251
|
Irfan R, Mousavi S, Alazmi M, Saleem RSZ. A Comprehensive Review of Aminochalcones. Molecules 2020; 25:molecules25225381. [PMID: 33213087 PMCID: PMC7698532 DOI: 10.3390/molecules25225381] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022] Open
Abstract
Chalcones, members of the flavonoid family, display a plethora of interesting biological activities including but not limited to antioxidant, anticancer, antimicrobial, anti-inflammatory, and antiprotozoal activities. The literature cites the synthesis and activity of a range of natural, semisynthetic, and synthetic chalcones. The current review comprehensively covers the literature on amino-substituted chalcones and includes chalcones with amino-groups at various positions on the aromatic rings as well as those with amino-groups containing mono alkylation, dialkylation, alkenylation, acylation, and sulfonylation. The aminochalcones are categorized according to their structure, and the corresponding biological activities are discussed as well. Some compounds showed high potency against cancer cells, microbes, and malaria, whereas others did not. The purpose of this review is to serve as a one-stop location for information on the aminochalcones reported in the literature in recent years.
Collapse
|
252
|
Law JWF, Law LNS, Letchumanan V, Tan LTH, Wong SH, Chan KG, Ab Mutalib NS, Lee LH. Anticancer Drug Discovery from Microbial Sources: The Unique Mangrove Streptomycetes. Molecules 2020; 25:E5365. [PMID: 33212836 PMCID: PMC7698459 DOI: 10.3390/molecules25225365] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Worldwide cancer incidence and mortality have always been a concern to the community. The cancer mortality rate has generally declined over the years; however, there is still an increased mortality rate in poorer countries that receives considerable attention from healthcare professionals. This suggested the importance of the prompt detection, effective treatment, and prevention strategies. The genus Streptomyces has been documented as a prolific producer of biologically active secondary metabolites. Streptomycetes from mangrove environments attract researchers' attention due to their ability to synthesize diverse, interesting bioactive metabolites. The present review highlights research on mangrove-derived streptomycetes and the production of anticancer-related compounds from these microorganisms. Research studies conducted between 2008 and 2019, specifically mentioning the isolation of streptomycetes from mangrove areas and described the successful purification of compound(s) or generation of crude extracts with cytotoxic activity against human cancer cell lines, were compiled in this review. It is anticipated that there will be an increase in prospects for mangrove-derived streptomycetes as one of the natural resources for the isolation of chemotherapeutic agents.
Collapse
|
253
|
Eldin Elhawary SS, Elmotyam AKE, Alsayed DK, Zahran EM, Fouad MA, Sleem AA, Elimam H, Rashed MH, Hayallah AM, Mohammed AF, Abdelmohsen UR. Cytotoxic and anti-diabetic potential, metabolic profiling and insilico studies of Syzygium cumini (L.) Skeels belonging to family Myrtaceae. Nat Prod Res 2020; 36:1026-1030. [PMID: 33146032 DOI: 10.1080/14786419.2020.1843032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
LC-HR-MS-coupled metabolic profiling of the methanol extracts from different parts of Syzygium cumini (L.), which was extensively identified via DNA fingerprinting, led to dereplication of 24 compounds. Cytotoxic investigation highlighted both extracts as the most potent, against both MCF-7 and MDA-231 Cell lines, with IC50 value of 5.86 ± 0.63 µg/ml and against HCT -116 cell line, with IC50 value of 1.24 ± 0.09 µg/ml, respectively. A molecular docking study was performed on the dereplicated compounds, which highlighted myricetin-3-glucoside (7), myricitrin (12), reynoutrin (15) and quercitrin (16) as the top scoring ligands within the protein active site (FIH-1). Interestingly, the extracts were significant against streptozotocin-induced diabetes in the order of flowers > seeds > leaves with BGL level of 98.9 ± 4.3, 123.2 ± 4.9 and 132.8 ± 5.9 mg/dl, respectively. The study highlights the health benefits of Syzygium cumini (L.) as a promising cytotoxic source.
Collapse
|
254
|
Ammar MK, Handoussa H, Hanafi RS, El-Shazly M, Gad MZ. Multivariate approach for optimization of galactomannan extraction from seeds of Egyptian Trigonella foenum-graecum with insights on its pharmacological activities. Nat Prod Res 2020; 36:2125-2128. [PMID: 33103477 DOI: 10.1080/14786419.2020.1837817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Response surface methodology (RSM), based on the central composite design (CCD), was used for the systemic optimization of galactomannan (GAL) extraction from Trigonella foenum-graecum. GAL was reported to possess a variety of pharmacological effects and is commercialized as adjuvant therapy for diabetes, obesity, and hypercholesterolemia. Seven process variables were evaluated (12 experiments in a Plackett-Burman design) to screen the significant factors affecting the extraction yield. The three most significant variables were evaluated in CCD at two levels (twenty experimental designs) to obtain the utmost percentage yield. The yield of GAL extraction was influenced by the volume of the precipitating solvent to the volume of the soaking water and reached a maximum of 10.1% at a ratio of 3.633:1. Exploring the antioxidant, cytotoxic, and anti-microbial activities of GAL revealed cytotoxic activity against LS174-T colorectal cancer cells, weak antioxidant activity, and moderate antimicrobial activity against Candida tropicalis and Micrococcus species.
