301
|
Sun HB, Nalim R, Yokota H. Expression and activities of matrix metalloproteinases under oscillatory shear in IL-1-stimulated synovial cells. Connect Tissue Res 2004; 44:42-9. [PMID: 12945803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Matrix metalloproteinases (MMPs) are known to play a critical role in tissue disintegration, and an elevated level of MMPs is observed in synovium and synovial fluid of joints with rheumatoid arthritis. During joint movement, synovial tissue receives various mechanical stimuli, but effects of mechanical challenges on regulation of MMPs in rheumatic synovium are poorly understood. Focusing on cellular responses to oscillatory fluid shear in human synovial cells, we determined the expression of MMP-1 and MMP-13 by polymerase chain reaction and immunoblotting as well as proteolytic activities of total MMPs by a fibril degradation assay and zymography. The results revealed that approximately 0.5 dyn/cm2 oscillatory shear at 1 Hz not only reduced an mRNA level and a protein level of MMP-1 and MMP-13, but it also decreased collagenase and gelatinase activities of total MMPs. Furthermore, the induction of the MMP expression and activities by interleukin-1 was suppressed by the oscillatory shear. Interestingly, the oscillatory shear upregulated the mRNA expression of TIMP-1 and TIMP-2. Our results support a potential role of oscillatory shear in regulating expression and activities of MMPs in the presence and the absence of proinflammatory cytokine.
Collapse
|
302
|
Lee MH, Rapti M, Knaüper V, Murphy G. Threonine 98, the pivotal residue of tissue inhibitor of metalloproteinases (TIMP)-1 in metalloproteinase recognition. J Biol Chem 2004; 279:17562-9. [PMID: 14734567 DOI: 10.1074/jbc.m312589200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous modulators of the zinc-dependent mammalian matrix metalloproteinases (MMPs) and their close associates, proteinases of the ADAM (a disintegrin and metalloproteinase) and ADAM with thrombospondin repeats families. There are four variants of TIMPs, and each has its defined set of metalloproteinase (MP) targets. TIMP-1, in particular, is inactive against several of the membrane-type MMPs (MT-MMPs), MMP-19, and the ADAM proteinase TACE (tumor necrosis factor-alpha-converting enzyme, ADAM-17). The molecular basis for such inactivity is unknown. Previously, we showed that TIMP-1 could be transformed into an active inhibitor against MT1-MMP by the replacement of threonine 98 residue with leucine (T98L). Here, we reveal that the T98L mutation has in fact transformed TIMP-1 into a versatile inhibitor against an array of MPs otherwise insensitive to wild-type TIMP-1; examples include TACE, MMP-19, and MT5-MMP. Using T98L as the scaffold, we created a TIMP-1 variant that is fully active against TACE. The binding affinity of the mutant (V4S/TIMP-3-AB-loop/V69L/T98L) (K (app)(i) 0.14 nm) surpassed that of TIMP-3 (K (app)(i) 0.22 nm), the only natural TIMP inhibitor of the enzyme. The requirement for leucine is absolute for the transformation in inhibitory pattern. On the other hand, the mutation has minimal impact on the MPs already well inhibited by wild-type TIMP-1, such as gelatinase-A and stromelysin-1. Not only have we unlocked the molecular basis for the inactivity of TIMP-1 against several of the MPs, but also our findings fundamentally modify the current beliefs on the molecular mechanism of TIMP-MP recognition and selectivity.
Collapse
|
303
|
Fieber C, Baumann P, Vallon R, Termeer C, Simon JC, Hofmann M, Angel P, Herrlich P, Sleeman JP. Hyaluronan-oligosaccharide-induced transcription of metalloproteases. J Cell Sci 2004; 117:359-67. [PMID: 14657275 DOI: 10.1242/jcs.00831] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activated dendritic epidermal Langerhans cells and metastatic tumour cells share many properties. Both cell types can invade the surrounding tissue, enter the lymphatic system and travel to regional lymph nodes. We have recently shown that fragments of the extracellular matrix component hyaluronan, which are typically produced at sites of inflammation, can activate dendritic cells. Upon activation, dendritic cells upregulate expression of matrix metalloproteases (MMPs). These observations prompted us to investigate whether exposure to hyaluronan fragments also induces MMP expression in tumour cells. Here, we report that MMP-9, MMP-13 and urokinase plasminogen activator are upregulated in murine 3LL tumour cells after exposure to mixed-size hyaluronan. Similarly upregulated MMP-9 and MMP-13 expression was observed in primary fibroblasts. By using size-fractionated hyaluronan preparations, we show that the enhanced expression of MMP-9 and MMP-13 is only induced by small hyaluronan (HA) fragments. Although our data suggest that HA-fragment-induced MMP-9 and MMP-13 expression is receptor mediated, they rule out an involvement of the hyaluronan receptors CD44, RHAMM/IHAP and TLR-4. Finally, we show that HA fragment-induced MMP-9 transcription is mediated via NF-κB. Our results suggest that the metastasis-associated HA degradation in tumours might promote invasion by inducing MMP expression.
Collapse
|
304
|
Bendardaf R, Lamlum H, Vihinen P, Ristamäki R, Laine J, Pyrhönen S. Low Collagenase-1 (MMP-1) and MT1-MMP Expression Levels Are Favourable Survival Markers in Advanced Colorectal Carcinoma. Oncology 2004; 65:337-46. [PMID: 14707454 DOI: 10.1159/000074647] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Extracellular matrix degradation is required for invasive growth and metastasis formation in colorectal carcinoma; therefore, we examined matrix metalloproteinases expression (MMP-1, MMP-13 and MT1-MMP) and apoptosis in tumours from 49 patients with advanced colorectal disease. METHODS MMP expression was determined immunohistochemically and apoptotic index (AI) was ascertained using the TUNEL assay. RESULTS Low levels of MT1-MMP, MMP-1 and AI were found to be favourable markers significantly associated with longer survival. MT1-MMP expression levels below the median (</=14.0% of tumour cells) were associated with better overall survival (median 26.2 vs. 15.6 months, p = 0.02) and MMP-1 expression levels below the median (</=28.7% of tumour cells) correlated with longer survival following metastasis (median 21.5 vs. 13.3 months, p = 0.05). MT1-MMP, MMP-1 and AI were all found to have significant independent effects on survival. Interestingly, MMP-1 expression levels above the median were associated with distal disease of the colon (p = 0.02). CONCLUSIONS These findings reveal that MT1-MMP and MMP-1 expression levels and AI are useful prognostic indicators in advanced colorectal carcinoma and suggest that markers of MMP expression might be used in identifying patients who would benefit from new treatment modalities involving MMP inhibitors.
