retinal explants indicate two mechanisms of apoptosis. One mechanism depends on the synthesis of positive modulators ('killer proteins'), while a distinct, latent mechanism appears to be continuously blocked by negative modulators. Extracellular modulators of apoptosis include the neurotrophic factors NT-4 and BDNF, while glutamate may have either a positive or a negative modulatory action on apoptosis. Several protein kinases selectively modulate apoptosis in distinct retinal layers. Calcium and nitric oxide were also shown to affect apoptosis in the developing retinal tissue. The protein c-Jun was found associated with apoptosis in various circumstances, while p53 seems to be selectively expressed in some instances of apoptosis. The results indicate that the sensitivity of each retinal cell to apoptosis is controlled by multiple, interactive, cell type- and context-specific mechanisms. Apoptosis in the retina depends on a critical interplay of extracellular signals delivered through neurotrophic factors, neurotransmitters and neuromodulators, several signal transduction pathways, and the expression of a variety of genes.
Collapse
|
265
|
|
266
|
Piñón LG, Linden R. Target and afferents interact to control developmental cell death in the mesencephalic parabigeminal nucleus of the rat. J Neurosci Res 1996; 45:174-82. [PMID: 8843034 DOI: 10.1002/(sici)1097-4547(19960715)45:2<174::aid-jnr9>3.0.co;2-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During the period of natural cell death in the developing mammalian brain, both target cells and afferents have been shown to be important for neuronal survival. Here we demonstrate that afferents and targets have interactive roles in the maintenance of cells during development of the mesencephalic parabigeminal nucleus (PB) in rats. Pyknotic nuclei were counted in the PB of developing rats that received a bilateral lesion of the superior colliculus on the day of birth (P0). We observed that simultaneous deafferentation and deeferentation leads to a large peak of cell death at P1-2 in all three divisions of PB. Later the rate of pyknosis decreases and a second period of elevated cell death is observed just before the complete disappearance of the nucleus at P7-8. Counts of healthy neurones indicates two separate periods of increased neuronal loss. The first period occurs at P1-2, and the last and dramatic episode of cell loss at P8 leads to the disappearance of the PB. The combined effects of simultaneous target removal and deafferentation were different from the sum of the individual effects, indicating that the axonal targets and the afferents interact to control cell survival in the PB.
Collapse
|
267
|
Rehen SK, Varella MH, Freitas FG, Moraes MO, Linden R. Contrasting effects of protein synthesis inhibition and of cyclic AMP on apoptosis in the developing retina. Development 1996; 122:1439-48. [PMID: 8625832 DOI: 10.1242/dev.122.5.1439] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of protein synthesis in apoptosis was investigated in the retina of developing rats. In the neonatal retina, a ganglion cell layer, containing neurons with long, centrally projecting axons, is separated from an immature neuroblastic layer by a plexiform layer. This trilaminar pattern subsequently evolves to five alternating cell and plexiform layers that constitute the mature retina and a wave of programmed neuron death sweeps through the layers. Apoptosis due to axon damage was found in ganglion cells of retinal explants within 2 days in vitro and was prevented by inhibition of protein synthesis. Simultaneously, protein synthesis blockade induced apoptosis among the undamaged cells of the neuroblastic layer, which could be selectively prevented by an increase in intracellular cyclic AMP. Both the prevention and the induction of apoptosis among ganglion cells or neuroblastic cells, respectively, occurred after inhibition of protein synthesis in vivo. The results show the coexistence of two mechanisms of apoptosis within the organized retinal tissue. One mechanism is triggered in ganglion cells by direct damage and depends on the synthesis of proteins acting as positive modulators of apoptosis. A distinct, latent mechanism is found among immature neuroblasts and may be repressed by continuously synthesized negative modulators, or by an increase in intracellular cyclic AMP.