Collapse
|
255
|
Atef Hatamleh A, Al Farraj D, Salah Al-Saif S, Chidambaram S, Radhakrishnan S, Akbar I. Synthesis, Cytotoxic Analysis, and Molecular Docking Studies of Tetrazole Derivatives via N-Mannich Base Condensation as Potential Antimicrobials. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4477-4492. [PMID: 33122891 PMCID: PMC7591006 DOI: 10.2147/dddt.s270896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/21/2020] [Indexed: 11/23/2022]
Abstract
Purpose A new series of tetrazole derivatives, which are renowned antimicrobials possessing a five-membered aromatic heterocyclic group, are synthesized herein and subjected to antimicrobial and cytotoxicity screening. Methods The tetrazole derivatives were synthesized via ultrasonication using Mannich base condensation. Structural verification of the products was performed using IR, 1H NMR, and 13C NMR spectroscopy, as well as mass spectroscopic and elemental analyses. The compounds were then screened for antimicrobial and cytotoxic activity against HepG2 (liver), MCF-7 (breast), and HeLa (cervical) cell lines. Inter- and intra-molecular binding interactions were determined using molecular docking studies. The exact binding mode between the most active tetrazole derivatives (ie, 1b, 2a, and 2b) and the proteins (ie, 4OR7, 1AI9, and 4FM9) was established using Autodock Vina 1.1.2 software and compared to the binding mode of the reference compounds (ie, cefazolin, clotrimazole, and fluorouracil). Results Compound 1b was extremely active against Enterococcus faecalis relative to the positive control cefazolin. Compounds 1b and 1e were active against Candida albicans and Microsporum audouinii compared to the positive control clotrimazole in antifungal screening. The HepG2 (liver) and MCF-7 (breast) cancer cell lines were particularly susceptible to the synthesized compounds. Compared to the control compound fluorouracil, 2a and 2b were extremely active against all three cancer cell lines. Molecular docking studies showed that 2b exhibited higher binding affinity (−7.8 kcal/mol) to the 4OR7 protein than the control cefazolin (−7.2 kcal/mol). Conclusion Generally, 1b, 2a, and 2b exhibited impressive inhibitory capabilities in antibacterial, antifungal, and cytotoxic screenings relative to the reference compounds. The results of the molecular docking studies and both the microbial and anticancer screenings indicate that these novel derivatives could be developed into potential therapeutic agents for medical applications.
Collapse
|
256
|
Wathoni N, Nguyen AN, Rusdin A, Umar AK, Mohammed AFA, Motoyama K, Joni IM, Muchtaridi M. Enteric-Coated Strategies in Colorectal Cancer Nanoparticle Drug Delivery System. Drug Des Devel Ther 2020; 14:4387-4405. [PMID: 33116423 PMCID: PMC7585804 DOI: 10.2147/dddt.s273612] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer is one of the most common cancer diseases with the increase of cases prevalence >5% every year. Multidrug resistance mechanisms and non-localized therapy become primary problems of chemotherapy drugs for curing colorectal cancer disease. Therefore, the enteric-coated nanoparticle system has been studied and proved to be able to resolve those problems with good performance for colorectal cancer. The highlight of our review aims to summarize and discuss the enteric-coated nanoparticle drug delivery system specific for colorectal cancer disease. The main and supporting literatures were collected from published research articles of journals indexed in Scopus and PubMed databases. In the oral route of administration, Eudragit pH-sensitive copolymer as a coating agent prevents the degradation of the nanoparticle system from the gastric fluid and releases drug to intestinal-colon track. Therefore, it provides a colon-specific targeting ability. Impressively, enteric-coated nanoparticles having a sustained release profile significantly increase the cytotoxic effect of chemotherapeutic drugs and achieve cell-specific target delivery. The enteric-coated nanoparticle drug delivery system represents an excellent modification to improve the effectiveness and performance of anticancer drugs for colorectal cancer disease in terms of the oral route of administration.
Collapse
|
257
|
Phan NHT, Thuan NTD, Hien NTT, Huyen PV, Duyen NHH, Hanh TTH, Cuong NX, Quang TH, Nam NH, Minh CV. Polyacetylene and phenolic constituents from the roots of Codonopsis javanica. Nat Prod Res 2020; 36:2314-2320. [PMID: 33930986 DOI: 10.1080/14786419.2020.1833200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chemical investigation of the roots of Codonopsis javanica resulted in isolation of 12 compounds, including one new polyacetylene, codojavanyol (1), one new phenolic glycoside, codobenzyloside (7), and 10 known compounds, (2E,8E)-9-(tetrahydro-2H-pyran-2-yl)nona-2,8-diene-4,6-diyl-1-ol (2), lobetyol (3), lobetyolin (4), lobetyolinin (5), cordifolioidyne B (6), benzyl-α-L-arabinopyranosyl (1-6)-β-D-glucopyranoside (8), (Z)-8-β-D-glucopyranosyloxycinnamic acid (9), syringin (10), syringaresinol (11), and tryptophan (12). Their structures were elucidated by 1 D and 2 D NMR and MS spectroscopic analyses in comparison with the data reported in the literature. The stereochemistry of the C-2' position of 1 was identified based on time-dependent density functional theory (TDDFT) electronic circular dichroism (ECD) calculation. Among the isolates, compounds 3-5 were shown to have weak cytotoxicity toward three human carcinoma cell lines, including lung (A549), liver (HepG2), and breast (MCF7), with the induction of 41.4 to 55.6% cell death at the concentration of 100 µM.
