26
|
Li Y, Wong HL, Shuhendler AJ, Rauth AM, Wu XY. Molecular interactions, internal structure and drug release kinetics of rationally developed polymer–lipid hybrid nanoparticles. J Control Release 2008; 128:60-70. [DOI: 10.1016/j.jconrel.2008.02.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 02/10/2008] [Accepted: 02/18/2008] [Indexed: 11/28/2022]
|
27
|
Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev 2007; 59:491-504. [PMID: 17532091 DOI: 10.1016/j.addr.2007.04.008] [Citation(s) in RCA: 362] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
The prospect of improved cancer chemotherapy using solid lipid nanoparticles (SLN) as a drug delivery system is promising. Several obstacles frequently encountered with anticancer compounds, such as normal tissue toxicity, poor specificity and stability and a high incidence of drug-resistant tumor cells, are at least partially overcome by delivering them using SLN. The emergence of the newer forms of SLN such as polymer-lipid hybrid nanoparticles, nanostructured lipid carriers and long-circulating SLN may further expand the role of this versatile drug carrier in cancer treatment. This review focuses on the current use of SLN for the encapsulation and delivery of cytotoxic anticancer compounds. It also discusses more recent trends in the use of SLN as vehicles for delivery of chemosensitizers and cytotoxic therapeutic molecules. It is anticipated that, in the near future, SLN will be further improved to deliver anticancer compounds in a more efficient, specific and safer manner.
Collapse
|
28
|
Li Y, Taulier N, Rauth AM, Wu XY. Screening of Lipid Carriers and Characterization of Drug-Polymer-Lipid Interactions for the Rational Design of Polymer-Lipid Hybrid Nanoparticles (PLN). Pharm Res 2006; 23:1877-87. [PMID: 16850265 DOI: 10.1007/s11095-006-9033-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE The thermodynamics and solid state properties of components and their interactions in a formulation for polymer-lipid hybrid nanoparticles (PLN) were characterized for screening lead lipid carriers and rational design of PLN. METHODS Verapamil HCI (VRP) was chosen as a model drug and dextran sulfate sodium (DS) as a counter-ionic polymer. Solubility parameters of VRP, VRP-DS complex, and various lipids were calculated and partition of VRP and VRP-DS in lipids was determined. Thermodynamics of VRP binding to DS was determined by isothermal titration calorimetry (ITC). The solid state properties of individual components and their interactions were characterized using differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). RESULTS Dodecanoic acid (DA) was identified as the best lipid carrier among all lipids tested based on the solubility parameters and partition coefficients. VRP-DS complexation was a thermodynamically favorable process. Maximum binding capacity of DS and the highest drug loading capacity of DA were obtained at an equal ionic molar ratio of DS to VRP. In the PLN formulation, DA remained its crystal structure but had a slightly lower melting point, while VRP-DS complex was in an amorphous form. CONCLUSIONS Drug loading efficiency and capacity of a lipid matrix depend on the VRP-DS binding and the interactions of the complex with the lipid. A combined analysis of solubility parameters and partition coefficients is useful for screening lipid candidates for PLN preparation.
Collapse
|
29
|
Wong HL, Rauth AM, Bendayan R, Manias JL, Ramaswamy M, Liu Z, Erhan SZ, Wu XY. A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm Res 2006; 23:1574-85. [PMID: 16786442 DOI: 10.1007/s11095-006-0282-x] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 03/01/2006] [Indexed: 11/28/2022]
Abstract
PURPOSE This work is intended to develop and evaluate a new polymer-lipid hybrid nanoparticle system that can efficiently load and release water-soluble anticancer drug doxorubicin hydrochloride (Dox) and enhance Dox toxicity against multidrug-resistant (MDR) cancer cells. METHODS Cationic Dox was complexed with a new soybean-oil-based anionic polymer and dispersed together with a lipid in water to form Dox-loaded solid lipid nanoparticles (Dox-SLNs). Drug loading and release properties were measured spectrophotometrically. The in vitro cytotoxicity of Dox-SLN and the excipients in an MDR human breast cancer cell line (MDA435/LCC6/MDR1) and its wild-type line were evaluated by trypan blue exclusion and clonogenic assays. Cellular uptake and retention of Dox were determined with a microplate fluorometer. RESULTS Dox-SLNs were prepared with a drug encapsulation efficiency of 60-80% and a particle size range of 80-350 nm. About 50% of the loaded drug was released in the first few hours and an additional 10-20% in 2 weeks. Treatment of the MDR cells with Dox-SLN resulted in over 8-fold increase in cell kill when compared to Dox solution treatment at equivalent doses. The blank SLN and the excipients exhibited little cytotoxicity. The biological activity of the released Dox remained unchanged from fresh, free Dox. Cellular Dox uptake and retention by the MDR cells were both significantly enhanced (p < 0.05) when Dox was delivered in Dox-SLN form. CONCLUSIONS The new polymer-lipid hybrid nanoparticle system is effective for delivery of Dox and enhances its efficacy against MDR breast cancer cells.