Collapse
|
305
|
Impola U, Uitto VJ, Hietanen J, Hakkinen L, Zhang L, Larjava H, Isaka K, Saarialho-Kere U. Differential expression of matrilysin-1 (MMP-7), 92 kD gelatinase (MMP-9), and metalloelastase (MMP-12) in oral verrucous and squamous cell cancer. J Pathol 2004; 202:14-22. [PMID: 14694517 DOI: 10.1002/path.1479] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Accepted: 08/26/2003] [Indexed: 11/10/2022]
Abstract
Squamous cell carcinoma (SCC) of the oral cavity is a highly invasive tumour of stratified squamous epithelium that spreads through degradation of the basement membrane (BM) and extracellular matrix (ECM). There are currently no reliable tissue or serum markers to predict whether the tumour has metastasized at the time of diagnosis. Verrucous carcinoma (VC) of the oral cavity is a rare low-grade variant of oral SCC that penetrates into the subepithelial connective tissue. Many matrix metalloproteinases (MMPs), such as MMP-1, -2, -7, -9, -13, and -14, as well as integrin receptors have been implicated in cancer invasion. Integrin alphavbeta6 is induced in SCC and appears to be involved in up-regulation of MMP-9 expression by oral keratinocytes and promotion of their migration. The aim of this study was to investigate whether the pattern of MMP expression or that of alphavbeta6 integrin contributes to the differences in the biological behaviour of oral SCC and VC. The results show that the less aggressive nature of oral VC may be connected to its MMP expression profile. Typically, VCs were devoid of epithelial MMP-3, -7, -9, -12 and -13 expression, compared with SCCs. MMP-19 was expressed by epithelial keratinocytes in hyperproliferative areas of verrucous hyperplasia, VC, and SCC, but was absent in the invasive cancer cell nests of SCC. MMP-26 was expressed by hyperproliferative keratinocytes in VC as well as by invasive cancer cells in SCCs. MMP-10 was expressed widely in the epithelium of all SCC specimens. alphavbeta6 integrin expression was also detected in some cases of epithelial hyperplasia but was significantly more abundant in cancers at the invasive front. The absence of MMP-7, -9 and -12 from epithelial cells may serve as a good prognostic marker of non-invasive oral carcinoma. Blocking the activity of invasion-specific MMPs or alphavbeta6 integrin might offer novel therapeutic modalities in early-stage oral carcinoma.
Collapse
MESH Headings
- Antigens, Neoplasm/analysis
- Biomarkers, Tumor/analysis
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Verrucous/enzymology
- Carcinoma, Verrucous/genetics
- Carcinoma, Verrucous/pathology
- Cell Adhesion Molecules/analysis
- Collagenases/analysis
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Hyperplasia/enzymology
- Hyperplasia/genetics
- Hyperplasia/pathology
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- Integrins/analysis
- Matrix Metalloproteinase 10
- Matrix Metalloproteinase 12
- Matrix Metalloproteinase 13
- Matrix Metalloproteinase 3/analysis
- Matrix Metalloproteinase 7/analysis
- Matrix Metalloproteinase 9/analysis
- Matrix Metalloproteinases/analysis
- Matrix Metalloproteinases, Secreted
- Metalloendopeptidases/analysis
- Mouth Neoplasms/enzymology
- Mouth Neoplasms/genetics
- Mouth Neoplasms/pathology
- Neoplasm Invasiveness/pathology
- Prognosis
- Kalinin
Collapse
|
306
|
Nakamura H, Sato G, Hirata A, Yamamoto T. Immunolocalization of matrix metalloproteinase-13 on bone surface under osteoclasts in rat tibia. Bone 2004; 34:48-56. [PMID: 14751562 DOI: 10.1016/j.bone.2003.09.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Matrix metalloproteinase (MMP)-13 (an interstitial collagenase also called collagenase 3) is involved in degradation of extracellular matrix in various tissues. Using immunohistochemistry and Western blotting, we investigated localization of MMP-13 in rat tibia, to clarify the role of MMP-13 in bone resorption. MMP-13 reactivity was mainly seen on bone surfaces under osteoclasts, and in some osteocytes and their lacunae near osteoclasts. However, immunoreactivity was not seen in chondrocytes or osteoclasts. MMP-13 was also localized on cement lines in the epiphysis. In the growth plate erosion zone, perivascular cells showed MMP-13 reactivity. Immunoelectron microscopy revealed that MMP-13 was localized on the bone surfaces, under the ruffled borders and some clear zones of osteoclasts. Gold-labeled MMP-13 was closely associated with collagen fibrils. Gold labeling was also detected in Golgi apparatus of osteocytes adjacent to osteoclasts and bone lining cells. Western blotting showed that MMP-13 was mainly associated with mineralized bone matrix. These findings suggest that MMP-13 synthesized and secreted by osteoblast-lineage cells is localized under the ruffled borders of osteoclasts. MMP-13 may play an important role in degradation of type I collagen in bone matrix, acting in concert with cathepsin K and MMP-9 produced by osteoclasts. MMP-13 in perivascular cells may be involved in removal of cartilage matrix proteins such as type II collagen and aggrecan.
