26
|
Vaselek S, Prudhomme J, Myskova J, Lestinova T, Spitzova T, Bañuls AL, Volf P. Comparative Study of Promastigote- and Amastigote-Initiated Infection of Leishmania infantum (Kinetoplastida: Trypanosomatidae) in Phlebotomus perniciosus (Diptera: Psychodidae) Conducted in Different Biosafety Level Laboratories. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:601-607. [PMID: 31702779 PMCID: PMC7044723 DOI: 10.1093/jme/tjz199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Indexed: 06/10/2023]
Abstract
Sand flies (Diptera: Psychodidae) are natural vectors of Leishmania. For the initiation of sand fly experimental infections either Leishmania amastigotes or promastigotes can be used. In order to obtain comparable results, it is necessary to adjust and standardize procedures. During this study, we conducted promastigote- and amastigote-initiated infections of Leishmania infantum Nicolle, 1908 parasites in Phlebotomus (Larroussius) perniciosus Newstead, 1911 in two laboratories with different levels of biosafety protection. Protocol originally designed for a biosafety level 2 facility was modified for biosafety level 3 facility and infection parameters were compared. Particularly, specially designed plastic containers were used for blood feeding; feeders were placed outside the sand fly cage, on the top of the mesh; feeding was performed inside the climatic chamber; separation of engorged females was done in Petri dishes kept on ice; engorged females were kept in the cardboard containers until dissection. All experiments, conducted in both laboratories, resulted in fully developed late stage infections with high number of parasites and colonization of the stomodeal valve. We demonstrated that protocol originally designed for biosafety level 2 facilities can be successfully modified for other biosafety facilities, depending on the special requirements of the individual institution/laboratory.
Collapse
|
27
|
Ayhan N, Prudhomme J, Laroche L, Bañuls AL, Charrel RN. Broader Geographical Distribution of Toscana Virus in the Mediterranean Region Suggests the Existence of Larger Varieties of Sand Fly Vectors. Microorganisms 2020; 8:microorganisms8010114. [PMID: 31947561 PMCID: PMC7022675 DOI: 10.3390/microorganisms8010114] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Toscana virus (TOSV) is endemic in the Mediterranean basin, where it is transmitted by sand flies. TOSV can infect humans and cause febrile illness as well as neuroinvasive infections affecting the central and peripheral nervous systems. Although TOSV is a significant human pathogen, it remains neglected and there are consequently many gaps of knowledge. Recent seroepidemiology studies and case reports showed that TOSV’s geographic distribution is much wider than was assumed a decade ago. The apparent extension of the TOSV circulation area raises the question of the sandfly species that are able to transmit the virus in natural conditions. Phlebotomus (Ph.)perniciosus and Ph. perfiliewi were historically identified as competent species. Recent results suggest that other species of sand flies could be competent for TOSV maintenance and transmission. Here we organize current knowledge in entomology, epidemiology, and virology supporting the possible existence of additional phlebotomine species such as Ph. longicuspis, Ph. sergenti, Ph. tobbi, Ph. neglectus, and Sergentomyia minuta in TOSV maintenance. We also highlight some of the knowledge gaps to be addressed in future studies.
Collapse
|
28
|
Vu NS, Tran SH, Tran PV, Tran TC, Tran DN, Dang AD, Nguyen YT, Vu LT, Ngo PK, Nguyen HV, Cassan C, Nguyen CV, Rahola N, Bañuls AL. Diversity and Ecology of Sand Flies (Diptera: Psychodidae), Potential Vectors of Leishmania in the Quang Ninh Province, Vietnam. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:259-265. [PMID: 31346619 DOI: 10.1093/jme/tjz129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Indexed: 06/10/2023]
Abstract
The study aims to make an update on the distribution and ecology of sand flies in the Quang Ninh province, Northern Vietnam, where Leishmania cases were reported in 2001. Seventeen sites were chosen in three districts of the province: Ha Long, Cam Pha, and Hoanh Bo. Phlebotomine sand flies were collected using 68 CDC light traps from May 30 to 3 June 2016. Captured specimens were transferred individually into Eppendorf tubes with 90% ethanol. The sand fly heads and genitalia were removed and were mounted in Euparal after successive different baths. Specimen identification was determined based on the morphology of the cibarium, pharynx, and/or male genitalia or female spermathecae. A total of 416 sand flies (125 females, 283 males) belonging to four genera were collected and 10 sand fly species were identified: Sergentomyia silvatica, Se. barraudi, Se. hivernus, Se. bailyi, Phlebotomus mascomai, Ph. stantoni, Ph. yunshengensis, Ph. betisi, Chinius junlianensis, Idiophlebotomus longiforceps. The Sergentomyia genus prevailed (79.7% of the collected sand flies), followed by the Phlebotomus genus (13.7%), the Chinius genus (6.1%), and the Idiophlebotomus genus (0.8%). Besides these well-defined taxa, five specimens, named sp1, showed unknown morphological characteristics, requiring further study. The majority of sand flies were collected in rock caves suggesting the cavernicolous character of the species in the Quang Ninh province. However, specimens were also collected in intra and peridomiciliary sites in which Ph. stantoni and Se. hivernus were found as the main species. It is worth noting that two Ph. stantoni were found in the house of a patient affected by Leishmania.
Collapse
|
29
|
Ouchar Mahamat O, Lounnas M, Hide M, Tidjani A, Benavides J, Diack A, Somasse C, Gamougam K, Carrière C, Decré D, Bañuls AL, Jean-Pierre H, Dumont Y, Compain F, Godreuil S. Spread of NDM-5 and OXA-181 Carbapenemase-Producing Escherichia coli in Chad. Antimicrob Agents Chemother 2019; 63:e00646-19. [PMID: 31405861 PMCID: PMC6811454 DOI: 10.1128/aac.00646-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/19/2019] [Indexed: 01/03/2023] Open
Abstract
We detected for the first time blaNDM-5 and blaOXA-181 in Escherichia coli isolates from hospitalized patients and healthy volunteers in Chad. These resistance genes were located on IncX3 and IncF plasmids. Despite the large diversity of E. coli clones, the identified resistant intestinal isolates belonged mainly to the same sequence type.