Collapse
|
30
|
Cheung RY, Rauth AM, Ronaldson PT, Bendayan R, Wu XY. In vitro toxicity to breast cancer cells of microsphere-delivered mitomycin C and its combination with doxorubicin. Eur J Pharm Biopharm 2006; 62:321-31. [PMID: 16330194 DOI: 10.1016/j.ejpb.2005.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 09/27/2005] [Accepted: 09/27/2005] [Indexed: 11/18/2022]
Abstract
To better understand and design microsphere systems for the locoregional delivery of anticancer drug combinations to solid tumors, (1) the cytotoxicity of microsphere-delivered mitomycin C (MMC) was evaluated and (2) various schedules of MMC and doxorubicin (Dox) were tested for their toxicity in vitro towards a murine breast cancer cell-line, EMT6. To accomplish the former MMC was loaded onto oxidized sulfopropyl dextran microspheres, released in a pH 7.4 buffer solution and tested for its potency against EMT6 cells versus a standard MMC solution. For the latter EMT6 cells were exposed to MMC or Dox as single agents or together using various drug concentrations and schedules. The efficacy of the treatments was measured using a clonogenic assay. MMC released from the microspheres showed similar activity against EMT6 cells to freshly prepared MMC solutions. Greater-than-additive toxicity was observed when MMC was given either simultaneously or after Dox exposure. In contrast, administration of MMC before Dox exposure resulted in toxicity that ranged from additive to sub-additive; this reduced toxicity was mainly due to increasing cell density arising from the design of the assay. These results help explain our previous in vivo investigations using microsphere-delivered combinations of the same agents in EMT6 solid tumors.
Collapse
|
31
|
Wong HL, Bendayan R, Rauth AM, Xue HY, Babakhanian K, Wu XY. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J Pharmacol Exp Ther 2006; 317:1372-81. [PMID: 16547167 DOI: 10.1124/jpet.106.101154] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objectives of this study were to evaluate the potential of a polymer-lipid hybrid nanoparticle (PLN) system to enhance cellular accumulation and retention of doxorubicin (Dox), a widely used anticancer drug and an established P-glycoprotein (Pgp) substrate, in Pgp-overexpressing cancer cell lines and to explore the underlying mechanisms. Nanoparticles containing Dox complexed with a novel anionic polymer (Dox-PLN) were prepared using an ultrasound method. Two Pgp-overexpressing breast cancer cell lines (a human cell line, MDA435/LCC6/MDR1, and a mouse cell line, EMT6/AR1) were used to investigate the effect of nanoparticles on cellular uptake and retention of Dox. Endocytosis inhibition studies and fluorescence microscopic imaging were performed to elucidate the mechanisms of cellular drug uptake. Treatment of Pgp-overexpressing cell lines with Dox-PLNs resulted in significantly enhanced Dox uptake and more substantial increases in drug retention after the end of treatment compared with free Dox solutions (p < 0.05). Fluorescence microscopic images showed improved nuclear localization of Dox and uptake of lipid when the drug was delivered in the Dox-PLN form to MDA435/LCC6/MDR1 cells. Endocytosis inhibition studies revealed that phagocytosis is an important pathway in the membrane permeability of the nanoparticles. These findings suggest that some of the Dox physically associated with the nanoparticles bypass the membrane-associated Pgp when delivered as Dox-PLNs, and in this form, the drug is better retained within the Pgp-overexpressing cells than the free drug. The present study suggests a new mechanism for overcoming drug resistance in Pgp-overexpressing tumor cells using lipid-based nanoparticle formulations.
Collapse
|
32
|
Cheung RY, Ying Y, Rauth AM, Marcon N, Yu Wu X. Biodegradable dextran-based microspheres for delivery of anticancer drug mitomycin C. Biomaterials 2005; 26:5375-85. [PMID: 15814136 DOI: 10.1016/j.biomaterials.2005.01.050] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 01/10/2005] [Indexed: 10/25/2022]
Abstract
The purpose of this work was to develop a biodegradable microsphere (MS) system for delivering mitomycin C (MMC). Various dextran-based MS systems were investigated for their loading and release characteristics, including nonionic MS, sulfopropyl dextran microspheres (SP-MS) with low or high cross-linking density, oxidized SP-MS (Ox-MS), and hydrophobically modified SP-MS. SP-MS were chemically modified by oxidation with sodium periodate or by reaction with anhydride. The chemical structure of modified SP-MS and MMC-loaded MS (MMC-MS) were examined using Fourier transform infrared (FTIR) and solid-state nuclear magnetic resonance (NMR) spectrophotometry. Drug release was conducted at 37 degrees C in aqueous solutions of 0.15 m phosphate buffer solution. The kinetics of drug absorption and release and the stability of MMC after loading and release were determined by spectrophotometry and high-performance liquid chromatography. Ionic SP-MS exhibited a higher drug-loading rate and capacity when compared to nonionic MS, while hydrophobically modified SP-MS showed an even greater loading capacity than SP-MS. These results suggest that both ionic complexation and hydrophobic interaction were important factors in MMC loading. The Ox-MS system demonstrated higher drug-loading capacity, more fractional drug release and a longer time to reach release equilibrium as compared to other investigated MS systems. Under optimized reaction and loading conditions, MMC released from Ox-MS was found to be unaltered. This work demonstrates that the Ox-MS system is a potentially useful system for the delivery of MMC.