Collapse
|
258
|
Mykhailenko O, Korinek M, Ivanauskas L, Bezruk I, Myhal A, Petrikaitė V, El-Shazly M, Lin GH, Lin CY, Yen CH, Chen BH, Georgiyants V, Hwang TL. Qualitative and Quantitative Analysis of Ukrainian Iris Species: A Fresh Look on Their Antioxidant Content and Biological Activities. Molecules 2020; 25:molecules25194588. [PMID: 33050063 PMCID: PMC7582944 DOI: 10.3390/molecules25194588] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 01/13/2023] Open
Abstract
The major groups of antioxidant compounds (isoflavonoids, xanthones, hydroxycinnamic acids) in the rhizome methanol extracts of four Ukrainian Iris sp. (Iris pallida, Iris hungarica, Iris sibirica, and Iris variegata) were qualitatively and quantitatively analyzed using HPLC-DAD and UPLC-MS/MS. Gallic acid, caffeic acid, mangiferin, tectoridin, irigenin, iristectorigenin B, irisolidone, 5,6-dihydroxy-7,8,3',5'-tetramethoxyisoflavone, irisolidone-7-O-β-d-glucopyranoside, germanaism B, and nigricin were recognized by comparing their UV/MS spectra, chromatographic retention time (tR) with those of standard reference compounds. I. hungarica and I. variegata showed the highest total amount of phenolic compounds. Germanaism B was the most abundant component in the rhizomes of I. variegata (7.089 ± 0.032 mg/g) and I. hungarica (6.285 ± 0.030 mg/g). The compound analyses showed good calibration curve linearity (r2 > 0.999) and low detection and quantifications limit. These results validated the method for its use in the simultaneous quantitative evaluation of phenolic compounds in the studied Iris sp. I. hungarica and I. variegata rhizomes exhibited antioxidant activity, as demonstrated by the HPLC-ABTS system and NRF2 expression assay and anti-inflammatory activity on respiratory burst in human neutrophils. Moreover, the extracts showed anti-allergic and cytotoxic effects against cancer cells. Anti-coronavirus 229E and lipid formation activities were also evaluated. In summary, potent antioxidant marker compounds were identified in the examined Iris sp.
Collapse
|
259
|
Tian M, Wu X, Lu T, Zhao X, Wei F, Deng G, Zhou Y. Phytochemical Analysis, Antioxidant, Antibacterial, Cytotoxic, and Enzyme Inhibitory Activities of Hedychium flavum Rhizome. Front Pharmacol 2020; 11:572659. [PMID: 33041813 PMCID: PMC7528636 DOI: 10.3389/fphar.2020.572659] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Hedychium flavum Roxb., a medicinal, edible, and ornamental plant, is widely cultivated throughout China, India, and Southeast Asia. The rhizome from this plant has been used for food flavoring and in traditional Chinese medicine to treat diverse diseases, but the detailed constituents and bioactivities are still limited known. Therefore, phytochemical analysis by GC-MS and UHPLC-Q-Orbitrap-MS, and antioxidant, antibacterial, cytotoxic, and enzyme inhibitory activities tests have been conducted in the current study. Based on the GC-MS results, the essential oil (EO) of rhizome was mainly composed of coronarin E (20.3%), β-pinene (16.8%), E-nerolidol (11.8%), and linalool (8.5%). Among them, coronarin E was reported in H. flavum EO firstly. Furthermore, the spectrophotometric indicated rhizome had high total phenolic content (TPC, 50.08-57.42 mg GAEs/g extract) and total flavonoid content (TFC, 12.45-21.83 mg REs/g extract), no matter in water extract (WE) or in 70% ethanol extract (EE). UHPLC-Q-Orbitrap-MS was applied to further characterize composition, and 86 compounds were putatively identified from WE and EE, including 13 phenolic components. For the bioactivities, both WE and EE showed remarkable antioxidant activity by DPPH and ABTS tests, being superior to the positive control (butylated hydroxytoluene, BTH). EO revealed significant antibacterial activity against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Proteus vulgaris with DIZ (10.34-24.43 mm), MIC (78.13-312.50 μg/mL), and MBC (156.25-625.00 μg/mL). Moreover, EO exhibited a considerable selectivity to human tumor cell K562 (IC50 = 27.16 μg/mL), and its toxicity was more than 3.5-fold different from that of non-cancerous MRC-5 cell (IC50 = 95.96 μg/mL) and L929 cell (IC50 = 129.91 μg/mL). A series of apoptosis analysis demonstrated that EO induced apoptosis against K562 cells in a dose-dependent manner. In enzyme inhibitory effect assays, WE and EE showed strong α-glucosidase inhibition activity, being superior to the positive control (acarbose). Besides, the EO, WE, and EE didn't show a promising inhibition on tyrosinase (19.30-32.51 mg KAEs/g sample) and exhibited a weak inhibitory effect on cholinesterase. Based on the current results, H. flavum could be considered as a source of bioactive compounds and has high exploitation potential in the cosmetics, food, and pharmaceutical industries.