Collapse
|
30
|
Ouchar Mahamat O, Tidjani A, Lounnas M, Hide M, Benavides J, Somasse C, Ouedraogo AS, Sanou S, Carrière C, Bañuls AL, Jean-Pierre H, Dumont Y, Godreuil S. Fecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae in hospital and community settings in Chad. Antimicrob Resist Infect Control 2019; 8:169. [PMID: 31695911 PMCID: PMC6824111 DOI: 10.1186/s13756-019-0626-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/15/2019] [Indexed: 11/29/2022] Open
Abstract
Background Fecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-PE) remains poorly documented in Africa. The objective of this study was to determine the prevalence of ESBL-PE fecal carriage in Chad. Methods In total, 200 fresh stool samples were collected from 100 healthy community volunteers and 100 hospitalized patients from January to March 2017. After screening using ESBL-selective agar plates and species identification by MALDI-TOF mass spectrometry, antibiotic susceptibility was tested using the disk diffusion method, and ESBL production confirmed with the double-disc synergy test. The different ESBL genes in potential ESBL-producing isolates were detected by PCR and double stranded DNA sequencing. Escherichia coli phylogenetic groups were determined using a PCR-based method. Results ESBL-PE fecal carriage prevalence was 44.5% (51% among hospitalized patients vs 38% among healthy volunteers; p < 0.05). ESBL-producing isolates were mostly Escherichia coli (64/89) and Klebsiella pneumoniae (16/89). PCR and sequencing showed that 98.8% (87/89) of ESBL-PE harbored blaCTX-M genes: blaCTX-M-15 in 94.25% (82/87) and blaCTX-M-14 in 5.75% (5/87). Phylogroup determination by quadruplex PCR indicated that ESBL-producing E. coli isolates belonged to group A (n = 17; 27%), C (n = 17; 27%), B2 (n = 9; 14%), B1 (n = 8; 13%), D (n = 8; 13%), E (n = 1; 1.6%), and F (n = 1; 1.6%). The ST131 clone was identified in 100% (9/9) of E. coli B2 strains. Conclusions The high fecal carriage rate of ESBL-PE associated with CTX-M-15 in hospital and community settings of Chad highlights the risk for resistance transmission between non-pathogenic and pathogenic bacteria.
Collapse
|
31
|
Somphavong S, Berland JL, Gauthier M, Vu TT, Nguyen QH, Iem V, Vongvichit P, Inthavong D, Akkhavong V, Chanthavilay P, Soundala S, Keovichit I, Paranhos-Baccalà G, Paboriboune P, Nguyen TVA, Bañuls AL. First insights into the genetic characteristics and drug resistance of Mycobacterium tuberculosis population collected during the first national tuberculosis prevalence survey of Lao PDR (2010-2011). BMC Infect Dis 2019; 19:851. [PMID: 31615439 PMCID: PMC6794770 DOI: 10.1186/s12879-019-4435-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 08/30/2019] [Indexed: 01/27/2023] Open
Abstract
Background In Lao People’s Democratic Republic (PDR), tuberculosis (TB) prevalence was estimated at 540/100,000 in 2011. Nevertheless, little is known about the genetic characteristics and anti-TB drug resistance of the Mycobacterium tuberculosis population. The main objective of this work was to study the genetic characteristics and drug resistance of M. tuberculosis population collected during the first National TB Prevalence Survey (TBPS) of Lao PDR (2010–2011). Methods Two hundred and twenty two isolates collected during TBPS (2010–2011) were analyzed with the GenoType MTBDRplus test for M. tuberculosis identification and drug resistance detection. Then, 206 of the 222 isolates were characterized by spoligotyping and MIRU-VNTR typing. Results Among the 222 M. tuberculosis isolates, 11 were mono-resistant to isoniazid and 2 were resistant to isoniazid and rifampicin (MDR-TB), using the GenoType MTBDRplus test. Among the 202 genetically characterized isolates, the East African-Indian (EAI) family was predominant (76.7%) followed by the Beijing (14.4%) and T (5.5%) families. EAI isolates came from all the country provinces, whereas Beijing isolates were found mainly in the northern and central provinces. A higher proportion of Beijing isolates was observed in people younger than 35 years compared to EAI. Moreover, the percentage of drug resistance was higher among Beijing (17.2%) than EAI (5.2%) isolates, and the two MDR-TB isolates belonged to the Beijing family. Combined analysis of the MIRU-VNTR and spoligotyping results (n = 202 isolates) revealed an estimated clustering rate of 11% and the occurrence of mini-outbreaks of drug-resistant TB caused by Beijing genotypes. Conclusions The EAI family, the ancient and endemic family in Asia, is predominant in Lao PDR whereas the prevalence of Beijing, the most harmful M. tuberculosis family for humans, is still low, differently from neighboring countries. However, its association with drug resistance, its presence in young patients and its potential association with recent transmission suggest that the Beijing family could change TB epidemiological pattern in Lao PDR. Therefore, efficient TB control and surveillance systems must be maintained and reinforced to prevent the emergence of highly transmissible and drug-resistant strains in Lao PDR, as observed in neighboring countries. Electronic supplementary material The online version of this article (10.1186/s12879-019-4435-z) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Nguyen TVA, Anthony RM, Bañuls AL, Nguyen TVA, Vu DH, Alffenaar JWC. Bedaquiline Resistance: Its Emergence, Mechanism, and Prevention. Clin Infect Dis 2019; 66:1625-1630. [PMID: 29126225 DOI: 10.1093/cid/cix992] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/07/2017] [Indexed: 11/13/2022] Open
Abstract
Bedaquiline, a new antituberculosis drug, has already been used in >50 countries. The emergence of bedaquiline resistance is alarming, as it may result in the rapid loss of this new drug. This article aims to review currently identified mechanisms of resistance and the emergence of bedaquiline resistance, and discuss strategies to delay the resistance acquisition. In vitro and clinical studies as well as reports from compassionate use have identified the threat of bedaquiline resistance and cross-resistance with clofazimine, emphasizing the crucial need for the systematic surveillance of resistance. Currently known mechanisms of resistance include mutations within the atpE, Rv0678, and pepQ genes. The development of standardized drug susceptibility testing (DST) for bedaquiline is urgently needed. Understanding any target and non-target-based mechanisms is essential to minimize resistance development and treatment failure and help to develop appropriate DST for bedaquiline and genetic-based resistance screening.