Collapse
|
33
|
Li Y, Rauth AM, Wu XY. Prediction of kinetics of doxorubicin release from sulfopropyl dextran ion-exchange microspheres using artificial neural networks. Eur J Pharm Sci 2005; 24:401-10. [PMID: 15784330 DOI: 10.1016/j.ejps.2004.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Accepted: 12/09/2004] [Indexed: 10/25/2022]
Abstract
The purpose of this work was to develop artificial neural networks (ANN) models to predict in vitro release kinetics of doxorubicin (Dox) delivered by sulfopropyl dextran ion-exchange microspheres. Four ANN models for responses at different time points were developed to describe the release profiles of Dox. Model selection was performed using the Akaike information criterion (AIC). Sixteen data sets were used to train the ANN models and two data sets for the validation. Good correlations were obtained between the observed and predicted release profiles for the two randomly selected validation data sets. The difference factor (f1) and similarity factor (f2) between the ANN predicted and the observed release profiles indicated good performance of the ANN models. The established models were then applied to predict release kinetics of Dox from the microspheres of various initial loadings in media of different ionic strengths and NaCl/CaCl2 ratios. The results suggested that ANN offered a flexible and effective approach to predicting the kinetics of Dox release from the ion-exchange microspheres.
Collapse
|
34
|
Cheung RY, Rauth AM, Yu Wu X. In vivo efficacy and toxicity of intratumorally delivered mitomycin C and its combination with doxorubicin using microsphere formulations. Anticancer Drugs 2005; 16:423-33. [PMID: 15746579 DOI: 10.1097/00001813-200504000-00009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The efficacy and toxicity of intratumorally (i.t.) administered anticancer drugs mitomycin C (MMC) and doxorubicin (Dox) incorporated in polymeric microspheres were investigated. Biodegradable sulfopropyl dextran microspheres and their oxidized products were used to load Dox and MMC, respectively. EMT6 mouse mammary cancer cells were injected into the hind leg of BALB/c mice. MMC microspheres, alone or combined with Dox microspheres, were injected i.t. once tumors had reached around 0.3 g. The tumor-plus-leg diameter was measured daily and the delay in time for the tumor to grow to 1.13 g relative to control (TGD) was employed as an indication of therapeutic effect. General toxicity was determined by monitoring weight, appearance and behavior of the mice. Morphology and histology of tumor and heart tissues were also examined. An average 79% TGD was observed after i.t. injection of MMC microspheres. The i.t. co-administration of MMC and Dox microspheres resulted in a 185% TGD. The i.t. injections of the microsphere formulations did not result in visible signs of toxicity in animals. In contrast, systemic (i.e. i.p.) injections of MMC solutions caused considerable general toxicity. This study suggests that i.t. delivery of anticancer drugs by polymeric microspheres is an effective way of improving the therapeutic index for cancer chemotherapy of selected solid tumors under special conditions.
Collapse
|
35
|
Cheung RY, Kuba R, Rauth AM, Wu XY. A new approach to the in vivo and in vitro investigation of drug release from locoregionally delivered microspheres. J Control Release 2004; 100:121-33. [PMID: 15491816 DOI: 10.1016/j.jconrel.2004.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 08/16/2004] [Indexed: 10/26/2022]
Abstract
The purpose of this work was to determine the in vivo release profile of doxorubicin (Dox) delivered locoregionally by dextran-based microspheres (MS) and to develop an in vitro method for predicting in vivo drug release from MS-- in vitro-in vivo correlation (IVIVC). For the determination of in vivo Dox release, drug-loaded MS were placed into hollow fibers (HF) and implanted subcutaneously into C3H mice. Samples were retrieved at various times following implantation, MS removed from HF, and the amount of Dox remaining determined via ultraviolet/visible (UV/Vis) spectrophotometry. Various in vitro systems were designed and investigated for their ability to link in vivo and in vitro release profiles, including an open system (e.g. a column) with continuous flow of release medium at different flow rates and closed systems (e.g. a cuvette) using different release media and conditions. About 34% of loaded Dox was released from MS in vivo at 48 h. Only an incremental release was observed over the ensuing 72 h. The release kinetics of Dox from MS using three of the investigated in vitro systems, column system and HF immersed in a buffer solution or growth medium gave release profiles that were highly correlated with the in vivo release profile (r(2)>0.9). The relationships, both linear and non-linear, suggest that Level A IVIVC models can be developed for Dox release from locoregionally delivered MS using specially designed release systems.