Collapse
|
307
|
Watanabe H, Shimizu T, Nishihira J, Abe R, Nakayama T, Taniguchi M, Sabe H, Ishibashi T, Shimizu H. Ultraviolet A-induced Production of Matrix Metalloproteinase-1 Is Mediated by Macrophage Migration Inhibitory Factor (MIF) in Human Dermal Fibroblasts. J Biol Chem 2004; 279:1676-83. [PMID: 14581488 DOI: 10.1074/jbc.m303650200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are thought to be responsible for dermal photoaging in human skin. In the present study, we evaluated the involvement of macrophage migration inhibitory factor (MIF) in MMP-1 expression under ultraviolet A (UVA) irradiation in cultured human dermal fibroblasts. UVA (20 J/cm(2)) up-regulates MIF production, and UVA-induced MMP-1 mRNA production is inhibited by an anti-MIF antibody. MIF (100 ng/ml) was shown to induce MMP-1 in cultured human dermal fibroblasts. We found that MIF (100 ng/ml) enhanced MMP-1 activity in cultured fibroblasts assessed by zymography. Moreover, we observed that fibroblasts obtained from MIF-deficient mice were much less sensitive to UVA regarding MMP-13 expression than those from wild-type BALB/c mice. Furthermore, after UVA irradiation (10 J/cm(2)), dermal fibroblasts of MIF-deficient mice produced significantly decreased levels of MMP-13 compared with fibroblasts of wild-type mice. Next we investigated the signal transduction pathway of MIF. The up-regulation of MMP-1 mRNA by MIF stimulation was found to be inhibited by a PKC inhibitor (GF109203X), a Src-family tyrosine kinase inhibitor (herbimycin A), a tyrosine kinase inhibitor (genistein), a PKA inhibitor (H89), a MEK inhibitor (PD98089), and a JNK inhibitor (SP600125). In contrast, the p38 inhibitor (SB203580) was found to have little effect on expression of MMP-1 mRNA. We found that PKC-pan, PKC alpha/beta II, PKC delta (Thr505), PKC delta (Ser(643)), Raf, and MAPK were phosphorylated by MIF. Moreover, we demonstrated that phosphorylation of PKC alpha/beta II and MAPK in response to MIF was suppressed by genistein, and herbimycin A as well as by transfection of the plasmid of C-terminal Src kinase. The DNA binding activity of AP-1 was significantly up-regulated 2 h after MIF stimulation. Taken together, these results suggest that MIF is involved in the up-regulation of UVA-induced MMP-1 in dermal fibroblasts through PKC-, PKA-, Src family tyrosine kinase-, MAPK-, c-Jun-, and AP-1-dependent pathways.
Collapse
|
308
|
Jeon SY, Baek KH, Kim YS, Park CG, Kwon HS, Ko SH, Song KH, Yoo SJ, Son HS, Cha BY, Lee KW, Son HY, Kang SK, Yoon KH. Differentially up-regulated genes in proliferating porcine neonatal pancreas cells caused by epidermal growth factor. J Cell Biochem 2004; 91:354-64. [PMID: 14743394 DOI: 10.1002/jcb.10752] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pancreatic duct cells are considered to be a major source for beta-cell regeneration or neogenesis. Although epidermal growth factor (EGF) is a well-known important growth factor for pancreas development, the control of pancreatic duct cell growth and differentiation by EGF is poorly understood. In this study, we focused on identifying the genes that were differentially up-regulated in response to EGF stimulation using monolayer cultured porcine neonatal pancreas cells. Cells were obtained from 1 to 3 day old pigs, dispersed and cultured for 8 days. Monolayer cultured porcine pancreas cells were comprised of duct cells and some endocrine and mesenchymal cells (75.2 +/- 15.1, 19.6 +/- 4.9, and 9.5 +/- 3.1%, respectively). After 16 h in serum free media, cells were treated with 100 microg/L EGF for 24 h. Differentially expressed genes were screened by subtractive hybridization. (3)H-thymidine uptake was significantly increased by EGF with time (untreated vs. 24 h treated, untreated vs. 48 h treated: 305.5 +/- 3.5 cpm vs. 380.3 +/- 17.3 cpm (P < 0.05), 309.2 +/- 4.51 vs. 929 +/- 9.19 cpm, (P < 0.005), respectively). Three hundred and fifty cDNA clones were obtained by subtractive hybridization and the inserts were confirmed in 161 colonies and then sequenced. Finally, we found increased mRNA expression of five unknown and five known genes, including cytochrome c oxidase subunit I (COI), cyclooxygenase-2 (COX-2), matrix metalloproteinase-13 (MMP-13), Wiskott-Aldrich syndrome protein interacting protein (WASPIP), and hyaluronan synthase-2 (HAS-2). We confirmed the up-regulation of these genes by Northern blot and semi-quantitative RT-PCR at various time points. The present findings opened new targets for the research on the mechanisms of pancreatic duct cell proliferation by EGF.
Collapse
|
309
|
Sulkala M, Pääkkönen V, Larmas M, Salo T, Tjäderhane L. Matrix metalloproteinase-13 (MMP-13, collagenase-3) is highly expressed in human tooth pulp. Connect Tissue Res 2004; 45:231-7. [PMID: 15763932 DOI: 10.1080/03008200490885788] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Matrix metalloproteinases (MMPs) and their specific tissue inhibitors (TIMPs) participate into extracellular matrix degradation in physiological and pathological conditions. We hypothesized that MMP expression in pulp tissue changes in response to caries attack and investigated the gene expression profiles of MMPs and TIMPs in pulp tissue of sound and carious teeth with cDNA microarray. cDNA microarray demonstrated an extremely high MMP-13 (collagenase-3) mRNA expression in pooled pulp samples of sound and carious teeth, with less pronounced expression of MMP-16 (MT3-MMP) and TIMP-1. Real-time quantitative polymerase chain reaction of individual pulp samples revealed a wide range of the MMP-13 expression level between pulp samples with possible downregulation of MMP-13 expression during caries progression. Western blot and immunohistochemical staining confirmed the presence of MMP-13 with no observable differences between sound and carious teeth pulp tissues. The results reveal that MMP-13 is expressed and synthesized in pulp tissue, an interesting feature considering the very limited expression of MMP-13 in normal adult tissues. Further studies with a larger sample size are needed to clarify the changes in MMP-13 expression during caries progression.