Collapse
|
33
|
Siala M, Cassan C, Smaoui S, Kammoun S, Marouane C, Godreuil S, Hachicha S, Mhiri E, Slim L, Gamara D, Messadi-Akrout F, Bañuls AL. A first insight into genetic diversity of Mycobacterium bovis isolated from extrapulmonary tuberculosis patients in South Tunisia assessed by spoligotyping and MIRU VNTR. PLoS Negl Trop Dis 2019; 13:e0007707. [PMID: 31532767 PMCID: PMC6750577 DOI: 10.1371/journal.pntd.0007707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 08/14/2019] [Indexed: 01/16/2023] Open
Abstract
Introduction In Tunisia, almost 77% of clinically and bacteriologically diagnosed cases of extrapulmonary tuberculosis (EPTB) are zoonotic TB, caused by M. bovis. Although several studies have analyzed bovine TB in cattle in Tunisia, no study has evaluated the risk of transmission to humans in such an endemic country. We aimed to study the genetic diversity of M. bovis human isolates, to ascertain the causes of human EPTB infection by M. bovis and to investigate the distribution and population structure of this species in Tunisia. Materials and methods A total of 110 M. bovis isolates taken from patients with confirmed EPTB were characterized by spoligotyping and MIRU-VNTR typing methods. Results Among the 15 spoligotypes detected in our study, 6 (SB0120, SB0121, SB2025, SB1200, SB1003 and SB0134) were the most prevalent (83.5%) of which SB0120, SB0121 and SB2025 were the most prevailing. MIRU-VNTR typing method showed a high genotypic and genetic diversity. The genetic differentiation based on MIRU-VNTR was significant between populations from South East (Tataouine, Medenine) and Central West (Gafsa, Sidi Bouzid, Kasserine) regions. Of note, 13/15 (86.7%) spoligotypes detected in our study were previously identified in cattle in Tunisia with different frequencies suggesting a peculiar ability of some genotypes to infect humans. Using combined spoligotyping and MIRU-VNTR method, a high clustering rate of 43.9% was obtained. Our results underlined that human EPTB due to M. bovis was more commonly found in female gender and in young patients. Most of our patients, 66.4% (73/110) were raw milk or derivatives consumers, whereas 30.9% (34/110) patients would have contracted EPTB through contact with livestock. The findings suggest that the transmission of Zoonotic TB caused by M. bovis to humans mainly occurred by oral route through raw milk or derivatives. Conclusion Our study showed the urgent need of a better veterinary control with the implementation of effective and comprehensive strategies in order to reach a good protection of animals as well as human health. In South Tunisia, the prevalence of bovine TB is high with Mycobacterium bovis as causative agent and cattle as reservoir of the bacteria. However as previously mentioned in several studies, M. bovis is also responsible for human extrapulmonary tuberculosis (EPTB) cases in South Tunisia. Despite the veterinary and medical problems, M. bovis is still little studied. In this context, this work aimed to study the molecular epidemiology of M. bovis in EPTB patients in south Tunisia in order to determine the main risk factors of transmission. Our results underlined that SB0120, SB0121 and SB2025, previously described in cattle in Tunisia, represent the predominant genotypes. The findings highlighted that human EPTB caused by M. bovis mainly occurred through the consumption of raw milk or derivatives. These data demonstrate the urgent need to implement strategies for preventing and controlling zoonotic TB.
Collapse
|
34
|
Vergnes B, Gazanion E, Mariac C, Du Manoir M, Sollelis L, Lopez-Rubio JJ, Sterkers Y, Bañuls AL. A single amino acid substitution (H451Y) in Leishmania calcium-dependent kinase SCAMK confers high tolerance and resistance to antimony. J Antimicrob Chemother 2019; 74:3231-3239. [DOI: 10.1093/jac/dkz334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
For almost a century, antimonials have remained the first-line drugs for the treatment of leishmaniasis. However, little is known about their mode of action and clinical resistance mechanisms.
Objectives
We have previously shown that Leishmania nicotinamidase (PNC1) is an essential enzyme for parasite NAD+ homeostasis and virulence in vivo. Here, we found that parasites lacking the pnc1 gene (Δpnc1) are hypersusceptible to the active form of antimony (SbIII) and used these mutant parasites to better understand antimony’s mode of action and the mechanisms leading to resistance.
Methods
SbIII-resistant WT and Δpnc1 parasites were selected in vitro by a stepwise selection method. NAD(H)/NADP(H) dosages and quantitative RT–PCR experiments were performed to explain the susceptibility differences observed between strains. WGS and a marker-free CRISPR/Cas9 base-editing approach were used to identify and validate the role of a new resistance mutation.
Results
NAD+-depleted Δpnc1 parasites were highly susceptible to SbIII and this phenotype could be rescued by NAD+ precursor or trypanothione precursor supplementation. Δpnc1 parasites could become resistant to SbIII by an unknown mechanism. WGS revealed a unique amino acid substitution (H451Y) in an EF-hand domain of an orphan calcium-dependent kinase, recently named SCAMK. When introduced into a WT reference strain by base editing, the H451Y mutation allowed Leishmania parasites to survive at extreme concentrations of SbIII, potentiating the rapid emergence of resistant parasites.
Conclusions
These results establish that Leishmania SCAMK is a new central hub of antimony’s mode of action and resistance development, and uncover the importance of drug tolerance mutations in the evolution of parasite drug resistance.