Collapse
|
36
|
Liu Z, Ballinger JR, Rauth AM, Bendayan R, Wu XY. Delivery of an anticancer drug and a chemosensitizer to murine breast sarcoma by intratumoral injection of sulfopropyl dextran microspheres. J Pharm Pharmacol 2003; 55:1063-73. [PMID: 12956895 DOI: 10.1211/0022357021567] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Intratumoral injection of controlled-release microsphere formulations of anticancer compounds has the potential to selectively increase tumour exposure to drugs. This work aimed to evaluate the therapeutic effect and toxicity of microsphere formulations containing the anticancer drug, doxorubicin, in a murine tumour model. The effect of co-administration of verapamil, a P-glycoprotein modulator or chemosensitizer, was investigated. Initial in-vitro studies confirmed the ability of verapamil to enhance the accumulation of both doxorubicin and [(99mTc)]sestamibi, also a P-glycoprotein substrate, in EMT6 murine breast sarcoma cells and a doxorubicin-selected multidrug-resistant variant, EMT6/AR1.0. Ex-vivo studies using confocal microscopy demonstrated release of doxorubicin from microspheres and diffusion of the drug through tissue. For in-vivo studies, EMT6 and EMT6/AR1.0 cells were grown in BALB/c mice. Following intratumoral injection of doxorubicin-loaded microspheres, alone or in combination with verapamil-loaded microspheres, the tumour diameter was measured serially as an indication of therapeutic effect, while the weight, appearance, and behaviour of the mice were monitored as an indication of general toxicity. Intratumoral injections of doxorubicin-loaded microspheres were tolerated much better than systemic administration of equivalent drug concentrations. There was a modest (up to 34%) delay of tumour growth compared with groups receiving no treatment or blank microspheres. Co-injection of verapamil microspheres with doxorubicin microspheres produced a moderate increase in toxicity but no further delay in tumour growth. Controlled-release microsphere formulations of anticancer agents administered intratumorally were an efficient way to deliver high drug doses to the tumour with little systemic toxicity.
Collapse
|
37
|
Ballinger JR, Hsue V, Rauth AM. Accumulation of technetium-99m glucarate: in vitro cell cultures and in vivo tumour models. Nucl Med Commun 2003; 24:597-606. [PMID: 12717079 DOI: 10.1097/00006231-200305000-00017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
99mTc-glucarate is an investigational radiopharmaceutical which has been shown to accumulate in acute cerebral and myocardial injuries and in some tumours. In the present work, a survey of possible factors affecting the cellular accumulation of 99mTc-glucarate was carried out in cell lines and strains in vitro and in murine tumours in vivo. Accumulation was enhanced under hypoxic conditions in 12 of the 16 human and murine cell lines and strains studied, and inhibited in the presence of nitroimidazoles. At temperatures lower than 37 degrees C, accumulation was reduced, but a hypoxic/aerobic differential was maintained. Aerobic accumulation of 99mTc-glucarate was enhanced by cyanide. In transplanted tumours in mice, 99mTc-glucarate showed high tumour/muscle and tumour/blood ratios at early times after injection. Pharmacological enhancement of the extent of hypoxia by the administration of hydralazine or nitro-L-arginine resulted in significantly increased accumulation of 99mTc-glucarate in the tumour. The in vitro and in vivo properties of 99mTc-glucarate suggest that it may be useful for tumour imaging in the clinic, although the exact mechanism(s) by which it localizes in tumours remains unknown.
Collapse
|
38
|
Misra V, Klamut HJ, Rauth AM. Expression of the prodrug-activating enzyme DT-diaphorase via Ad5 delivery to human colon carcinoma cells in vitro. Cancer Gene Ther 2002; 9:209-17. [PMID: 11857040 DOI: 10.1038/sj.cgt.7700430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2001] [Indexed: 11/09/2022]
Abstract
Intratumoral injection of recombinant adenoviral type 5 (Ad5) vectors that carry prodrug-activating enzymes like DT-diaphorase (DTD) could be used to selectively target tumor cells for chemotherapy. To demonstrate the feasibility of this approach, Ad5 vectors were constructed, which express human DTD minigenes for both wild-type and mutant (C-to-T change in nucleotide 609 in DTD cDNA) DTD under the control of the cytomegalovirus (CMV) promoter. HT29 human colon carcinoma cells express wild-type DTD, whereas BE human colon carcinoma cells express mutant DTD, have low to undetectable DTD activity, and are 4- to 6-fold more resistant to mitomycin C (MMC) than HT29 cells. A test of the ability of Ad5 to infect these cells (using a beta-galactosidase CMV-driven minigene) indicated that 90-100% of BE cells were infected at a multiplicity of infection (MOI) of 100, whereas only 15-40% of HT29 cells were infected at this MOI. Infection of BE cells in vitro with recombinant Ad5 carrying a minigene for wild-type DTD at MOIs of 3-100 resulted in a progressive increase in DTD activity and a maximal 8-fold increase in sensitivity to MMC as measured by a colony-forming assay. HT29 cells were sensitized 2- to 3-fold following treatment with Ad5.DTD at an MOI of 100. These results indicate that adenovirus-mediated gene transfer and expression of wild-type DTD can sensitize resistant tumor cells to MMC and that this therapeutic strategy may exert a significant bystander effect.