Collapse
|
260
|
Jin L, Yao L, Yuan F, Dai G, Xue B. Evaluation of a novel biodegradable ureteral stent produced from polyurethane and magnesium alloys. J Biomed Mater Res B Appl Biomater 2020; 109:665-672. [PMID: 32929829 DOI: 10.1002/jbm.b.34730] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/29/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022]
Abstract
Indwelling ureteral stents represent a very frequently used procedure in urological clinical practice that ensures the drainage of urine from the upper urinary tract. However, the stents could result in many stent-associated complications, such as encrustation and patient discomfort. We developed a new type of biodegradable ureteral stents produced from degradable polyurethane and magnesium alloys. In the present study, we investigated the biocompatibility and the property of degradation of the biodegradable ureteral stents. We evaluated the cytotoxicity of biodegradable ureteral stent by the MTT assay in vitro. The rabbit dorsal muscle embedding test was used to assess the biocompatibility of the degradable stents. Inflammation and fibrosis of muscle tissue were noted to evaluate compatibility at 1, 2, 4, 6 weeks after stents implanted in muscle. The degradation of the biodegradable ureteral stents was assessed by measuring the weight loss of the samples in AUS (artificial urine solution). For validating the degradation property of degradable stents in vivo, we inserted a degradable stent or a conventional biostable stent into Bama pigs. Furthermore, blood studies, liver function tests, renal function tests, urine studies, and computerized tomography (CT) were performed postoperatively. Our study confirms that the degradable polyurethane-based biodegradable ureteral stent has good biocompatibility. Our biodegradable ureteral stents were completely degraded within 4 weeks and provided a better ability of drainage than conventional stents. They hold promise for decreasing the need for a secondary procedure and stent related morbidity, such as infections.
Collapse
|
261
|
Bioactivities of Lyngbyabellins from Cyanobacteria of Moorea and Okeania Genera. Molecules 2020; 25:molecules25173986. [PMID: 32882989 PMCID: PMC7504728 DOI: 10.3390/molecules25173986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 01/13/2023] Open
Abstract
Cyanobacteria are reported as rich sources of secondary metabolites that provide biological activities such as enzyme inhibition and cytotoxicity. Ten depsipeptide derivatives (lyngbyabellins) were isolated from a Malaysian Moorea bouillonii and a Red Sea Okeania sp.: lyngbyabellins G (1), O (2), P (3), H (4), A (7), 27-deoxylyngbyabellin A (5), and homohydroxydolabellin (6). This study indicated that lyngbyabellins displayed cytotoxicity, antimalarial, and antifouling activities. The isolated compounds were tested for cytotoxic effect against human breast cancer cells (MCF7), for antifouling activity against Amphibalanus amphitrite barnacle larvae, and for antiplasmodial effect towards Plasmodium falciparum. Lyngbyabellins A and G displayed potent antiplasmodial effect against Plasmodium, whereas homohydroxydolabellin showed moderate effect. For antifouling activity, the side chain decreases the activity slightly, but the essential feature is the acyclic structure. As previously reported, the acyclic lyngbyabellins are less cytotoxic than the corresponding cyclic ones, and the side chain increases cytotoxicity. This study revealed that lyngbyabellins, despite being cytotoxic agents as previously reported, also exhibit antimalarial and antifouling activities. The unique chemical structures and functionalities of lyngbyabellin play an essential role in their biological activities.
Collapse
|
262
|
Ahmadi ES, Tajbakhsh A, Iranshahy M, Asili J, Kretschmer N, Shakeri A, Sahebkar A. Naphthoquinone Derivatives Isolated from Plants: Recent Advances in Biological Activity. Mini Rev Med Chem 2020; 20:2019-2035. [PMID: 32811411 DOI: 10.2174/1389557520666200818212020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 11/22/2022]
Abstract
Naturally occurring naphthoquinones (NQs) comprising highly reactive small molecules are the subject of increasing attention due to their promising biological activities such as antioxidant, antimicrobial, apoptosis-inducing activities, and especially anticancer activity. Lapachol, lapachone, and napabucasin belong to the NQs and are in phase II clinical trials for the treatment of many cancers. This review aims to provide a comprehensive and updated overview on the biological activities of several new NQs isolated from different species of plants reported from January 2013 to January 2020, their potential therapeutic applications and their clinical significance.
Collapse
|
263
|
Quang DN, Long LD, Tung NQ, Thanh NN, Tham LX. Endertiins A-B, two lanostane triterpenoids from the fruit bodies of the mushoom Humphreya endertii. Nat Prod Res 2020; 36:748-753. [PMID: 32744110 DOI: 10.1080/14786419.2020.1800696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Two new lanostane triterpnenoids named endertiins A and B (1 and 2) together with two known compounds as ganodecalone A (3) and ergosterol (4) have been successfully isolated from the cultivated fruit bodies of the mushroom Humphreya endertii Stey (Ganodermataceae). Their structures were elucidated by a combination of HR-MS and 2 D NMR spectroscopic analyses. In addition, endertiins A and B (1 and 2) were evaluated their cytotoxicity against two cancer cell lines, MCF7 (human breast carcinoma) and LU (human lung carcinoma). The result showed that endertiin A (1) could inhibit the growth of MCF-7 cells with its IC50 value of 71.16 ± 6.25 µg/ml.