Collapse
|
35
|
Nguyen TNA, Anton-Le Berre V, Bañuls AL, Nguyen TVA. Molecular Diagnosis of Drug-Resistant Tuberculosis; A Literature Review. Front Microbiol 2019; 10:794. [PMID: 31057511 PMCID: PMC6477542 DOI: 10.3389/fmicb.2019.00794] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/28/2019] [Indexed: 11/13/2022] Open
Abstract
Drug-resistant tuberculosis is a global health problem that hinders the progress of tuberculosis eradication programs. Accurate and early detection of drug-resistant tuberculosis is essential for effective patient care, for preventing tuberculosis spread, and for limiting the development of drug-resistant strains. Culture-based drug susceptibility tests are the gold standard method for the detection of drug-resistant tuberculosis, but they are time-consuming and technically challenging, especially in low- and middle-income countries. Nowadays, different nucleic acid-based assays that detect gene mutations associated with resistance to drugs used to treat tuberculosis are available. These tests vary in type and number of targets and in sensitivity and specificity. In this review, we will describe the available molecular tests for drug-resistant tuberculosis detection and discuss their advantages and limitations.
Collapse
|
36
|
Ouchar Mahamat O, Lounnas M, Hide M, Dumont Y, Tidjani A, Kamougam K, Abderrahmane M, Benavides J, Solassol J, Bañuls AL, Jean-Pierre H, Carrière C, Godreuil S. High prevalence and characterization of extended-spectrum ß-lactamase producing Enterobacteriaceae in Chadian hospitals. BMC Infect Dis 2019; 19:205. [PMID: 30819135 PMCID: PMC6396450 DOI: 10.1186/s12879-019-3838-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 02/20/2019] [Indexed: 11/15/2022] Open
Abstract
Background Extended-spectrum ß-lactamase-producing Enterobacteriaceae (ESBL-PE) represent a major problem in the management of nosocomial infections. However, ESBL-PE are not systematically monitored in African countries. The aim of this study was to determine ESBL-PE prevalence in patients from three hospitals in N’Djamena, the capital city of Chad, and to characterize the genetic origin of the observed resistance. Methods From January to March 2017, 313 non-duplicate isolates were recovered from various clinical specimens obtained from 1713 patients in the three main hospitals of N’Djamena. Bacterial species were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Susceptibility to 28 antibiotics was tested using the disk diffusion method on Müller-Hinton agar, and ESBL production was confirmed with the double-disc synergy test. The most prevalent ESBL genes associated with the observed resistance were detected using multiplex PCR followed by double-stranded DNA sequencing. Results Among the 313 isolates, 197 belonged to the Enterobacteriaceae family. The overall ESBL-PE prevalence was 47.72% (n = 94/197), with a higher rate among inpatients compared with outpatients (54.13% vs. 34.37%). ESBL-PE prevalence was highest in older patients (≥60 years of age). E. coli was the most common ESBL-producer organism (63.8%), followed by K. pneumoniae (21.2%). ESBL-PE were mainly found in urine samples (75%). The CTX-M-1 group was dominant (96.7% of the 94 ESBL-PE isolates, CTX-M-15 enzyme), followed by the CTX-M-9 group (4.1%). 86% of resistant isolates harbored more than one ESBL-encoding gene. ESBL production was also associated with the highest levels of resistance to non-β-lactam drugs. Conclusions The prevalence of ESBL-PE harboring resistant genes encoding ESBLs of the CTX-M-1 group was high (48%) among clinical isolates of three main hospitals in Chad, suggesting an alarming spread of ESBL-PE among patients. Electronic supplementary material The online version of this article (10.1186/s12879-019-3838-1) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Cassan C, Diagne CA, Tatard C, Gauthier P, Dalecky A, Bâ K, Kane M, Niang Y, Diallo M, Sow A, Brouat C, Bañuls AL. Leishmania major and Trypanosoma lewisi infection in invasive and native rodents in Senegal. PLoS Negl Trop Dis 2018; 12:e0006615. [PMID: 29958273 PMCID: PMC6042788 DOI: 10.1371/journal.pntd.0006615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/12/2018] [Accepted: 06/17/2018] [Indexed: 11/19/2022] Open
Abstract
Bioinvasion is a major public health issue because it can lead to the introduction of pathogens in new areas and favours the emergence of zoonotic diseases. Rodents are prominent invasive species, and act as reservoirs in many zoonotic infectious diseases. The aim of this study was to determine the link between the distribution and spread of two parasite taxa (Leishmania spp. and Trypanosoma lewisi) and the progressive invasion of Senegal by two commensal rodent species (the house mouse Mus musculus domesticus and the black rat Rattus rattus). M. m. domesticus and R. rattus have invaded the northern part and the central/southern part of the country, respectively. Native and invasive rodents were caught in villages and cities along the invasion gradients of both invaders, from coastal localities towards the interior of the land. Molecular diagnosis of the two trypanosomatid infections was performed using spleen specimens. In the north, neither M. m. domesticus nor the native species were carriers of these parasites. Conversely, in the south, 17.5% of R. rattus were infected by L. major and 27.8% by T. lewisi, while very few commensal native rodents were carriers. Prevalence pattern along invasion gradients, together with the knowledge on the geographical distribution of the parasites, suggested that the presence of the two parasites in R. rattus in Senegal is of different origins. Indeed, the invader R. rattus could have been locally infected by the native parasite L. major. Conversely, it could have introduced the exotic parasite T. lewisi in Senegal, the latter appearing to be poorly transmitted to native rodents. Altogether, these data show that R. rattus is a carrier of both parasites and could be responsible for the emergence of new foci of cutaneous leishmaniasis, or for the transmission of atypical human trypanosomiasis in Senegal.