Collapse
|
39
|
Liu Z, Cheung R, Wu XY, Ballinger JR, Bendayan R, Rauth AM. A study of doxorubicin loading onto and release from sulfopropyl dextran ion-exchange microspheres. J Control Release 2001; 77:213-24. [PMID: 11733089 DOI: 10.1016/s0168-3659(01)00473-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The objective of this study was to investigate various factors that influence doxorubicin (Dox) loading onto and release from sulfopropyl dextran ion-exchange microspheres (MS), and to evaluate the anticancer activity of the released drug in vitro. Dox was incorporated into the MS by incubating the MS with aqueous solutions of Dox at room temperature. The drug release was carried out at 37 degrees C in aqueous solutions containing NaCl with or without CaCl2. The kinetics of drug absorption and release, the amount of Dox released, and the stability of Dox after loading, freeze-drying, and release were determined by spectrophotometry. The cytotoxicity of Dox (the original drug or that released from MS) against murine EMT6 breast cancer cells was assessed using a clonogenic assay. An increase in the MS to drug ratio resulted in a higher absorption rate and a higher fraction of the drug extracted from the solution. The release rate and the equilibrium fraction of Dox released increased with a decrease in the initial amount of Dox loaded or an increase in the salt concentration. The addition of divalent ions (Ca2+) promoted drug release compared to NaCl alone. The percent loss of colony forming ability of the cells, a measure of cytotoxicity of the released Dox, was the same as parent Dox solutions, indicating that the drug bioactivity was fully preserved after the drug loading and release cycle. This work demonstrated that various drug release rates were achieved by varying the drug loading and that the MS-delivered Dox was effective against the cancer cells in vitro.
Collapse
|
40
|
Zhang X, Melo T, Rauth AM, Ballinger JR. Cellular accumulation and retention of the technetium-99m-labelled hypoxia markers BRU59-21 and butylene amine oxime. Nucl Med Biol 2001; 28:949-57. [PMID: 11711315 DOI: 10.1016/s0969-8051(01)00267-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BRU59-21 and 99mTc-butylene amine oxime (BnAO, HL91) are being evaluated for imaging hypoxia in tumors. Both tracers: 1) rapidly reached a plateau in aerobic Chinese hamster ovary cells in vitro but continuously accumulated in hypoxic cells; 2) ceased to accumulate when hypoxic cells were exposed to air; 3) showed approximately 40% retention upon washing the cells; 4) showed selective hypoxic accumulation only at 37 degrees C; 5) accumulation could be modulated by addition of electron-affinic compounds; and 6) exhibited higher accumulation in cells which overexpress cytochrome P450 reductase. Both BRU59-21 and 99mTc-BnAO share properties making them suitable for hypoxia imaging.
Collapse
|
41
|
Utsunomiya K, Ballinger JR, Piquette-Miller M, Rauth AM, Tang W, Su ZF, Ichise M. Comparison of the accumulation and efflux kinetics of technetium-99m sestamibi and technetium-99m tetrofosmin in an MRP-expressing tumour cell line. EUROPEAN JOURNAL OF NUCLEAR MEDICINE 2000; 27:1786-92. [PMID: 11189941 DOI: 10.1007/s002590000375] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The potential clinical use of technetium-99m labeled sestamibi (Tc-MIBI) and tetrofosmin (Tc-Tfos) to image tumours is currently being evaluated. In this study. the accumulation and efflux of Tc-MIBI and Tc-Tfos in the nasopharyngeal carcinoma cell line CNE-1 were examined in the presence or absence of various inhibitors of P-glycoprotein (PGP) and/or multidrug resistance associated protein (MRP) activity [GG918, PSC833, verapamil (Vrp), cyclosporin A (CsA) and buthionine sulfoximine (BSO)]. Reverse-transcriptase polymerase chain reaction analysis and immunodetection of the CNE-1 cells detected expression of MRP, MRPI and MRP2 but not PGP. Tc-MIBI and Tc-Tfos accumulation was increased (P < 0.0001) and efflux decreased (P < 0.05) in the presence of BSO, CsA, Vrp and PSC833 but not GG918, which is a specific inhibitor of PGP. The absolute accumulation of Tc-MIBI was approximately twofold higher than that seen with Tc-Tfos, whereas the addition of inhibitors caused a much greater suppression of Tc-Tfos transport (>2 times greater than for Tc-MIBI). However, no qualitative differences in inhibitors were seen between Tc-MIBI and Tc-Tfos. These results suggest that both Tc-MIBI and Tc-Tfos are substrates for the MRP transporter and that PSC833, Vrp, CsA and BSO but not GG918 can inhibit MRP activity. These results indicate that Tc-MIBI and Tc-Tfos may be suitable imaging agents for detecting MRP-mediated drug resistance in human cancers.
Collapse
|
42
|
Misra V, Grondin A, Klamut HJ, Rauth AM. Assessment of the relationship between genotypic status of a DT-diaphorase point mutation and enzymatic activity. Br J Cancer 2000; 83:998-1002. [PMID: 10993645 PMCID: PMC2363567 DOI: 10.1054/bjoc.2000.1359] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
DT-diaphorase, a cytosolic reductase, has been implicated as an activator of chemotherapeutic prodrugs and a detoxifier of certain potentially carcinogenic xenobiotics. A common C to T nucleotide 609 substitution in DT-diaphorase cDNA has been associated with protein instability and reduced catalytic activity. The degree to which the allelic status of the substitution correlates with enzymatic activity was assessed in 45 normal human skin fibroblast strains using a PCR-RFLP assay. Included in this study was the 3437T strain, which is unique in that it is heterozygous for the polymorphism yet contains undetectable enzymatic activity. An allele-specific RT-PCR-RFLP technique attributed this phenomenon to exclusive DT-diaphorase mRNA expression from the variant allele. Overlap in activities was observed between individual strains homozygous for the wild-type allele and heterozygotes, but the former group displayed enzymatic activity that was on average 2-fold higher. Western blot analysis of the two strains in this panel that are homozygous for the variant allele revealed that they express relatively low amounts of DT-diaphorase protein, consistent with the role of the substitution in protein instability. This work confirms that genotypic status is a reliable initial estimate of DT-diaphorase activity.