Collapse
|
268
|
Serfaty CA, Linden R. Development of abnormal lamination and binocular segregation in the retinotectal pathways of the rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1994; 82:35-44. [PMID: 7531121 DOI: 10.1016/0165-3806(94)90146-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The uncrossed retinotectal pathway of pigmented rats originates from a small fraction of the retinal ganglion cell population. This projection terminates deeply in discrete patches within the upper grey layers where crossed and uncrossed inputs overlap. However, after the experimental enlargement of the uncrossed pathway, the ipsilateral fibers are also found in a superficial tier of the upper grey layers where binocular inputs segregate [36]. We studied the development of the retinotectal projections in rats after the enlargement of the uncrossed pathway as a result of a contralateral (left) optic tract lesion (OTL) made at birth. Horseradish peroxidase (HRP) was used as an anterograde tracer. An abnormal uncrossed projection from the right eye to the collicular surface appeared at postnatal day 3 (P3). Between P5 and P10, this projection developed the bilaminar pattern seen in similar operated adults. The laminar arrangement of the aberrant terminal fields did not change significantly after an ipsilateral visual cortex ablation on the day of birth. Despite the early development of the aberrant uncrossed pathway, binocular segregation was incipient at P10. At P14, 46% of the operated rats presented gaps in the terminal labeling at the tectal surface. This figure increased to 55.5% at 6 weeks, a proportion still smaller than in adult animals of the same group (69%). Eyelid suture had no effect on segregation. This projection remains plastic for at least 3 weeks, since the removal of the ipsilateral input at either P14 or P21 resulted in the absence of gaps in the contralateral projection. We conclude that the laminar selection of retinotectal projections depends on binocular interactions and that the abnormal segregation of retinal inputs to the superior colliculus has an unusually protracted development which can be reversed long after the previously defined critical period in this system.
Collapse
|
269
|
Rehen SK, Linden R. Apoptosis in the developing retina: paradoxical effects of protein synthesis inhibition. Braz J Med Biol Res 1994; 27:1647-51. [PMID: 7874031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cell death by apoptosis is usually characterized as an active process that requires protein and RNA synthesis. The requirement of protein synthesis for the degeneration of ganglion cells and other cell types was studied in neural retinae explanted from the eyes of newborn rats. Ganglion cells were detected by the presence of retrogradely transported horseradish peroxidase injected into the superior colliculus. Apoptotic cells were recognized by their condensed and deeply stained chromatin. The data show that the death of ganglion cells, whose axons are damaged when preparing the explants, is blocked or delayed by protein synthesis inhibitors. In contrast, the blockade of protein synthesis produced cell death with apoptotic morphology in the neuroblastic layer of the same retinae. The results suggest the operation in the developing retina of both a program of apoptosis dependent on the synthesis of killer proteins, and a latent mechanism of apoptosis that is normally blocked by repressor proteins.
Collapse
|
270
|
Bosco A, Linden R, Carri NG. Expression of alpha-1 integrin subunit in the mammalian retina. Cell Biol Int 1994; 18:211-3. [PMID: 8019496 DOI: 10.1006/cbir.1994.1064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
271
|
Abstract
Developmental cell death is a major event of neurogenesis, and emphasis has systematically been placed on the roles of either the peripheral targets or central postsynaptic neurons in the control of neuronal survival. In this article, the main types of experimental design used to test the control of neuronal death by the afferent supply are compared with analogous data indicating neurotrophic support by the targets. It is argued that targets and afferents may have equivalent roles and interact in the control of neuron numbers during development of the vertebrate nervous system. Possible mechanisms of anterograde trophic control include contact-mediated cell interactions, activity-dependent processes mediated by neurotransmitters or neuromodulators, modulation of the levels of cytoplasmic free calcium and the involvement of neurotrophic factors.
Collapse
|
272
|
Bosco A, Carri NG, Linden R. Neuritogenesis of retinal ganglion cells is differentially promoted by target extract. Brain Res 1993; 632:303-7. [PMID: 8149235 DOI: 10.1016/0006-8993(93)91165-o] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Labeled retinal ganglion cells from neonatal rats extended neurites in dissociated cell culture as a cell type-specific response to the influence of a superior collicular extract. The molecule responsible for this neuritogenic effect is soluble and non-dialysable (> 12 kDa). Nerve growth factor had a neuritogenic effect both on ganglion cells and other types of retinal cells.