Collapse
|
310
|
Hsu YH, Hsieh MS, Liang YC, Li CY, Sheu MT, Chou DT, Chen TF, Chen CH. Production of the chemokine eotaxin-1 in osteoarthritis and its role in cartilage degradation. J Cell Biochem 2004; 93:929-39. [PMID: 15389872 DOI: 10.1002/jcb.20239] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The expression of the chemokine, eotaxin-1, and its receptors in normal and osteoarthritic human chondrocytes was examined, and its role in cartilage degradation was elucidated in this study. Results indicated that plasma concentrations of eotaxin-1 as well as the chemokines, RANTES, and MCP-1alpha, were higher in patients with osteoarthritis (OA) than those in normal humans. Stimulation of chondrocytes with IL-1beta or TNF-alpha significantly induced eotaxin-1 expression. The production of eotaxin-1 induced expression of its own receptor of CCR3 and CCR5 on the cell surface of chondrosarcomas, suggesting that an autocrine/paracrine pathway is involved in eotaxin-1's action. In addition, eotaxin-1 markedly increased the expressions of MMP-3 and MMP-13 mRNA, but had no effect on TIMP-1 expression in chondrocytes. However, pretreatment of anti-eotaxin-1 antibody significantly decreased the MMP-3 expression induced by IL-1beta. These results first demonstrate that human chondrocytes express the chemokine, eotaxin-1, and that its expression is induced by treatment with IL-1beta and TNF-alpha. The cytokine-triggered induction of eotaxin-1 further results in enhanced expressions of its own receptor of CCR3, CCR5, and MMPs, suggesting that eotaxin-1 plays an important role in cartilage degradation in OA.
Collapse
|
311
|
Jung JC, West-Mays JA, Stramer BM, Byrne MH, Scott S, Mody MK, Sadow PM, Krane SM, Fini ME. Activity and expression ofXenopus laevis matrix metalloproteinases: Identification of a novel role for the hormone prolactin in regulating collagenolysis in both amphibians and mammals. J Cell Physiol 2004; 201:155-64. [PMID: 15281098 DOI: 10.1002/jcp.20037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prolactin (PRL) has long been implicated in Xenopus metamorphosis as an anti-metamorphic and/or juvenilizing hormone. Numerous studies showed that PRL could prevent effects of either endogenous or exogenous thyroid hormone (TH; T(3)). It has been shown that expression of matrix metalloproteinases (MMPs) is induced by TH during Xenopus metamorphosis. Direct in vivo evidence, however, for such anti-TH effects by PRL with respect to MMPs has not been available for the early phase of Xenopus development or metamorphosis. To understand the functional role of PRL, we investigated effects of PRL on Xenopus collagenase-3 (XCL3) and collagenase-4 (XCL4) expression in a cultured Xenopus laevis cell line, XL-177. Northern blot analysis demonstrated that XCL3 and XCL4 expression were not detected in control or T(3)-treated cells, but were differentially induced by PRL in a dose- and time-dependent fashion. Moreover, treatment with IL-1alpha as well as phorbol myristate acetate (PMA), a protein kinase C (PKC) activator, or H8, a protein kinase A (PKA) inhibitor, augmented PRL-induced collagenase expression, suggesting that multiple protein kinase pathways and cytokines may participate in PRL-induced collagenase expression. Interestingly, XCL3 expression could be induced in XL-177 cells by T(3), but only when co-cultured with prometamorphic Xenopus tadpole tails (stage 54/55), suggesting that the tails secrete a required intermediate signaling molecule(s) for T(3)-induced XCL3 expression. Taken together, these data demonstrate that XCL3 and XCL4 can be differentially induced by PRL and T(3) and further suggest that PRL is a candidate regulator of TH-independent collagenase expression during the organ/tissue remodeling which occurs in Xenopus development.
Collapse
|
312
|
Hui W, Rowan AD, Richards CD, Cawston TE. Oncostatin M in combination with tumor necrosis factor ? induces cartilage damage and matrix metalloproteinase expression in vitro and in vivo. ACTA ACUST UNITED AC 2003; 48:3404-18. [PMID: 14673992 DOI: 10.1002/art.11333] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To determine the effects of the proinflammatory cytokine combination of oncostatin M (OSM) and tumor necrosis factor alpha (TNFalpha) on cartilage destruction in both in vitro and in vivo model systems. METHODS The release of collagen and proteoglycan was assessed in bovine cartilage explant cultures, while messenger RNA (mRNA) from bovine chondrocytes was analyzed by Northern blotting. Immunohistochemistry was performed on sections prepared from murine joints following injection of adenovirus vectors encoding murine OSM and/or murine TNFalpha. RESULTS The combination of OSM + TNFalpha induced significant collagen release from bovine cartilage, accompanied by high levels of active collagenolytic activity. Northern blot analysis indicated that this cytokine combination synergistically induced matrix metalloproteinase 1 (MMP-1), MMP-3, and MMP-13 mRNA. The in vivo data clearly indicated that OSM + TNFalpha overexpression increased MMP levels and decreased levels of tissue inhibitor of metalloproteinases 1 (TIMP-1). Specifically, OSM + TNFalpha induced marked synovial hyperplasia, inflammation, and cartilage and bone destruction with a concomitant increase in MMP expression in both cartilage and synovium and decreased TIMP-1 expression in the articular cartilage. These effects were markedly greater than those seen with either cytokine alone. CONCLUSION This study demonstrates that OSM + TNFalpha represents a potent proinflammatory cytokine combination that markedly induces MMP production in both cartilage and synovium, thus promoting joint destruction.