Collapse
|
43
|
Su ZF, Ballinger JR, Rauth AM, Abrams DN, Billinghurst MW. A novel amine-dioxime chelator for technetium-99m: synthesis and evaluation of 2-nitroimidazole-containing analogues as markers for hypoxic cells. Bioconjug Chem 2000; 11:652-63. [PMID: 10995208 DOI: 10.1021/bc9901705] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel amine-dioxime chelator for (99m)Tc has been developed. It offers the advantages of ease of synthesis and flexibility in alteration of lipophilicity. Labeling by stannous reduction of pertechnetate takes place rapidly and efficiently at room temperature and is stable for 24 h. The (99m)Tc:ligand ratio is believed to be 1:2. Seven different alkyl moieties were used to achieve a range of lipophilicities. Three series of compounds were prepared: 2-nitroimidazoles as potential hypoxia-targeting agents, 4-nitroimidazoles as a less easily reduced isomer, and untargeted anilines. In an in vitro model of cellular hypoxia, the 2-nitroimidazole compounds all showed selective accumulation whereas 4-nitroimidazoles showed variable selectivity and aniline showed no selectivity. These experiments demonstrate the potential utility of the 2-nitroimidazole derivatives of the amine-dioxime class of chelator as hypoxia-targeting agents.
Collapse
|
44
|
Melo T, Ballinger JR, Rauth AM. Role of NADPH:cytochrome P450 reductase in the hypoxic accumulation and metabolism of BRU59-21, a technetium-99m-nitroimidazole for imaging tumor hypoxia. Biochem Pharmacol 2000; 60:625-34. [PMID: 10927020 DOI: 10.1016/s0006-2952(00)00373-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitroimidazoles labeled with technetium-99m are being investigated as non-invasive markers of tumor hypoxia. They are bioreductive compounds that require enzymatic reduction for retention in hypoxic cells, but little is known about the cellular factors affecting their accumulation in hypoxic cells. If the absolute accumulation of hypoxia markers is affected by enzyme levels, an inaccurate assessment of the hypoxic cell fraction in tumors may occur. BRU59-21, (99m)Tc-oxo[[3,3,9, 9-tetramethyl-6-[(2-nitro-1H-imidazol-1-yl)methyl]5-oxa-4, 8-diazadioximato]-(3-)-N,N',N",N"'] technetium (V), a technetium-99m-nitroimidazole that is being studied as a potential marker of tumor hypoxia, was used in the present study to evaluate the effect of NADPH:cytochrome P450 reductase (EC 1.6.2.4) levels on BRU59-21 accumulation and metabolism. Metabolism of BRU59-21 in hypoxic cellular lysates derived from Chinese hamster ovary cells overexpressing NADPH:cytochrome P450 reductase was 8-fold greater than in control cells. This effect required the presence of exogenous NADPH. The increased metabolism of BRU59-21 in lysates overexpressing NADPH:cytochrome P450 reductase was inhibited at 4 degrees and by the addition of NADPH:cytochrome P450 reductase inhibitors. The addition of inhibitors of other nitroreductase enzymes had no effect on BRU59-21 metabolism in these lysates. When the accumulation and metabolism of BRU59-21 were studied in stirred suspension cultures, it was found that cells overexpressing NADPH:cytochrome P450 reductase exhibited about a 3-fold increase in both the hypoxic metabolism and the accumulation of BRU59-21. These findings suggest that NADPH:cytochrome P450 reductase is an important enzyme in BRU59-21 metabolism in model systems of tumor hypoxia.
Collapse
|
45
|
Zhang X, Su ZF, Ballinger JR, Rauth AM, Pollak A, Thornback JR. Targeting hypoxia in tumors using 2-nitroimidazoles with peptidic chelators for technetium-99m: effect of lipophilicity. Bioconjug Chem 2000; 11:401-7. [PMID: 10821657 DOI: 10.1021/bc9901595] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tumor hypoxia is an important prognostic factor for response to therapy. Radiolabeled 2-nitroimidazoles have been used for imaging hypoxia, and the octanol/water partition coefficient (P) of these compounds appears to play a crucial role in their suitability for imaging. A series of 11 2-nitroimidazoles coupled to peptidic chelators for (99m)Tc with divergent P was developed and evaluated in an in vitro system. Two classes of N(3)S chelators were used: dialkyl-Gly-Ser-Cys-linker-2-nitroimidazole (Class I) and dialkyl-Gly-Lys(2-nitroimidazole)-Cys (Class II). The chelators were prepared by automated solid-phase peptide synthesis. Xanthine oxidase was able to reduce the 2-nitroimidiazole moiety on the ligands, but the rate of reduction varied 5-fold among the different chelators. The chelators were labeled by transchelation from [(99m)Tc]gluconate at temperatures between 22 and 100 degrees C. The reaction mixtures were analyzed by HPLC and their P values determined. The accumulation of each complex in suspension cultures of Chinese hamster ovary cells incubated under aerobic or extremely hypoxic conditions was determined. Radiochemical yields ranged from 5 to 80% for the 11 compounds. HPLC showed that some of the compounds formed two complexes with (99m)Tc, possibly syn and anti conformations with respect to the Tc=O bond. In general, the Class I chelators labeled more readily than the class II chelators. The P values of the (99m)Tc complexes varied from 0.0002 to 5 and were generally in accordance with predictions based on structure. There were also differences in P as a function of pH; the free acids had a lower P at pH 7.4 than at pH 2.0 due to ionization, whereas the amides did not show this effect. Accumulation levels in aerobic cells were related to P but varied over a narrow range. Four of the 11 compounds showed selective accumulation in hypoxic cells. The peptidic class of 2-nitroimidazoles, with flexible design and convenient solid-phase synthesis, deserves further study as agents for imaging hypoxia in tumors.
