1
|
Abstract
Molecular genetic markers have been developed into powerful tools to analyse genetic relationships and genetic diversity. As an extension to the variety of existing techniques using polymorphic DNA markers, the Random Amplified Polymorphic DNA (RAPD) technique may be used in molecular ecology to determine taxonomic identity, assess kinship relationships, analyse mixed genome samples, and create specific probes. Main advantages of the RAPD technology include (i) suitability for work on anonymous genomes, (ii) applicability to problems where only limited quantities of DNA are available, (iii) efficiency and low expense.
Collapse
|
|
33 |
341 |
2
|
Schierwater B, Eitel M, Jakob W, Osigus HJ, Hadrys H, Dellaporta SL, Kolokotronis SO, Desalle R. Concatenated analysis sheds light on early metazoan evolution and fuels a modern "urmetazoon" hypothesis. PLoS Biol 2009; 7:e20. [PMID: 19175291 PMCID: PMC2631068 DOI: 10.1371/journal.pbio.1000020] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 12/08/2008] [Indexed: 01/06/2023] Open
Abstract
For more than a century, the origin of metazoan animals has been debated. One aspect of this debate has been centered on what the hypothetical “urmetazoon” bauplan might have been. The morphologically most simply organized metazoan animal, the placozoan Trichoplax adhaerens, resembles an intriguing model for one of several “urmetazoon” hypotheses: the placula hypothesis. Clear support for a basal position of Placozoa would aid in resolving several key issues of metazoan-specific inventions (including, for example, head–foot axis, symmetry, and coelom) and would determine a root for unraveling their evolution. Unfortunately, the phylogenetic relationships at the base of Metazoa have been controversial because of conflicting phylogenetic scenarios generated while addressing the question. Here, we analyze the sum of morphological evidence, the secondary structure of mitochondrial ribosomal genes, and molecular sequence data from mitochondrial and nuclear genes that amass over 9,400 phylogenetically informative characters from 24 to 73 taxa. Together with mitochondrial DNA genome structure and sequence analyses and Hox-like gene expression patterns, these data (1) provide evidence that Placozoa are basal relative to all other diploblast phyla and (2) spark a modernized “urmetazoon” hypothesis. Following one of the basic principles in evolutionary biology that complex life forms derive from more primitive ancestors, it has long been believed that the higher animals, the Bilateria, arose from simpler (diploblastic) organisms such as the cnidarians (corals, polyps, and jellyfishes). A large number of studies, using different datasets and different methods, have tried to determine the most ancestral animal group as well as the ancestor of the higher animals. Here, we use “total evidence” analysis, which incorporates all available data (including morphology, genome, and gene expression data) and come to a surprising conclusion. The Bilateria and Cnidaria (together with the other diploblastic animals) are in fact sister groups: that is, they evolved in parallel from a very simple common ancestor. We conclude that the higher animals (Bilateria) and lower animals (diploblasts), probably separated very early, at the very beginning of metazoan animal evolution and independently evolved their complex body plans, including body axes, nervous system, sensory organs, and other characteristics. The striking similarities in several complex characters (such as the eyes) resulted from both lineages using the same basic genetic tool kit, which was already present in the common ancestor. The study identifies Placozoa as the most basal diploblast group and thus a living fossil genome that nicely demonstrates, not only that complex genetic tool kits arise before morphological complexity, but also that these kits may form similar morphological structures in parallel. Total evidence analyses reveal a surprise: Higher animals did not evolve from any known lower animal group.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
16 |
212 |
3
|
Rach J, DeSalle R, Sarkar I, Schierwater B, Hadrys H. Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. Proc Biol Sci 2008; 275:237-47. [PMID: 17999953 PMCID: PMC2212734 DOI: 10.1098/rspb.2007.1290] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 10/17/2007] [Accepted: 10/18/2007] [Indexed: 11/12/2022] Open
Abstract
DNA barcoding has become a promising means for identifying organisms of all life stages. Currently, phenetic approaches and tree-building methods have been used to define species boundaries and discover 'cryptic species'. However, a universal threshold of genetic distance values to distinguish taxonomic groups cannot be determined. As an alternative, DNA barcoding approaches can be 'character based', whereby species are identified through the presence or absence of discrete nucleotide substitutions (character states) within a DNA sequence. We demonstrate the potential of character-based DNA barcodes by analysing 833 odonate specimens from 103 localities belonging to 64 species. A total of 54 species and 22 genera could be discriminated reliably through unique combinations of character states within only one mitochondrial gene region (NADH dehydrogenase 1). Character-based DNA barcodes were further successfully established at a population level discriminating seven population-specific entities out of a total of 19 populations belonging to three species. Thus, for the first time, DNA barcodes have been found to identify entities below the species level that may constitute separate conservation units or even species units. Our findings suggest that character-based DNA barcoding can be a rapid and reliable means for (i) the assignment of unknown specimens to a taxonomic group, (ii) the exploration of diagnosability of conservation units, and (iii) complementing taxonomic identification systems.