Collapse
|
313
|
Heathfield TF, Onnerfjord P, Dahlberg L, Heinegård D. Cleavage of fibromodulin in cartilage explants involves removal of the N-terminal tyrosine sulfate-rich region by proteolysis at a site that is sensitive to matrix metalloproteinase-13. J Biol Chem 2003; 279:6286-95. [PMID: 14660626 DOI: 10.1074/jbc.m307765200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrity of cartilage fails in joint disease. The current work aimed to identify candidate active proteinases in joint diseases using an in vitro model for cartilage degradation induced by interleukin-1. A critical event in the process of cartilage destruction in joint disease is the failure of the collagen fiber network to maintain integrity. Proteins binding to the surface of the fibers are likely early points of failure. Fibromodulin, a member of the leucine-rich repeat protein family, is one predominant protein in cartilage and is known for its roles in the formation of collagen fibrils and sustained interaction with these formed fibers. Cleavage removes the tyrosine sulfate-rich region in the N terminus of fibromodulin. Whereas fibromodulin bound to collagen in tissue was digested, purified fibromodulin was not cleaved. In contrast an N-terminal 10-kDa fragment, Gln19-Lys98, of the protein generated by Lys-C digestion contains the cleavage site and was a substrate cleaved by the enzyme in medium from stimulated cultures. In solution, digestion of this substrate with matrix metalloproteinase (MMP)-2, -9, -8, and -13 demonstrated that only MMP-13 was capable to efficiently cleave it. The cleavage product obtained after MMP-13 digestion was identical to that observed in cleaved fibromodulin from cartilage explant cultures stimulated with interleukin-1. MMP-13 treatment of fresh articular cartilage also produced the fragment under study. The elucidation of the enzyme responsible for such cleavage may lead to treatment modalities involving its selective inhibition for patients suffering from arthritis. The known structure of the fragments permits the generation of neo-epitope antibodies to the cleavage site, which can be used to detect ongoing cartilage degradation in patients with arthritic disease, an important adjunct in monitoring disease progression, active disease, and efficacy of treatment.
Collapse
|
314
|
Walling HW, Raggatt LJ, Irvine DW, Barmina OY, Toledano JE, Goldring MB, Hruska KA, Adkisson HD, Burdge RE, Gatt CJ, Harwood DA, Partridge NC. Impairment of the collagenase-3 endocytotic receptor system in cells from patients with osteoarthritis. Osteoarthritis Cartilage 2003; 11:854-63. [PMID: 14629961 DOI: 10.1016/s1063-4584(03)00170-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Collagenase-3, a matrix metalloproteinase (MMP-13) that can degrade collagen II and aggrecan, is produced by osteoarthritic (OA) chondrocytes and may contribute to matrix destruction in this disease. Our laboratory has previously identified a specific endocytotic receptor for collagenase-3 on osteoblastic and fibroblastic cells, which couples with the low-density lipoprotein receptor-related protein (LRP1) to mediate the internalization and degradation of this enzyme. We hypothesized that the activity of this receptor system is reduced in OA chondrocytes which may lead to increased local extracellular levels of collagenase-3 and increased destruction of the cartilage matrix at pericellular sites. METHODS Human chondrocytes and synoviocytes were obtained from OA knees at the time of joint replacement surgery and from non-arthritic control specimens following autopsy or surgery. Enzyme-linked immunosorbant assay (ELISA) was used to measure collagenase-3 secreted from primary cultures. Iodinated collagenase-3 was used to analyze the cell-surface binding, internalization and intracellular degradation of collagenase-3. Reverse-transcriptase polymerase chain reaction was used to confirm chondrocyte phenotype and the expression of collagenase-3 and LRP1 mRNAs. RESULTS OA chondrocytes and synoviocytes demonstrated significantly reduced (75-77%) binding of recombinant 125I collagenase-3. Internalization and degradation of the ligand was also significantly reduced (64-72%) in OA cells. Collagenase-3 removal was inhibited by the LRP1 receptor-associated protein (RAP). CONCLUSION These results suggest a mechanism whereby impaired receptor-mediated removal of collagenase-3 in OA chondrocytes may lead to enhanced local degradation of the cartilage matrix. This work also implicates an LRP family member in endocytotic receptor-mediated collagenase-3 processing and suggests a novel therapeutic target for OA.
Collapse
|
315
|
Yokota H, Goldring MB, Sun HB. CITED2-mediated regulation of MMP-1 and MMP-13 in human chondrocytes under flow shear. J Biol Chem 2003; 278:47275-80. [PMID: 12960175 DOI: 10.1074/jbc.m304652200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CITED2 (CBP/p300-interacting transactivator with ED-rich tail 2) is a member of the Cited family of nuclear regulators, previously known as mrg1 (melanocyte-specific gene-related gene 1). CITED2 is inducible by varying stimuli including lipopolysaccharide, hypoxia, and cytokines such as interleukin 9 and interferon gamma. Using the immortalized human chondrocyte cell line, C-28/I2, we investigated whether CITED2 could be responsive to mechanical stimuli, and if so, whether CITED2 could mediate shear-driven regulation of matrix metalloproteinase (MMP) genes. The C-28/I2 cells were cultured under flow shear at 1-20 dyn/cm2, and the role of CIT-ED2 in regulation of MMPs was examined using the plasmids encoding sense and antisense CITED2 DNA sequences. The results showed that flow shear at 5 dyn/cm2 increased CITED2 mRNA and protein levels and down-regulated MMP-1 and MMP-13 mRNA and protein levels as well as enzyme activities. Consistent with the coordinated expression patterns of CITED2 and MMPs, overexpression of CITED2 repressed MMP-1 and MMP-13 mRNA levels and activities, whereas antisense CITED2 plasmids prevented the shear-induced down-regulation of MMP expression. Interleukin-1beta induced the formation of p300-Ets-1 complexes without affecting expression of CITED2. Transforming growth factor-beta as well as flow shear at 5 dyn/cm2 stimulated not only the expression of CITED2 but also the association of CIT-ED2 with p300 by dissociating Ets-1 from p300. These results indicate that CITED2 plays a major role in shear-induced down-regulation of MMP-1 and MMP-13 via a transforming growth factor-beta-dependent pathway.