Collapse
|
46
|
Melo T, Duncan J, Ballinger JR, Rauth AM. BRU59-21, a second-generation 99mTc-labeled 2-nitroimidazole for imaging hypoxia in tumors. J Nucl Med 2000; 41:169-76. [PMID: 10647620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
UNLABELLED Hypoxia in tumors is believed to be an important cause of local failure of radiotherapy in certain types of cancer. BRU59-21 (BMS194796) is a second-generation 99mTc-labeled 2-nitroimidazole that has been shown to offer improved characteristics for imaging myocardial ischemia. It has now been evaluated in models of tumor hypoxia. METHODS Accumulation of BRU59-21 was compared with that of BMS181321 in Chinese hamster ovary cells incubated under aerobic or hypoxic conditions. The effects of competition with unlabeled nitroimidazoles and oxygen were studied. Biodistribution studies were performed in mice bearing transplanted KHT-C tumors in the leg. RESULTS Within 5 min, BRU59-21 partitioned into aerobic cells in vitro at a level 10 times higher than external medium with no further increase over time. In hypoxic cells this initial partitioning was followed by selective accumulation to levels 5 times higher than in aerobic cells by 4 h. Low levels of oxygen (approximately 40 ppm) inhibited the maximal accumulation rate by 50%. Unlabeled misonidazole, a 2-nitroimidazole, inhibited accumulation of radioactivity, whereas tinidazole, a 5-nitroimidazole, enhanced accumulation; similar effects had been reported with BMS181321. Biodistribution studies in mice showed rapid clearance of radioactivity from the blood, resulting in enhanced tumor-to-blood ratios compared with BMS181321. Increasing the hypoxic fraction in the tumor by injection of nitro-L-arginine resulted in increased retention of tracer in the tumor without affecting other tissues. CONCLUSION These results suggest that BRU59-21 warrants further investigation as an agent for imaging tumor hypoxia in the clinic.
Collapse
|
47
|
Su ZF, Zhang X, Ballinger JR, Rauth AM, Pollak A, Thornback JR. Synthesis and evaluation of two technetium-99m-labeled peptidic 2-nitroimidazoles for imaging hypoxia. Bioconjug Chem 1999; 10:897-904. [PMID: 10502359 DOI: 10.1021/bc9900542] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The presence of hypoxic cells in solid tumors is a marker for therapy-resistant, aggressive disease. The noninvasive detection of hypoxic cells in tumors by radiolabeled 2-nitroimidazoles is a diagnostic technique under current evaluation. Two peptidic agents, dimethylglycyl-L-seryl-L-cysteinyl-lysyl{N(epsilon)-[1-(2-nitro-1H -im idazolyl)acetamido]}glycine (RP435) and dimethylglycyl-tert-butylglycyl-L-cysteinyl-glycine-[2-(2-ni tro-1H-im idazolyl)ethyl]amide (RP535) have been synthesized. Both agents contain an N(3)S class chelator for (99m)Tc and Re and a 2-nitroimidazole group which can be enzymatically reduced and selectively trapped in cells under hypoxic conditions. Two isomers of (99m)TcO-RP435, which are assumed to be syn and anti conformations, were observed on HPLC analysis. The interconversion of the two isomers in aqueous solution was investigated. In contrast, RP535 chelated (99m)Tc to form a single isomer and no conversion to its counterpart has been observed on HPLC analysis. The tert-butyl group on the chelator may inhibit the formation and interconversion of the syn and anti isomers of (99m)TcO-RP535. Both tracers showed a significant degree of hypoxia-specific accumulation in an in vitro assay, with (99m)TcO-RP535 showing higher selectivity for hypoxic cells than (99m)TcO-RP435. These results suggest that (99m)TcO-RP535 represents a lead compound worthy of further investigation as an agent for imaging hypoxia in tumors.