Collapse
|
38
|
Lehrter V, Bañuls AL, Léger N, Rioux JA, Depaquit J. Phlebotomus (Paraphlebotomus) chabaudi and Phlebotomus riouxi: closely related species or synonyms? Parasite 2017; 24:47. [PMID: 29194032 PMCID: PMC5711378 DOI: 10.1051/parasite/2017050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 11/09/2017] [Indexed: 11/14/2022] Open
Abstract
Phlebotomus riouxi Depaquit, Killick-Kendrick & Léger 1998 was described as a species closely related to Phlebotomus chabaudi Croset, Abonnenc & Rioux 1970, differing mainly by the size and number of setae of the coxite basal lobe. Molecular studies carried out on several populations from Algeria and Tunisia and based on mitochondrial genes cytochrome b (Cytb) and cytochrome oxidase I (COI) supported the typological validity of these two species. Recently, specimens from a single population in southern Tunisia were morphologically identified as Ph. riouxi, Ph. chabaudi and intermediates, but were clustered in the same clade according to their Cytb and nuclear gene elongation factor-1 α (EF-1α) sequences. These species were thus synonymized. To further explore this synonymy, we carried out a molecular study on specimens from Algeria and Tunisia using the same molecular markers and a part of 28S rDNA. We did not find any morphologically intermediate specimens in our sampling. We highlighted differences between the genetic divergence rates within and between the two species for the three markers and we identified new haplotypes. The sequence analysis did not reveal any signature of introgression in allopatric nor in sympatric populations such as in the Ghomrassen population. Phylogenetic analyses based on our specimens revealed that the two main clades are Ph. chabaudi and Ph. riouxi, in agreement with the morphological identification. These results support the validity of Ph. riouxi and Ph. chabaudi as typological species.
Collapse
|
39
|
Kocher A, de Thoisy B, Catzeflis F, Valière S, Bañuls AL, Murienne J. iDNA screening: Disease vectors as vertebrate samplers. Mol Ecol 2017; 26:6478-6486. [PMID: 28926155 DOI: 10.1111/mec.14362] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/28/2017] [Accepted: 09/12/2017] [Indexed: 01/13/2023]
Abstract
In the current context of global change and human-induced biodiversity decline, there is an urgent need for developing sampling approaches able to accurately describe the state of biodiversity. Traditional surveys of vertebrate fauna involve time-consuming and skill-demanding field methods. Recently, the use of DNA derived from invertebrate parasites (leeches and blowflies) was suggested as a new tool for vertebrate diversity assessment. Bloodmeal analyses of arthropod disease vectors have long been performed to describe their feeding behaviour, for epidemiological purposes. On the other hand, this existing expertise has not yet been applied to investigate vertebrate fauna per se. Here, we evaluate the usefulness of hematophagous dipterans as vertebrate samplers. Blood-fed sand flies and mosquitoes were collected in Amazonian forest sites and analysed using high-throughput sequencing of short mitochondrial markers. Bloodmeal identifications highlighted contrasting ecological features and feeding behaviour among dipteran species, which allowed unveiling arboreal and terrestrial mammals of various body size, as well as birds, lizards and amphibians. Additionally, lower vertebrate diversity was found in sites undergoing higher levels of human-induced perturbation. These results suggest that, in addition to providing precious information on disease vector host use, dipteran bloodmeal analyses may represent a useful tool in the study of vertebrate communities. Although further effort is required to validate the approach and consider its application to large-scale studies, this first work opens up promising perspectives for biodiversity monitoring and eco-epidemiology.
Collapse
|
40
|
Nguyen HQ, Nguyen NV, Contamin L, Tran THT, Vu TT, Nguyen HV, Nguyen NLT, Nguyen ST, Dang AD, Bañuls AL, Nguyen VAT. Quadruple-first line drug resistance in Mycobacterium tuberculosis in Vietnam: What can we learn from genes? INFECTION GENETICS AND EVOLUTION 2017; 50:55-61. [PMID: 28214557 DOI: 10.1016/j.meegid.2017.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022]
Abstract
In Vietnam, a country with high tuberculosis (137/100.000 population) and multidrug-resistant (MDR)-TB burdens (7.8/100.000 population), little is known about the molecular signatures of drug resistance in general and more particularly of second line drug (SLD) resistance. This study is specifically focused on Mycobacterium tuberculosis isolates resistant to four first-line drugs (FLDs) that make TB much more difficult to treat. The aim is to determine the proportion of SLD resistance in these quadruple drug resistant isolates and the genetic determinants linked to drug resistance to better understand the genetic processes leading to quadruple and extremely drug resistance (XDR). 91 quadruple (rifampicin, isoniazid, ethambutol and streptomycin) FLD resistant and 55 susceptible isolates were included. Spoligotyping and 24-locus MIRU-VNTR techniques were performed and 9 genes and promoters linked to FLD and SLD resistance were sequenced. SLD susceptibility testing was carried out on a subsample of isolates. High proportion of quadruple-FLD resistant isolates was resistant to fluoroquinolones (27%) and second-line injectable drugs (30.2%) by drug susceptibility testing. The sequencing revealed high mutation diversity with prevailing mutations at positions katG315, inhA-15, rpoB531, embB306, rrs1401, rpsL43 and gyrA94. The sensitivity and specificity were high for most drug resistances (>86%), but the sensitivity was lower for injectable drug resistances (<69%). The mutation patterns revealed 23.1% of pre-XDR and 7.7% of XDR isolates, mostly belonging to Beijing family. The genotypic diversity and the variety of mutations reflect the existence of various evolutionary paths leading to FLD and SLD resistance. Nevertheless, particular mutation patterns linked to high-level resistance and low fitness costs seem to be favored.