Collapse
|
264
|
Casillas-Figueroa F, Arellano-García ME, Leyva-Aguilera C, Ruíz-Ruíz B, Luna Vázquez-Gómez R, Radilla-Chávez P, Chávez-Santoscoy RA, Pestryakov A, Toledano-Magaña Y, García-Ramos JC, Bogdanchikova N. Argovit™ Silver Nanoparticles Effects on Allium cepa: Plant Growth Promotion without Cyto Genotoxic Damage. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1386. [PMID: 32708646 PMCID: PMC7408422 DOI: 10.3390/nano10071386] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Due to their antibacterial and antiviral effects, silver nanoparticles (AgNP) are one of the most widely used nanomaterials worldwide in various industries, e.g., in textiles, cosmetics and biomedical-related products. Unfortunately, the lack of complete physicochemical characterization and the variety of models used to evaluate its cytotoxic/genotoxic effect make comparison and decision-making regarding their safe use difficult. In this work, we present a systematic study of the cytotoxic and genotoxic activity of the commercially available AgNPs formulation Argovit™ in Allium cepa. The evaluated concentration range, 5-100 µg/mL of metallic silver content (85-1666 µg/mL of complete formulation), is 10-17 times higher than the used for other previously reported polyvinylpyrrolidone (PVP)-AgNP formulations and showed no cytotoxic or genotoxic damage in Allium cepa. Conversely, low concentrations (5 and 10 µg/mL) promote growth without damage to roots or bulbs. Until this work, all the formulations of PVP-AgNP evaluated in Allium cepa regardless of their size, concentration, or the exposure time had shown phytotoxicity. The biological response observed in Allium cepa exposed to Argovit™ is caused by nanoparticles and not by silver ions. The metal/coating agent ratio plays a fundamental role in this response and must be considered within the key physicochemical parameters for the design and manufacture of safer nanomaterials.
Collapse
|
265
|
Chaturvedi VK, Yadav N, Rai NK, Ellah NHA, Bohara RA, Rehan IF, Marraiki N, Batiha GES, Hetta HF, Singh MP. Pleurotus sajor-caju-Mediated Synthesis of Silver and Gold Nanoparticles Active against Colon Cancer Cell Lines: A New Era of Herbonanoceutics. Molecules 2020; 25:molecules25133091. [PMID: 32645899 PMCID: PMC7412267 DOI: 10.3390/molecules25133091] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
Herbal medicines are widely used worldwide and much appreciated because of their fewer side effects and the ability to fight diseases at the root cause. Active ‘phyto’ ingredients require a scientific approach and a mechanism to distribute components at the target site for better therapeutic results. Nanotechnology, on the other hand, has created new hope for cancer treatment but is still far from being proven in clinical settings. This article combines a unique approach to synthesis with the use of Pleurotus sajor-caju, followed by microwave irritation of silver and gold nanoparticles that ensures the capping of the active phyto ingredient and further enhances the effects of nanomedicine to fight colon cancer, thus opening a new era of what we call herbonanoceutics. The article also compares the characteristics and properties of silver (Au) and gold (Ag) nanoparticles synthesized by an in house developed novel microwave-assisted rapid green synthesis method. The as-prepared Ag NPs and Au NPs were compared using ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS). Our comparative study revealed that both assemblies display face-centred cubic structures (FCCs) and are nanocrystalline in nature. The advantage of the approach was that the sizes of gold and silver were identical in range with a similar distribution pattern. This has helped us to study the activity against colon cancer cell line (HCT-116) without incoherence since size plays a key role in the application. More specifically, morphological changes, cell viability, the production of reactive oxygen species (ROS) and the fragmentation of DNA have been further reported to assess better the results obtained with the two metals. Our results suggest that the newly adopted synthesis method may ensure the dual benefits from phyto ingredients which further enhances the effectiveness of advanced nanomedicine.
Collapse
|
266
|
Cytogenetic Study on the Biostimulation Potential of the Aqueous Fruit Extract of Hippophae rhamnoides for a Sustainable Agricultural Ecosystem. PLANTS 2020; 9:plants9070843. [PMID: 32635436 PMCID: PMC7412076 DOI: 10.3390/plants9070843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 12/01/2022]
Abstract
This cytogenetic study evaluates the biostimulation potential of the aqueous extract of seabuckthorn fruits (AESF) in plant cells, using the Allium cepa species as a test plant. The effects were monitored both at the macroscopic and microscopically level. The onion bulbs were exposed to the action of different concentrations of AESF (0.5, 1, 1.5, 2, and 2.5%) for 72 h. The obtained results showed the positive effect induced by the aqueous extract on the growth of the meristematic roots, but only at concentrations ranging between 0.5–1.5%, when the average length of the roots had values between 2.51–3.40 cm, which means an increase compared to the untreated control with 3.71–40.49%. Within the same concentration range of the AESF, an effect of intensifying the mitotic activity was recorded. On the other hand, at the 2–2.5% concentration of the AESF, there was an inhibitory effect on the growth of meristematic roots. Additionally, concentrations ≥2% of AESF induced a cytotoxic and genotoxic effect through the occurrence of some chromosomal and nuclear abnormalities in A. cepa cells (sticky, laggards, ring chromosomes, and micronucleus). The obtained results suggest the biostimulation potential of the AESF for plant cells and the possibility of using it as an eco-friendly fertilizer.