Collapse
|
48
|
Rauth AM, Melo T, Misra V. Bioreductive therapies: an overview of drugs and their mechanisms of action. Int J Radiat Oncol Biol Phys 1998; 42:755-62. [PMID: 9845091 DOI: 10.1016/s0360-3016(98)00302-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Bioreductively activated drugs have been used as antimicrobials, chemotherapeutic agents, and radiation sensitizers. The present paper is an overview of their mechanism of action and application in the treatment of cancer. MATERIALS AND METHODS Drugs such as nitroimidazoles, mitomycins, and benzotriazine di-N-oxides were a focus of this research. Studies have ranged from the chemistry of the reductive process of activation to in vitro and in vivo studies in rodent and human cells, through to clinical testing. The variety of techniques and test systems brought to bear on these compounds is a strength of this field of research. RESULTS A detailed chemical understanding of the mechanism of action of a variety of bioreductives is now available. The enzymatic processes by which these drugs are activated and the cofactors involved in this activation are becoming well understood. Recent advances have been made in the design and use of dual-function bioreductives, bioreductive triggers of drug activation, and DNA-targeted bioreductives. Significant success has been demonstrated clinically with bioreductive drugs, used in combination with radiation and front-line chemotherapeutic agents. The areas of antibody-directed enzyme prodrug therapy (ADEPT) and gene-directed enzyme prodrug therapy (GDEPT) are identified as new directions for bioreductive therapy. CONCLUSION The use of bioreductively-activated drugs for the treatment of cancer has made steady progress. The success obtained clinically and the new molecular approaches currently being implemented promise significant advances in the future.
Collapse
|
49
|
Zhang X, Melo T, Ballinger JR, Rauth AM. Studies of 99mTc-BnAO (HL-91): a non-nitroaromatic compound for hypoxic cell detection. Int J Radiat Oncol Biol Phys 1998; 42:737-40. [PMID: 9845087 DOI: 10.1016/s0360-3016(98)00301-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Solid tumours of similar type and stage can vary widely in their hypoxic cell fraction. Such cells may be prognostic for aggressive, metastatic, and radiation-resistant disease. A 99mtechnetium (99mTc)-labelled non-nitroaromatic agent, butyleneamine oxime (99mTc-BnAO) or HL-91 (Amersham International, Inc., Amersham, UK) has been evaluated both in vitro and in vivo for its possible efficacy as a noninvasive marker for the clinical detection of hypoxic cells in solid tumours. MATERIALS AND METHODS Suspension cultures of Chinese hamster ovary (CHO) cells under controlled levels of oxygen were used to measure the oxygen dependency of 99mTc-BnAO accumulation. V79 cells grown as multilayers on a semipermeable membrane served as an in vitro model for drug penetration through the extravascular space of the tumour. C3H mice bearing KHT-C leg tumours were the in vivo models for selective drug accumulation as a function of time after i.v. administration of 99mTc-BnAO. RESULTS 99mTc accumulated selectively in hypoxic vs. aerobic cells, resulting in a 9 +/- 2-fold differential in radioactivity per cell at 4 h. The k(m) for this selective accumulation was 20 ppm of oxygen. The labelled drug was equally effective in penetrating the cellular multilayer under aerobic or hypoxic conditions. In vivo measurements indicated favourable labelling of solid tumours containing hypoxic cells with 1% of the total activity per g of tumour, a tumour-to-blood ratio of 1.2, and a tumour-to-muscle ratio of 4.6 at 4 to 6 h after drug administration. In contrast to more lipophilic 99mTc- labelled compounds, excretion was primarily via the urinary tract. Nitro-L-arginine selectively increased solid tumour labelling over normal tissue. CONCLUSIONS 99mTc-BnAO or HL-91 is a promising agent for clinical studies of tumour hypoxia, although the mechanism of its selective hypoxic cell accumulation remains unexplained.
Collapse
|
50
|
Goldberg ZI, Cummings BJ, Chapman WB, Klamut HJ, Rauth AM. Role of a DT-diaphorase mutation in the response of anal canal carcinoma to radiation, 5-fluorouracil, and mitomycin C. Int J Radiat Oncol Biol Phys 1998; 42:331-4. [PMID: 9788412 DOI: 10.1016/s0360-3016(98)00234-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To determine, retrospectively, the status of the bp 609 mutation in the DT-diaphorase gene in anal canal carcinoma patients who have undergone radical radiotherapy with concurrent 5-fluorouracil (5-FU) and mitomycin C (MMC), to determine the relationship of the mutant form of the gene to treatment outcomes. METHODS AND MATERIALS Paraffin blocks of pretreatment tumor biopsies were obtained on 49 patients who underwent treatment with curative intent using radiation, infusional 5-FU and bolus MMC from January 1991 to December 1993. DNA was extracted and subjected to polymerase chain reaction (PCR) analysis using primers that encompassed the bp 609 C to T mutation. Restriction endonuclease cleavage with Hinf 1 and gel electrophoresis were used to determine the polymorphism status of each patient. RESULTS DNA of 46 patients was successfully amplified. The 46 patients were distributed as follows: 26 (56.5%) C/C-homozygous wildtype, 18 (39%) T/C-heterozygous, and 2 (4.5%) T/T-homozygous mutant. Eleven of 46 patients had suffered treatment failure. The status of the bp 609 polymorphism in this group was 5 (45.5%) C/C, 5 (45.5%) C/T, and 1 (9%) T/T. CONCLUSION In this series, there was not an overrepresentation of the mutant allele in patients with treatment failure, suggesting that the bp 609 alteration is not a strong determinant of treatment outcome.
Collapse
|