Collapse
|
273
|
de Araujo EG, Linden R. Trophic factors produced by retinal cells increase the survival of retinal ganglion cells in vitro. Eur J Neurosci 1993; 5:1181-8. [PMID: 8281322 DOI: 10.1111/j.1460-9568.1993.tb00972.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The naturally occurring neuron death of normal development has been shown to depend on trophic factors produced and released by target cells. It has also been shown that the afferent supply and local interactions play a role in the control of this degenerative phenomenon. We studied the effect of trophic factors produced by intrinsic retinal cells on the survival of retinal ganglion cells in vitro. Retinae of newborn hooded rats were retrogradely labelled with horseradish peroxidase injected into the superior colliculus to permit the identification of retinal ganglion cells in culture. We tested the effect of conditioned media either from aggregates or from explants of retinal cells from neonatal rats on the survival of ganglion cells in vitro. Our results showed that both conditioned media increased the survival of these cells. The trophic activity was dose-dependent, was maintained after dialysis against a 12 kDa membrane, was abolished by heating at 56 degrees C for 30 min, and was not found in conditioned medium from cerebral cortical explants. Conditioned medium obtained without fetal calf serum presented the same trophic effect. These results suggest that the local control of developmental neuron death by intrinsic retinal cells may be mediated by neurotrophic factors.
Collapse
|
274
|
Rehen SK, Ary-Pires R, Linden R. Intraretinal neurotrophic activity prevents the degeneration of ganglion cells in retinal explants. Braz J Med Biol Res 1993; 26:955-9. [PMID: 7905330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The degeneration of ganglion cells was studied in neural retina explanted from the eyes of newborn rats. The ganglion cells were detected by the presence of retrogradely transported horseradish peroxidase injected into the superior colliculus. The time course of cell death among the axotomized ganglion cells in the explants was similar to that found in vivo after axotomy in neonatal rats. The effect of culture media conditioned with retinal cells from either newborn rats or chick embryos was tested on the survival of ganglion cells in the explants. Both conditioned media increased 2- to 3-fold the survival of rat retinal ganglion cells after 2 days in culture. The data show that soluble trophic factors released by retinae of distinct species can influence the survival of ganglion cells within their histotypic microenvironment.
Collapse
|
275
|
Linden R. Dendritic competition in the developing retina: ganglion cell density gradients and laterally displaced dendrites. Vis Neurosci 1993; 10:313-24. [PMID: 8485094 DOI: 10.1017/s0952523800003710] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dendrites of retinal ganglion cells (RGCs) tend to be distributed preferentially toward areas of reduced RGC density. This, however, does not occur in the retina of normal pigmented rats, in which it has been suggested that the centro-peripheral gradient of RGC density is too shallow to provide directional guidance to growing dendrites. In this study, laterally displaced dendrites of RGCs retrogradely labeled with horseradish peroxidase were related to cell density gradients induced experimentally in the rat retina. Neonatal unilateral lesions of the optic tract produced retrograde degeneration of contralaterally projecting RGCs, but spared ipsilaterally projecting neurons in the same retina. These lesions created an anomalous temporal to nasal gradient of cell density across the decussation line, opposite to the nasal to temporal gradient found along the same axis in either normal rats or rats that had the contralateral eye removed at birth. RGCs in rats that received optic tract lesions had their dendrites displaced laterally toward the depleted nasal retina, while in either normal or enucleated rats there was no naso-temporal asymmetry. The lateral displacement affected both primary dendrites and higher-order branches. However, the gradient of cell density after optic tract lesions was less steep than the gradient in either normal or enucleated rats. To test for the presence of steeper gradients at early stages of development, RGC density gradients were also examined at postnatal day 5 (P5). In normal rats, the RGCs were homogeneously distributed throughout the retina, while rats given optic tract lesions at birth already showed a temporo-nasal density gradient at P5. Still, this anomalous gradient was less steep than that found in normal adults. It is concluded that the time course, rather than the steepness of the RGC density gradient, is the major determinant of the lateral displacement of dendritic arbors with respect to the soma in developing RGCs. The data are consistent with the idea that the overall shape of dendritic arbors depends in part on dendritic competition during retinal development.
Collapse
|