Collapse
|
41
|
Prudhomme J, Cassan C, Hide M, Toty C, Rahola N, Vergnes B, Dujardin JP, Alten B, Sereno D, Bañuls AL. Ecology and morphological variations in wings of Phlebotomus ariasi (Diptera: Psychodidae) in the region of Roquedur (Gard, France): a geometric morphometrics approach. Parasit Vectors 2016; 9:578. [PMID: 27842606 PMCID: PMC5109773 DOI: 10.1186/s13071-016-1872-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/03/2016] [Indexed: 12/03/2022] Open
Abstract
Background Phlebotomus ariasi Tonnoir, 1921, is the predominant sand fly species in the Cevennes region and a proven vector of Leishmania infantum, which is the main pathogen of visceral and canine leishmaniasis in the south of France. Even if this species is widely present in Western Mediterranean countries, its biology and ecology remain poorly known. The main goals of this work are to investigate the phenotypic variation of P. ariasi at a local scale in a region characterized by climatic and environmental fluctuations, and to determine if slope and altitude could affect the sand fly phenotypes. Results Sand flies were captured along a 14 km-long transect in 2011 from May to October. At the same time, environmental data such as altitude and slope were also collected. Morphological analysis of P. ariasi wings was performed by a geometric morphometrics approach. We found morphological variation among local populations of P. ariasi. Strong shape and size variations were observed in the course of the season (particularly in June and July) for both genders. During June, we highlighted differences in wing phenotypes according to altitude for both sexes and to slope and station for females. Conclusions The phenotypic variations observed in P. ariasi along the studied transect indicated these populations are subjected to environmental pressures. Nevertheless, it seems that sand flies are more sensitive to extrinsic factors in June and July, suggesting a phenotypic plasticity.
Collapse
|
42
|
Ouedraogo AS, Dunyach-Remy C, Kissou A, Sanou S, Poda A, Kyelem CG, Solassol J, Bañuls AL, Van De Perre P, Ouédraogo R, Jean-Pierre H, Lavigne JP, Godreuil S. High Nasal Carriage Rate of Staphylococcus aureus Containing Panton-Valentine leukocidin- and EDIN-Encoding Genes in Community and Hospital Settings in Burkina Faso. Front Microbiol 2016; 7:1406. [PMID: 27679613 PMCID: PMC5020597 DOI: 10.3389/fmicb.2016.01406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022] Open
Abstract
The objectives of the present study were to investigate the rate of S.aureus nasal carriage and molecular characteristics in hospital and community settings in Bobo Dioulasso, Burkina Faso. Nasal samples (n = 219) were collected from 116 healthy volunteers and 103 hospitalized patients in July and August 2014. Samples were first screened using CHROMagar Staph aureus chromogenic agar plates, and S. aureus strains were identified by mass spectrometry. Antibiotic susceptibility was tested using the disk diffusion method on Müller-Hinton agar. All S. aureus isolates were genotyped using DNA microarray. Overall, the rate of S. aureus nasal carriage was 32.9% (72/219) with 29% in healthy volunteers and 37% in hospital patients. Among the S. aureus isolates, only four methicillin-resistant S. aureus (MRSA) strains were identified and all in hospital patients (3.9%). The 72 S. aureus isolates from nasal samples belonged to 16 different clonal complexes, particularly to CC 152-MSSA (22 clones) and CC1-MSSA (nine clones). Two clones were significantly associated with community settings: CC1-MSSA and CC45-MSSA. The MRSA strains belonged to the ST88-MRSA-IV or the CC8-MRSA-V complex. A very high prevalence of toxinogenic strains 52.2% (36/69), containing Panton-Valentine leucocidin- and EDIN-encoding genes, was identified among the S. aureus isolates in community and hospital settings. This study provides the first characterization of S. aureus clones and their genetic characteristics in Burkina Faso. Altogether, it highlights the low prevalence of antimicrobial resistance, high diversity of methicillin-sensitive S. aureus clones and high frequency of toxinogenic S. aureus strains.
Collapse
|
43
|
Nguyen VAT, Bañuls AL, Tran THT, Pham KLT, Nguyen TS, Nguyen HV, Nguyen NLT, Nguyen NLT, Dang DA, Marks GB, Choisy M. Mycobacterium tuberculosis lineages and anti-tuberculosis drug resistance in reference hospitals across Viet Nam. BMC Microbiol 2016; 16:167. [PMID: 27464737 PMCID: PMC4964266 DOI: 10.1186/s12866-016-0784-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/19/2016] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis, the tuberculosis (TB) pathogen, despite a low level of genetic diversity, has revealed a high variety of biological and epidemiological characteristics linked to their lineages, such as transmissibility, fitness and propensity to acquire drug resistance. This has important implications for the epidemiology of TB. We conducted this first countrywide cross-sectional study to identify the prevalent M. tuberculosis lineages and to assess their epidemiological associations and their relation to drug resistance. The study was conducted among isolates acquired in reference hospitals across Vietnam. Isolates with drug susceptibility testing profiles were identified for their lineages by spoligotyping. Logistic regression was used to investigate the association of M. tuberculosis lineages with location, age and sex of the patients and drug resistance levels. RESULTS Results showed that the most prevalent lineage was Beijing (55.4 %), followed by EAI (27.5 %), T (6.4 %), LAM (1.3 %), Haarlem (1 %) and Zero type (0.3 %). The proportion of Beijing isolates in the North (70.4 %) and the South (68 %) was higher than in the Centre (28 %) (OR = 1.7 [95 % CI: 1.4-2.0], p < 0.0001), whereas the proportion of EAI isolates in the North (7.1 %) and the South (17 %) was much lower compared with the Centre (59 %) (OR = 0.5 [95 % CI: 0.4-0.6], p < 0.0001). Overall, Beijing isolates were the most likely to be drug-resistant and EAI isolates were the least likely to be drug-resistant, except in the South of Vietnam where EAI is also highly drug-resistant. The proportion of Beijing isolates was significantly higher (p < 0.01), and the proportion of EAI isolates was significantly lower (p < 0.05) in younger patients. The proportion of drug-resistance was higher in isolates collected from male patients and from patients in the middle age groups. CONCLUSIONS The findings suggest ongoing replacement of EAI lineage, which is mainly more drug-susceptible with highly drug-resistant Beijing lineage in all studied regions of Vietnam. Male patients of working ages should be the focus for better control to prevent the emergence of drug-resistant TB.