Collapse
|
316
|
Lo IKY, Marchuk L, Majima T, Frank CB, Hart DA. Medial collateral ligament and partial anterior cruciate ligament transection: mRNA changes in uninjured ligaments of the sheep knee. J Orthop Sci 2003; 8:707-13. [PMID: 14557938 DOI: 10.1007/s00776-003-0695-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Accepted: 06/04/2003] [Indexed: 02/09/2023]
Abstract
Following knee ligament injury, clinical and experimental investigations usually focus on the injured ligament, and uninjured ligaments of the same joint are largely ignored and presumed to remain unchanged. The purpose of this study was to characterize changes in mRNA levels for a relevant subset of molecules in the uninjured knee ligaments following combined unilateral medial collateral ligament (MCL) and partial anterior cruciate ligament (ACL) transection in sheep. Semiquantitative reverse transcription-polymerase chain reaction was performed for collagen types I, III, and V; matrix metalloproteinase-13 (MMP-13); and tissue inhibitor of metalloproteinase-1 for both injured and uninjured knee ligaments at 6 and 12 weeks after injury. Collagen type I, III, and V mRNA levels were significantly increased in MCL scars at 6 weeks as well as in the uninjured lateral collateral ligament and the anteromedial band of the ACL (AM-ACL). MMP-13 mRNA levels were also elevated in the MCL at 6 and 12 weeks and in the AM-ACL 6 weeks after injury. In contrast, significant changes in the posterior cruciate ligament were not detected at either time point, indicating specificity in the transient alterations. These results suggest that following injury, responses occur in uninjured ligaments that are specific although transient in nature. These responses may be an adaptive attempt to preserve function until the scar tissue can stabilize the mechanical environment following injury.
Collapse
|
317
|
Varghese S, Canalis E. Transcriptional regulation of collagenase-3 by interleukin-1 alpha in osteoblasts. J Cell Biochem 2003; 90:1007-14. [PMID: 14624460 DOI: 10.1002/jcb.10732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interleukin-1 (IL-1)alpha is an autocrine/paracrine agent of the skeletal tissue and it regulates bone remodeling. Collagenase-3 or matrix metalloproteinase (MMP)-13 is expressed in osteoblasts and its expression is modulated by several cytokines including IL-1alpha. Because the molecular mechanism of increased synthesis of collagenase-3 in bone cells by IL-1alpha is not known, we investigated if collagenase-3 expression by IL-1alpha in osteoblasts is mediated by transcriptional or post-transcriptional mechanisms. Exposure of rat osteoblastic cultures (Ob cells) to IL-1alpha at concentrations higher than 0.5 nM increased the synthesis of collagenase-3 mRNA up to eightfold and the secretion of immunoreactive protein up to 21-fold. The effects of IL-1alpha on collagenase-3 were time- and dose-dependent. Although prostaglandins stimulate collagenase-3 expression, stimulation of collagenase-3 in Ob cells by IL-1alpha was not mediated through increased biosynthesis of prostaglandins. The half-life of collagenase-3 mRNA from control and IL-1alpha-treated Ob cells was similar suggesting that the stabilization of collagenase-3 mRNA did not contribute to the increase in collagenase-3. However, IL-1alpha stimulated the rate of transcription of the collagenase-3 gene by twofold to fourfold indicating regulation of collagenase-3 expression in Ob cells at the transcriptional level. Stimulation of collagenase-3 by IL-1alpha in osteoblasts may in part mediate the effects of IL-1alpha in bone metabolism.
Collapse
|
318
|
Junge K, Rosch R, Bialasinski L, Klinge U, Klosterhalfen B, Schumpelick V. Persistent Extracellular Matrix Remodelling at the Interface to Polymers Used for Hernia Repair. Eur Surg Res 2003; 35:497-504. [PMID: 14593234 DOI: 10.1159/000073389] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2003] [Accepted: 06/02/2003] [Indexed: 11/19/2022]
Abstract
On the one hand, recurrence rates and postoperative complications following hernia repair are supposed to be influenced by the kind of mesh material used. On the other hand, an impaired collagen metabolism and cleavage within connective tissue has been suggested as decisive factor in the pathogenesis of recurrent hernia formation. The aim of our study was, therefore, to analyze the impact of commonly used mesh materials on quality of collagen deposition, expression of collagenases (matrix metalloproteinases; MMP-1/MMP-13), and specific tissue inhibitors of MMPs (TIMPs) in an animal study. Four different mesh materials were used (Prolene = polypropylene, Mersilene = polyester, and Vypro and Vypro II = combinations of polypropylene and polyglactin) and implanted as abdominal wall replacement in 60 male Wistar rats. Mesh samples were explanted after 3, 21, and 90 days and investigated using immunohistochemistry (expression of MMP-1/MMP-13 and TIMP-1) and cross-polarization microscopy (percentage of collagen type III to overall collagen). Besides an insufficient collagen composition with an increased percentage of collagen type III, we found a complex expression of collagenases and their inhibitors combined with a persistent chronic foreign-body reaction even 90 days after implantation. Except for TIMP-1 expression, which was significantly related to a lowered amount of inflammatory (r = -0.980, p = 0.02) and connective tissue formation (r = -0.951, p = 0.049), there was no relation to the expression of collagenases (MMP-1/MMP-13) with regard to the amount of inflammatory and connective tissue formation despite partly significant differences between implanted polymers.
Collapse
|
319
|
Ahmed S, Wang N, Lalonde M, Goldberg VM, Haqqi TM. Green Tea Polyphenol Epigallocatechin-3-gallate (EGCG) Differentially Inhibits Interleukin-1β-Induced Expression of Matrix Metalloproteinase-1 and -13 in Human Chondrocytes. J Pharmacol Exp Ther 2003; 308:767-73. [PMID: 14600251 DOI: 10.1124/jpet.103.059220] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Interleukin-1beta (IL-1beta)-induced inflammatory response in arthritic joints include the enhanced expression and activity of matrix metalloproteinases (MMPs), and their matrix degrading activity contribute to the irreversible loss of cartilage and may also be associated with sustained chronic inflammation. We have earlier shown that green tea (Camellia sinensis) polyphenol epigallocatechin-3-gallate (EGCG) was non-toxic to human chondrocytes [Singh R, Ahmed S, Islam N, Goldberg VM, and Haqqi TM (2002) Arthritis Rheum 46: 2079-2086] and inhibits the expression of inflammatory mediators in arthritic joints [Haqqi TM, Anthony DD, Gupta S, Ahmed N, Lee MS, Kumar GK, and Mukhtar H (1999) Proc Natl Acad Sci USA 96: 4524-4529]. Here we show that EGCG at micromolar concentrations was highly effective in inhibiting the IL-1beta-induced glycosaminoglycan (GAG) release from human cartilage explants in vitro. EGCG also inhibited the IL-1beta-induced mRNA and protein expression of MMP-1 and MMP-13 in human chondrocytes. Importantly, EGCG showed a differential, dose-dependent inhibitory effect on the expression and activity of MMP-13 and MMP-1. A similar differential dose-dependent inhibition of transcription factors NF-kappaB and AP-1 by EGCG was also noted. These results for the first time demonstrate a differential dose-dependent effect of EGCG on the expression and activity of MMPs and on the activities of transcription factors NF-kappaB and AP-1 and provide insights into the molecular basis of the reported anti-inflammatory effects of EGCG. These results also suggest that EGCG or compounds derived from it may be therapeutically effective inhibitors of IL-1beta-induced production of matrix-degrading enzymes in arthritis.