Collapse
|
267
|
Bender LH, Abbate F, Walters IB. Intratumoral Administration of a Novel Cytotoxic Formulation with Strong Tissue Dispersive Properties Regresses Tumor Growth and Elicits Systemic Adaptive Immunity in In Vivo Models. Int J Mol Sci 2020; 21:E4493. [PMID: 32599852 PMCID: PMC7349938 DOI: 10.3390/ijms21124493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/10/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023] Open
Abstract
The recent development of immune-based therapies has improved the outcome for cancer patients; however, adjuvant therapies remain an important line of treatment for several cancer types. To maximize efficacy, checkpoint inhibitors are often combined with cytotoxic agents. While this approach often leads to increased tumor regression, higher off target toxicity often results in certain patients. This report describes a novel formulation comprising a unique amphiphilic molecule, 8-((2-hydroxybenzoyl)amino)octanoate (SHAO), that non-covalently interacts with payloads to increase drug dispersion and diffusion when dosed intratumorally (IT) into solid tumors. SHAO is co-formulated with cisplatin and vinblastine (referred to as INT230-6). IT dosing of the novel formulation achieved greater tumor growth inhibition and improved survival in in vivo tumor models compared to the same drugs without enhancer given intravenously or IT. INT230-6 treatment increased immune infiltrating cells in injected tumors with 10% to 20% of the animals having complete responses and developing systemic immunity to the cancer. INT230-6 was also shown to be synergistic with programmed cell death protein 1 (PD-1) antibodies at improving survival and increasing complete responses. INT230-6 induced significant tumor necrosis potentially releasing antigens to induce the systemic immune-based anti-cancer attack. This research demonstrates a novel, local treatment approach for cancer that minimizes systemic toxicity while stimulating adaptive immunity.
Collapse
|
268
|
Ahmed SA, Rahman AA, Elsayed KNM, Abd El-Mageed HR, Mohamed HS, Ahmed SA. Cytotoxic activity, molecular docking, pharmacokinetic properties and quantum mechanics calculations of the brown macroalga Cystoseira trinodis compounds. J Biomol Struct Dyn 2020; 39:3855-3873. [PMID: 32462976 DOI: 10.1080/07391102.2020.1774418] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, nine compounds were isolated, eight of them were isolated for the first time from Cystoseira trinodis. The biological activity of the extract, fractions and pure compounds was evaluated. The antimicrobial activity was investigated against 3 fungi species, 3 gram + ve and 3 gram -ve bacteria. The crude extract and fractions showed moderate inhibition against some of the tested microorganisms, especially the butanol fraction exhibited the maximum inhibition zone against Salmonella typhimurium (16 ± 0.60 mm). Cytotoxicity was evaluated against HepG-2 and MCF-7 cell lines. Hexane fraction exhibited the highest cytotoxic effect against HepG-2 and MCF-7 cell lines with an IC50 value of 14.3 ± 0.8 and 19.2 ± 0.7 µg/ml, respectively with compared to other fractions. The isolates were identified as octacosanoic acid (1), glyceryl trilinoleate (2), oleic acid (3), and the epimeric mixture of saringosterols (4, 5), β-sitosterol (6), glycoglycerolipid (7) and a mixture of kjellmanianone and loliolide (8, 9) by spectroscopic analysis. Among the all tested compounds kjellmanianone and loliolide mixture exhibited significant cytotoxic activity with an IC50 value of 7.27 µg/ml against HepG-2 cells. The major and minor constituents of the extract and fractions were identified using GC-MS analysis. Molecular docking analysis confirmed that most of the studied compounds especially compounds 8 and 9 strongly interact with TPK and VEGFR-2 with highest binding energies supported that the high cytotoxicity of these compounds against human hepatocellular cancer in the experimental part. The energetic, geometric and topological properties of compounds 8 and 9 binding with cytosine base were computed by DFT methods. Molecular properties descriptors, bioactivity score and ADMET analysis confirmed that most of the studied compounds especially compounds 8 and 9 exhibit significant biological activities and have a better chance to be developed as drug leads. Communicated by Ramaswamy H. Sarma.
Collapse
|
269
|
Chemical Diversity and Biological Activities of Essential Oils from Licaria, Nectrandra and Ocotea Species (Lauraceae) with Occurrence in Brazilian Biomes. Biomolecules 2020; 10:biom10060869. [PMID: 32517106 PMCID: PMC7356694 DOI: 10.3390/biom10060869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/04/2022] Open
Abstract
Lauraceae species are known as excellent essential oil (EO) producers, and their taxa are distributed throughout the territory of Brazil. This study presents a systematic review of chemical composition, seasonal studies, occurrence of chemical profiles, and biological activities to EOs of species of Licaria, Nectandra, and Ocotea genera collected in different Brazilian biomes. Based on our survey, 39 species were studied, with a total of 86 oils extracted from seeds, leaves, stem barks, and twigs. The most representative geographic area in specimens was the Atlantic Forest (14 spp., 30 samples) followed by the Amazon (13 spp., 30 samples), Cerrado (6 spp., 14 samples), Pampa (4 spp., 10 samples), and Caatinga (2 spp., 2 samples) forests. The majority of compound classes identified in the oils were sesquiterpene hydrocarbons and oxygenated sesquiterpenoids. Among them, β-caryophyllene, germacrene D, bicyclogermacrene, caryophyllene oxide, α-bisabolol, and bicyclogermacrenal were the main constituents. Additionally, large amounts of phenylpropanoids and monoterpenes such as safrole, 6-methoxyelemicin, apiole, limonene, α-pinene, β-pinene, 1,8-cineole, and camphor were reported. Nectandra megatopomica showed considerable variation with the occurrence of fourteen chemical profiles according to seasonality and collection site. Several biological activities have been attributed to these oils, especially cytotoxic, antibacterial, antioxidant and antifungal potential, among other pharmacological applications.