Collapse
|
44
|
Kocher A, Gantier JC, Gaborit P, Zinger L, Holota H, Valiere S, Dusfour I, Girod R, Bañuls AL, Murienne J. Vector soup: high-throughput identification of Neotropical phlebotomine sand flies using metabarcoding. Mol Ecol Resour 2016; 17:172-182. [PMID: 27292284 DOI: 10.1111/1755-0998.12556] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 11/26/2022]
Abstract
Phlebotomine sand flies are haematophagous dipterans of primary medical importance. They represent the only proven vectors of leishmaniasis worldwide and are involved in the transmission of various other pathogens. Studying the ecology of sand flies is crucial to understand the epidemiology of leishmaniasis and further control this disease. A major limitation in this regard is that traditional morphological-based methods for sand fly species identifications are time-consuming and require taxonomic expertise. DNA metabarcoding holds great promise in overcoming this issue by allowing the identification of multiple species from a single bulk sample. Here, we assessed the reliability of a short insect metabarcode located in the mitochondrial 16S rRNA for the identification of Neotropical sand flies, and constructed a reference database for 40 species found in French Guiana. Then, we conducted a metabarcoding experiment on sand flies mixtures of known content and showed that the method allows an accurate identification of specimens in pools. Finally, we applied metabarcoding to field samples caught in a 1-ha forest plot in French Guiana. Besides providing reliable molecular data for species-level assignations of phlebotomine sand flies, our study proves the efficiency of metabarcoding based on the mitochondrial 16S rRNA for studying sand fly diversity from bulk samples. The application of this high-throughput identification procedure to field samples can provide great opportunities for vector monitoring and eco-epidemiological studies.
Collapse
|
45
|
Cassan C, Dione MM, Dereure J, Diedhiou S, Bucheton B, Hide M, Kako C, Gaye O, Senghor M, Niang AA, Bañuls AL, Faye B. First insights into the genetic diversity and origin of Leishmania infantum in Mont Rolland (Thiès region, Senegal). Microbes Infect 2016; 18:412-420. [DOI: 10.1016/j.micinf.2016.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
|
46
|
Chazel M, Marchandin H, Keck N, Terru D, Carrière C, Ponsoda M, Jacomo V, Panteix G, Bouzinbi N, Bañuls AL, Choisy M, Solassol J, Aubry A, Godreuil S. Evaluation of the SLOMYCO Sensititre(®) panel for testing the antimicrobial susceptibility of Mycobacterium marinum isolates. Ann Clin Microbiol Antimicrob 2016; 15:30. [PMID: 27150659 PMCID: PMC4858841 DOI: 10.1186/s12941-016-0145-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/27/2016] [Indexed: 12/30/2022] Open
Abstract
Background The agar dilution method is currently considered as the reference method for Mycobacterium marinum drug susceptibility testing (DST). As it is time-consuming, alternative methods, such as the E-test, were evaluated for M.marinum DST, but without success. The SLOMYCO Sensititre® panel, recently commercialized by TREK Diagnostic Systems (Cleveland, OH), can be used for DST in slow-growing mycobacteria and for antimicrobial agents recommended by the Clinical and Laboratory Standards Institute (CLSI) for M.marinum DST. The main goal of this work was to evaluate the SLOMYCO Sensititre® panel method for DST in M.marinum isolates from human patients and fish relative to the reference agar dilution method. Methods/Results The reproducibility of the minimum inhibitory concentration (MIC) determination (±1 log2 dilution) was very good for both the agar dilution method and SLOMYCO Sensititre® panel (>90 % agreement). The percentage essential agreement between methods varied, depending on the drug: between 97 and 75 % for ciprofloxacin, moxifloxacin, linezolid, isoniazid, clarithromycin, amikacin, rifabutin and rifampin, 74 % for trimethoprim, 72 % for doxycycline, 70 % for sulfamethoxazole, 59 % for streptomycin, 33 % for ethambutol and only 2.2 % for ethionamide. When the agar dilution and SLOMYCO Sensititre® panel results were converted into interpretive criteria, the category agreement was 100 % for amikacin, ciprofloxacin, clarithromycin, moxifloxacin, rifabutin, sulfamethoxazole and trimethoprim, 98 % for ethambutol and 96 % for rifampin and no agreement for doxycycline. Conclusions The SLOMYCO Sensititre® panel method could provide a potential alternative to the reference agar dilution method, when DST in M.marinum is required, except for doxycycline.
Collapse
|
47
|
Loeuillet C, Bañuls AL, Hide M. Study of Leishmania pathogenesis in mice: experimental considerations. Parasit Vectors 2016; 9:144. [PMID: 26969511 PMCID: PMC4788862 DOI: 10.1186/s13071-016-1413-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/26/2016] [Indexed: 11/17/2022] Open
Abstract
Although leishmaniases are endemic in 98 countries, they are still considered neglected tropical diseases. Leishmaniases are characterized by the emergence of new virulent and asymptomatic strains of Leishmania spp. and, as a consequence, by a very diverse clinical spectrum. To fight more efficiently these parasites, the mechanisms of host defense and of parasite virulence need to be thoroughly investigated. To this aim, animal models are widely used. However, the results obtained with these models are influenced by several experimental parameters, such as the mouse genetic background, parasite genotype, inoculation route/infection site, parasite dose and phlebotome saliva. In this review, we propose an update on their influence in the two main clinical forms of the disease: cutaneous and visceral leishmaniases.
Collapse
|
48
|
Ngoc Thi Vu B, J Jafari A, Aardema M, Kieu Thi Tran H, Ngoc Thi Nguyen D, Tuyet Dao T, Vu Nguyen T, Khanh Tran T, Kim Thi Nguyen C, Fox A, Bañuls AL, Thwaites G, Van Nguyen K, Wertheim HFL. Population structure of colonizing and invasive Staphylococcus aureus strains in northern Vietnam. J Med Microbiol 2016; 65:298-305. [PMID: 26758688 DOI: 10.1099/jmm.0.000220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is an important global health problem worldwide. There is still scarce information on the population structure of S. aureus strains in Asia, where the majority of the world population lives. This study characterized the diversity of S. aureus strains in northern Vietnam through multilocus sequence typing (MLST). Eighty-five carriage isolates from the community and 77 invasive isolates from the clinical setting were selected and tested for meticillin resistance and the presence of Panton-Valentine leukocidin (PVL). MLST was performed on these isolates, of which CC59 (25.4 %), CC188 (17.3 %) and CC45 (16.7 %) were the predominant clonal complexes (CCs). CC59 carriage isolates had significantly lower rates of meticillin-resistant S. aureus (MRSA) than their corresponding clinical group isolates (32 vs 83 %). There were no significant differences in rates of MRSA between carriage isolates and clinical isolates of CC45 and CC188. CC59 carriage isolates were significantly lower in rates of PVL+ than CC59 clinical isolates (32 vs 83 %), but the converse was shown in CC45 isolates (14 vs 0 %, respectively). This study revealed vast differences in the molecular epidemiology and population structure of S. aureus in community and clinical settings in Vietnam. Nevertheless, the data underline the spread of virulent and/or resistant strains (MRSA and/or PVL+) in the community, suggesting the necessity for further surveillance to determine the mechanism of transmission of these strains (i.e. MRSA/PVL+) outside clinical settings.