Collapse
|
320
|
Uchida G, Yoshimura K, Kitano Y, Okazaki M, Harii K. Tretinoin reverses upregulation of matrix metalloproteinase-13 in human keloid-derived fibroblasts. Exp Dermatol 2003; 12 Suppl 2:35-42. [PMID: 14756522 DOI: 10.1034/j.1600-0625.12.s2.6.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Keloids are skin abnormalities that are characterized by excessive deposition of collagen bundles in the dermis. Patients with keloids complain not only about their cosmetic appearance, but also about continuous itching and/or tenderness associated with chronic inflammation. Degradation of extracellular matrix (ECM) may be upregulated, associated with the expansion of keloids into circumferential skin, and high metabolic activity of keloid tissues may be due to increased matrix metalloproteinase (MMP) activity. Based on these hypotheses, we examined differences in expression of MMP-1, MMP-8, and MMP-13 between keloid-derived and normal dermal fibroblasts. Since retinoids are potent inhibitors of MMPs in the treatment of photoaged skin and cancers, we also examined whether or not tretinoin affects MMP expression of keloid-derived fibroblasts. The results of real-time polymerase chain reaction and ELISA demonstrated significant upregulation of MMP-13 and significant downregulation of MMP-1 and MMP-8 in keloid-derived fibroblasts, at both mRNA and protein levels. MMP-1 mRNA expression in the control group was significantly upregulated after the addition of tretinoin, whereas no significant change was observed in the keloid group. MMP-8 mRNA expression in the control group was significantly upregulated by tretinoin, with the peak at 12 h, while no significant change was observed in the keloid-derived fibroblasts. In contrast, the remarkably elevated MMP-13 mRNA expression in the keloid group was significantly suppressed, with the peak suppression at 12 h after addition of tretinoin, while MMP-13 mRNA expression in the control group was not significantly changed. The decrease in MMP-1 and MMP-8 may contribute to accumulation of type I and type III collagen in keloid tissues, and this mechanism may be modulated by molecular interaction with MMP-13. Tretinoin appeared to reverse the abnormal expression profile of MMPs in keloid-derived fibroblasts, such as markedly elevated expression of MMP-13, partly through inactivation of AP-1 pathway. The present results suggest that tretinoin may be clinically useful to improve the chronic inflammation seen in keloids and prevent expansion of keloid tissues into circumferential normal skin.
Collapse
|
321
|
Holvoet S, Vincent C, Schmitt D, Serres M. The inhibition of MAPK pathway is correlated with down-regulation of MMP-9 secretion induced by TNF-alpha in human keratinocytes. Exp Cell Res 2003; 290:108-19. [PMID: 14516792 DOI: 10.1016/s0014-4827(03)00293-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
MMP-9 (92 kDa) is the major gelatinase able to degrade collagen IV, secreted by keratinocytes that are actively involved in wound-healing or tumorigenesis. Since the invasive phenotype of cancers is dependent on MMP-9 expression, it appeared of interest to precisely characterize which signal transduction pathways activated by TNF-alpha are involved in MMP-9 up-regulation induced by TNF-alpha. In HaCaT cells, activation of MMP-9 occurs at the transcriptional level. Inhibition of the MAPK pathway using specific inhibitors of the Ras, Raf, MEK1/2, and Erk1/2 cascade was correlated with a marked inhibition of MMP-9 activity, as determined by gene and protein expression. MAPK pathway activation via TNF-alpha was confirmed by marked AP-1 activation detected in EMSA. Under our experimental conditions, p38 MAPK and SAPK/JNK pathways were not activated. Gene and protein expression of other MMPs that regulate MMP-9, such as MMP-1 and MMP-13, were also up-regulated by TNF-alpha and inhibited by UO126, providing evidence that the MAPK pathway plays a fundamental role in the regulation of MMP-9 secretion by keratinocytes. As TNF-alpha is known to be a main activator of NF-kappaB pathway, the effects of campthothecin and caffeic acid were investigated, such as, TNF-alpha campthothecin up-regulated MMP-9 activity but caffeic acid only weakly inhibited MMP-9 activation induced by TNF-alpha. However, NF-kappaB is activated as shown from immunostaining data, a nuclear staining and higher Western blotting expression of p50 and p65 NF-kappaB subunits were detected after TNF-alpha treatment. A higher specific signal was also detected in EMSA for TNF-alpha-treated cells.