Collapse
|
270
|
Maldonado EB, Parsons S, Chen EY, Haslam A, Prasad V. Estimation of US patients with cancer who may respond to cytotoxic chemotherapy. Future Sci OA 2020; 6:FSO600. [PMID: 32983564 PMCID: PMC7491026 DOI: 10.2144/fsoa-2020-0024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022] Open
Abstract
AIMS PATIENTS & METHODS In this retrospective review, we sought to estimate the proportion of patients in the USA with advanced or metastatic cancer who are eligible for and may respond to recommended first-line cytotoxic chemotherapy based on National Comprehensive Cancer Network treatment guidelines. RESULTS Among 609,640 patients, we estimate 479,823 (78.7%, 95% CI: 78.6-78.8%) may be eligible for cytotoxic chemotherapy while 189,159 out of 609,640 patients (31.0%, 95% CI: 30.9-31.1%) may have achieved treatment response. The average objective response rate from these regimens was 48.6% (range 9.2 to 90.6%). CONCLUSION Given the large role of cytotoxic agents in cancer, drug development in this space may remain of interest in specific cancer types, and regulatory approval of novel oncology drugs may justify head-to-head comparisons against cytotoxic regimens.
Collapse
|
271
|
Ahmed AH. Phytochemical and Cytotoxicity Studies of Callistemon viminalis Leaves Extract Growing in Egypt. Curr Pharm Biotechnol 2020; 21:219-225. [PMID: 31696815 DOI: 10.2174/1389201020666191107110341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To isolate and identify new compounds from the methanolic extract of Callistemon viminalis leaves collected in Cairo, Egypt and evaluate its cytotoxic and hepatoprotective potentials. METHODS The methanolic extract of Callistemon viminalis leaves was fractionated and subjected to different chromatographic techniques to isolate pure, new compounds which were identified by nuclear magnetic resonance (NMR), spectroscopic analysis and mass spectrometric methods. The methanolic extract of the leaves was assessed for its cytotoxic and hepatoprotective activities against Hepatocellular carcinoma cells (Hep G-2 cell line) by estimating the viability of the HepG2 cells by the MTT reduction assay. RESULTS Six compounds were isolated and identified for the first time from the methanolic extract of Callistemon viminalis leaves, three compounds are new flavonoids namely; 3-O-[α-L-arabinopyranosyl- (1→2)-α-L-arabinopyranosyl)]-3'-O-methylquercetin (C1); 5,7,3',4' tetrahydroxy isoflavone-7-O-α- L-1C4- rhamnopyranosyl (1'''-6'')-O-β-D-4C1-glucopyranoside (C2) and 6-methyl-5,7-dihydroxy-4'- methoxyflavone (C6) along with the three known ones; hyperoside (C3), rutin (C4) and isoquercitrin (C5). CONCLUSION The methanolic extract of the leaves showed strong cytotoxic activity against Hepatocellular carcinoma cells (Hep G-2 cell line) and weak hepatoprotective effect.
Collapse
|
272
|
Gauchan DP, Kandel P, Tuladhar A, Acharya A, Kadel U, Baral A, Shahi AB, García-Gil MR. Evaluation of antimicrobial, antioxidant and cytotoxic properties of bioactive compounds produced from endophytic fungi of Himalayan yew ( Taxus wallichiana) in Nepal. F1000Res 2020; 9:379. [PMID: 33093944 PMCID: PMC7551515 DOI: 10.12688/f1000research.23250.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Endophytic fungi are largely underexplored in the discovery of natural bioactive products though being rich sources of novel compounds with promising pharmaceutical potential. In this study,
Taxus wallichiana, which has huge medicinal value, was investigated for its endophytic diversity and capability to produce bioactive secondary metabolites by analyzing antioxidant, antimicrobial and cytotoxic properties. Methods: The endophytes were identified by ITS-PCR using genomic DNA samples. The secondary metabolites were extracted by solvent extraction method using ethyl acetate. The antioxidant activity was analyzed by Thin Layer Chromatography, Total Phenol Content (TPC), Total Flavonoid Content (TFC) and DPPH assay, and the antimicrobial activity was analyzed by agar-well diffusion method. Brine shrimp lethality assay was used to analyze the cytotoxicity of the fungal extracts. Results: Out of 16 different
Taxus trees sampled from different locations of Dhorpatan, 13 distinctive endophytic fungi were isolated and grouped into 9 different genera:
Bjerkandera, Trichoderma, Preussia, Botrytis, Arthrinium, Alternaria, Cladosporium, Sporormiella and
Daldinia. The ethyl acetate extracts isolated from three endophytic fungi:
Alternaria alternata,
Cladosporium cladosporioides and
Alternaria brassicae showed significant TPC values of 204±6.144, 312.3±2.147 and 152.7±4.958µg GAE/mg of dry extract, respectively, and TFC values of 177.9±2.911, 644.1±4.202 and 96.38±3.851µg RE/mg of dry extract, respectively. Furthermore, these three extracts showed a dose dependent radical scavenging activity with IC
50 concentration of 22.85, 22.15 and 23.001 µg/ml, respectively. The extracts of
C. cladosporioides and
A. brassicae also showed promising antimicrobial activity against
Escherichia coli,
Staphylococcus aureus and
Bacillus subtilis with a minimum inhibitory concentration of 250μg/ml for all bacteria. Both the samples showed cytotoxic property against shrimp nauplii with LC
50 of 104.2 and 125.9µg/ml, respectively. Conclusions: The crude fungal extracts obtained from endophytes:
A. alternata,
C. cladosporioides and
A. brassicae upon purification and further identification of the bioactive compounds can be a fascinating source for novel pharmaceutical agents.