Collapse
|
49
|
Prudhomme J, Rahola N, Toty C, Cassan C, Roiz D, Vergnes B, Thierry M, Rioux JA, Alten B, Sereno D, Bañuls AL. Ecology and spatiotemporal dynamics of sandflies in the Mediterranean Languedoc region (Roquedur area, Gard, France). Parasit Vectors 2015; 8:642. [PMID: 26683841 PMCID: PMC4684629 DOI: 10.1186/s13071-015-1250-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/06/2015] [Indexed: 01/10/2023] Open
Abstract
Background Phlebotomine sandflies are hematophagous insects widely present in Western Mediterranean countries and known for their role as Leishmania vectors. During the last ten years, the risk of leishmaniasis re-emergence has increased in France. However, sandfly biology and ecology in the South of France remain poorly known because the last detailed study on their spatiotemporal dynamics was performed over 30 years ago. The aim of the present study was to update our knowledge on sandfly ecology by determining their spatiotemporal dynamics and by investigating the relationship between environmental/climatic factors and the presence and abundance of sandflies in the South of France. Methods An entomological survey was carried out during three years (2011–2013) along a 14 kilometer-long transect. The findings were compared with the data collected along the same transect in 1977. Data loggers were placed in each station and programmed to record temperature and relative humidity every six hours between April 2011 and November 2014. Several environmental factors (such as altitude, slope and wall orientation (North, East, West and South)) were characterized at each station. Results Four sandfly species were collected: Phlebotomus ariasi and Sergentomyia minuta, which were predominant, Ph. perniciosus and Ph. mascittii. Sandfly activity within the studied area started in May and ended in October with peaks in July-August at the optimum average temperature. We found a positive effect of altitude and temperature and a negative effect of relative humidity on Ph. ariasi and Se. minuta presence. We detected interspecific differences and non-linear effects of these climatic variables on sandfly abundance. Although the environment has considerably changed in 30 years, no significant difference in sandfly dynamics and species diversity was found by comparing the 1977 and 2011–2013 data. Conclusion Our study shows that this area maintains a rich sandfly fauna with high Ph. ariasi population density during the active season. This represents a risk for Leishmania transmission. The analysis revealed that the presence and abundance of Ph. ariasi and Se. minuta were differently correlated with the environmental and climatic factors. Comparison with the data collected in 1977 highlighted the sandfly population stability, suggesting that they can adapt, in the short and long term, to changing ecosystems.
Collapse
|
50
|
Harrabi M, Bettaieb J, Ghawar W, Toumi A, Zaâtour A, Yazidi R, Chaâbane S, Chalghaf B, Hide M, Bañuls AL, Ben Salah A. Spatio-temporal Genetic Structuring of Leishmania major in Tunisia by Microsatellite Analysis. PLoS Negl Trop Dis 2015; 9:e0004017. [PMID: 26302440 PMCID: PMC4547700 DOI: 10.1371/journal.pntd.0004017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/30/2015] [Indexed: 01/06/2023] Open
Abstract
In Tunisia, cases of zoonotic cutaneous leishmaniasis caused by Leishmania major are increasing and spreading from the south-west to new areas in the center. To improve the current knowledge on L. major evolution and population dynamics, we performed multi-locus microsatellite typing of human isolates from Tunisian governorates where the disease is endemic (Gafsa, Kairouan and Sidi Bouzid governorates) and collected during two periods: 1991–1992 and 2008–2012. Analysis (F-statistics and Bayesian model-based approach) of the genotyping results of isolates collected in Sidi Bouzid in 1991–1992 and 2008–2012 shows that, over two decades, in the same area, Leishmania parasites evolved by generating genetically differentiated populations. The genetic patterns of 2008–2012 isolates from the three governorates indicate that L. major populations did not spread gradually from the south to the center of Tunisia, according to a geographical gradient, suggesting that human activities might be the source of the disease expansion. The genotype analysis also suggests previous (Bayesian model-based approach) and current (F-statistics) flows of genotypes between governorates and districts. Human activities as well as reservoir dynamics and the effects of environmental changes could explain how the disease progresses. This study provides new insights into the evolution and spread of L. major in Tunisia that might improve our understanding of the parasite flow between geographically and temporally distinct populations. In Tunisia, zoonotic cutaneous leishmaniasis (ZCL) constitutes a significant public health problem. Since 1884, the Gafsa, Kairouan and Sidi Bouzid governorates are the most endemic areas of ZCL. This study used a multi-locus microsatellite typing approach to study the evolution and the population dynamics of Leishmania major in Tunisia. Within the same area, in twenty years, parasite populations evolved by producing a genetically differentiated population, probably better adapted to the ecosystem. In agreement with the reported human cases of ZCL, the genetic data on samples from the three governorates shows that the disease did not spread according to a geographical gradient. Furthermore, L. major flows seem to still occur between governorates and neighboring districts. This study suggests that environmental changes, human activities and reservoir systems have influenced the spread and evolution of L. major populations. Our findings provide important knowledge on the epidemiology of L. major in Tunisia and might help understanding why the disease is still spreading from the south to the center, despite the control measures that have been put into place.
Collapse
|