Collapse
|
322
|
Zhu GF, Yu CH, Zhang Y, Li YM. [Gene expression of interstitial collagenase MMP-13 in progressive phase of rat liver fibrosis induced by ethanol]. ZHONGHUA GAN ZANG BING ZA ZHI = ZHONGHUA GANZANGBING ZAZHI = CHINESE JOURNAL OF HEPATOLOGY 2003; 11:660-2. [PMID: 14636440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
OBJECTIVES To demonstrate the gene expression of MMP-13 in the progressive phase of ethanol-induced experimental liver fibrosis in rats. METHODS 34 SD rats were randomized into two groups. The rats in experimental group (n=24) were given ethanol (44%, 7g/kg) every day, and the rats in control group (n=10) were given equality normal saline. Liver samples were harvested from experimental rats at the 4th, 12th and 24th weeks respectively. The dynamic expression of MMP-13 mRNA was assayed by semi-quantity reverse transcription-polymerase chain reaction (RT-PCR). RESULTS In normal rat liver, a faint band of MMP-13 mRNA was observed by RT-PCR (0.24+/-0.41). The gene expression of MMP-13 increased in the livers of rats treated with ethanol for 4 weeks (0.62+/-0.54), but it was not considered statistically, when compared with that in normal rats livers. And the livers from 12-week-treated rats showed a markedly MMP-13 mRNA expression (1.65+/-0.47, t=-4.363, P<0.01). Once the fibrosis became prominent (24 weeks), a faint band of MMP-13 mRNA was observed (0.39+/-0.25). CONCLUSION MMP-13 participates in the degradation of newly-formed matrix in the early phase of rat liver fibrosis induced by ethanol, but it expresses in a distinct time frame
Collapse
|
323
|
Zeliadt NA, Warmka JK, Wattenberg EV. Mitogen activated protein kinases selectively regulate palytoxin-stimulated gene expression in mouse keratinocytes. Toxicol Appl Pharmacol 2003; 192:212-21. [PMID: 14575638 DOI: 10.1016/s0041-008x(03)00298-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have been investigating how the novel skin tumor promoter palytoxin transmits signals through mitogen activated protein kinases (MAPKs). Palytoxin activates three major MAPKs, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, in a keratinocyte cell line derived from initiated mouse skin (308). We previously showed that palytoxin requires ERK to increase matrix metalloproteinase-13 (MMP-13) gene expression, an enzyme implicated in carcinogenesis. Diverse stimuli require JNK and p38 to increase MMP-13 gene expression, however. We therefore used the JNK and p38 inhibitors SP 600125 and SB 202190, respectively, to investigate the role of these MAPKs in palytoxin-induced MMP-13 gene expression. Surprisingly, palytoxin does not require JNK and p38 to increase MMP-13 gene expression. Accordingly, ERK activation, independent of palytoxin and in the absence of JNK and p38 activation, is sufficient to induce MMP-13 gene expression in 308 keratinocytes. Dexamethasone, a synthetic glucocorticoid that inhibits activator protein-1 (AP-1), blocked palytoxin-stimulated MMP-13 gene expression. Therefore, the AP-1 site present in the promoter of the MMP-13 gene appears to be functional and to play a key role in palytoxin-stimulated gene expression. Previous studies showed that palytoxin simulates an ERK-dependent selective increase in the c-Fos content of AP-1 complexes that bind to the promoter of the MMP-13 gene. JNK and p38 can also modulate c-Fos. Palytoxin does not require JNK or p38 to increase c-Fos binding, however. Altogether, these studies indicate that ERK plays a distinctly essential role in transmitting palytoxin-stimulated signals to specific nuclear targets in keratinocytes derived from initiated mouse skin.
Collapse
|
324
|
Parikh AB, Lee GM, Tchivilev IV, Graff RD. A neocartilage ideal for extracellular matrix macromolecule immunolocalization. Histochem Cell Biol 2003; 120:427-34. [PMID: 14593482 DOI: 10.1007/s00418-003-0580-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2003] [Indexed: 10/26/2022]
Abstract
A neocartilage construct readily amenable to microscopy and biomechanical studies is described. Porcine articular cartilage was digested with a mixture of dispase and collagenase for chondrons or pronase and collagenase for chondrocytes. Chondrons or chondrocytes plated in 96-well plates were fixed and immunolabeled in situ for fluorescence microscopy at days 4 and 11. Collagen types I and II, aggrecan, and MMP-13 expression was assayed by semiquantitative RT-PCR. Cell numbers were analyzed by MTT assay. Chondrons and chondrocytes produced neocartilage that could be handled with minimal tearing on day 3 and none on day 11. Some cell division occurred between days 4 and 7. In both cultures, chondrocytes were surrounded by a thin rim of type VI collagen and osteopontin. Type II collagen, keratan sulfate, and tenascin were abundant throughout. At day 3, cells were rounded but by day 11 flattened cells were visible in the substratum. Continued synthesis of aggrecan and type II collagen mRNA indicated maintenance of the chondrocyte phenotype. The neocartilage was easy to immunolabel in situ without the need for sectioning, and individual cells were readily observed by microscopy. The versatility of these constructs makes them ideal for microscopy and for biomechanical studies.
Collapse
|
325
|
MacLean HE, Kim JI, Glimcher MJ, Wang J, Kronenberg HM, Glimcher LH. Absence of transcription factor c-maf causes abnormal terminal differentiation of hypertrophic chondrocytes during endochondral bone development. Dev Biol 2003; 262:51-63. [PMID: 14512017 DOI: 10.1016/s0012-1606(03)00324-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, we report that the transcription factor c-Maf is required for normal chondrocyte differentiation during endochondral bone development. c-maf is expressed in hypertrophic chondrocytes during fetal development (E14.5-E18.5), with maximal expression in the tibia occurring at E15.5 and E16.5, in terminally differentiated chondrocytes. In c-maf-null mice, fetal bone length is decreased approximately 10%, and hypertrophic chondrocyte differentiation is perturbed. There is an initial decrease in the number of mature hypertrophic chondrocytes at E15.5 in c-maf-null tibiae, with decreased expression domains of collagen X and osteopontin, markers of hypertrophic and terminal hypertrophic chondrocytes, respectively. By E16.5, there is an expanded domain of late hypertrophic, osteopontin-positive chondrocytes in the c-maf-/-. This accumulation of hypertrophic chondrocytes persists and is still observed at 4 weeks of age. These data suggest that c-Maf facilitates the initial chondrocyte terminal differentiation and influences the disappearance of hypertrophic chondrocytes. BrdU and TUNEL analyses show normal proliferation rate and apoptosis in the c-maf-null. There is a specific decrease in MMP-13 expression at E15.5 in the c-maf-null. MMP-13 is known to be regulated by AP-1 and may also be a target of c-Maf. Thus, cartilage is a novel system in which c-Maf acts during development, where c-Maf is required for normal chondrocyte differentiation.
Collapse
|