Collapse
|
273
|
Chen A, Karanastasis A, Casey KR, Necelis M, Carone BR, Caputo GA, Palermo EF. Cationic Molecular Umbrellas as Antibacterial Agents with Remarkable Cell-Type Selectivity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21270-21282. [PMID: 31917544 DOI: 10.1021/acsami.9b19076] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We synthesized a combinatorial library of dendrons that display a cluster of cationic charges juxtaposed with a hydrophobic alkyl chain, using the so-called "molecular umbrella" design approach. Systematically tuning the generation number and alkyl chain length enabled a detailed study of the structure-activity relationships in terms of both hydrophobic content and number of cationic charges. These discrete, unimolecular compounds display rapid and broad-spectrum bactericidal activity comparable to the activity of antibacterial peptides. Micellization was examined by pyrene emission and dynamic light scattering, which revealed that monomeric, individually solvated dendrons are present in aqueous media. The antibacterial mechanism of action is putatively driven by the membrane-disrupting nature of these cationic surfactants, which we confirmed by enzymatic assays on E. coli cells. The hemolytic activity of these dendritic macromolecules is sensitively dependent on the dendron generation and the alkyl chain length. Via structural optimization of these two key design features, we identified a leading candidate with potent broad-spectrum antibacterial activity (4-8 μg/mL) combined with outstanding hemocompatibility (up to 5000 μg/mL). This selected compound is >1000-fold more active against bacteria as compared to red blood cells, which represents one of the highest selectivity index values ever reported for a membrane-disrupting antibacterial agent. Thus, the leading candidate from this initial library screen holds great potential for future applications as a nontoxic, degradable disinfectant.
Collapse
|
274
|
Matulja D, Wittine K, Malatesti N, Laclef S, Turks M, Markovic MK, Ambrožić G, Marković D. Marine Natural Products with High Anticancer Activities. Curr Med Chem 2020; 27:1243-1307. [PMID: 31931690 DOI: 10.2174/0929867327666200113154115] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022]
Abstract
This review covers recent literature from 2012-2019 concerning 170 marine natural products and their semisynthetic analogues with strong anticancer biological activities. Reports that shed light on cellular and molecular mechanisms and biological functions of these compounds, thus advancing the understanding in cancer biology are also included. Biosynthetic studies and total syntheses, which have provided access to derivatives and have contributed to the proper structure or stereochemistry elucidation or revision are mentioned. The natural compounds isolated from marine organisms are divided into nine groups, namely: alkaloids, sterols and steroids, glycosides, terpenes and terpenoids, macrolides, polypeptides, quinones, phenols and polyphenols, and miscellaneous products. An emphasis is placed on several drugs originating from marine natural products that have already been marketed or are currently in clinical trials.
Collapse
|
275
|
Atiya A, Salim MA, Sinha BN, Ranjan Lal U. Two new anticancer phenolic derivatives from leaves of Piper betle Linn. Nat Prod Res 2020; 35:5021-5029. [PMID: 32375527 DOI: 10.1080/14786419.2020.1762186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this study, phytochemical analyses of the chloroform extract of Piper betle L. var. haldia and maghai, Piperaceae, leaves led to the isolation of two new phenolic derivatives: 1-n-decanoyl hydroxy-benzoic acid/1-n-decanoyl phenol (H2) and 3-butylphenol (M1) on the basis of spectroscopic data 1D NMR (1H, 13C) and 2D NMR (1H - 1H COSY, HMBC) as well as ESI-MS, FT-IR and HR-ESI-MS analyses. Compounds H2 and M1 showed excellent antioxidant DPPH free radical scavenging activity with IC50 values of 10.66 μ/mL and 13.65 μg/mL compared to ascorbic acid as a standard antioxidant with an IC50 value of 2.52 μg/mL. Evaluation of cytotoxic activity against two human oral cancer cell lines (SCC-40 and SCC-29B) showed significant effect with GI50 values of 24.08 and 33.08 μg/mL for compound H2 and 35.03 and 47.06 μg/mL for compound M1, compared to Doxorubicin® as a standard cytotoxic drug with GI50 value of < 10 μg/mL.
Collapse
|