Collapse
|
research-article |
17 |
189 |
4
|
Loenarz C, Coleman ML, Boleininger A, Schierwater B, Holland PWH, Ratcliffe PJ, Schofield CJ. The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens. EMBO Rep 2011; 12:63-70. [PMID: 21109780 PMCID: PMC3024122 DOI: 10.1038/embor.2010.170] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 01/09/2023] Open
Abstract
The hypoxic response in humans is mediated by the hypoxia-inducible transcription factor (HIF), for which prolyl hydroxylases (PHDs) act as oxygen-sensing components. The evolutionary origins of the HIF system have been previously unclear. We demonstrate a functional HIF system in the simplest animal, Trichoplax adhaerens: HIF targets in T. adhaerens include glycolytic and metabolic enzymes, suggesting a role for HIF in the adaptation of basal multicellular animals to fluctuating oxygen levels. Characterization of the T. adhaerens PHDs and cross-species complementation assays reveal a conserved oxygen-sensing mechanism. Cross-genomic analyses rationalize the relative importance of HIF system components, and imply that the HIF system is likely to be present in all animals, but is unique to this kingdom.
Collapse
|
report |
14 |
178 |
5
|
Bridge D, Cunningham CW, Schierwater B, DeSalle R, Buss LW. Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. Proc Natl Acad Sci U S A 1992; 89:8750-3. [PMID: 1356268 PMCID: PMC49998 DOI: 10.1073/pnas.89.18.8750] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phylogenetic relationships of the Recent cnidarian classes remain one of the classic problems in invertebrate zoology. We survey the structure of the mitochondrial genome in representatives of the four extant cnidarian classes and in the phylum Ctenophora. We find that all anthozoan species tested possess mtDNA in the form of circular molecules, whereas all scyphozoan, cubozoan, and hydrozoan species tested display mtDNA in the form of linear molecules. Because ctenophore and all other known metazoan mtDNA is circular, the shared occurrence of linear mtDNA in three of the four cnidarian classes suggests a basal position for the Anthozoa within the phylum.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
33 |
177 |
6
|
Bernt M, Braband A, Schierwater B, Stadler PF. Genetic aspects of mitochondrial genome evolution. Mol Phylogenet Evol 2012; 69:328-38. [PMID: 23142697 DOI: 10.1016/j.ympev.2012.10.020] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 10/20/2012] [Accepted: 10/22/2012] [Indexed: 11/30/2022]
Abstract
Many years of extensive studies of metazoan mitochondrial genomes have established differences in gene arrangements and genetic codes as valuable phylogenetic markers. Understanding the underlying mechanisms of replication, transcription and the role of the control regions which cause e.g. different gene orders is important to assess the phylogenetic signal of such events. This review summarises and discusses, for the Metazoa, the general aspects of mitochondrial transcription and replication with respect to control regions as well as several proposed models of gene rearrangements. As whole genome sequencing projects accumulate, more and more observations about mitochondrial gene transfer to the nucleus are reported. Thus occurrence and phylogenetic aspects concerning nuclear mitochondrial-like sequences (NUMTS) is another aspect of this review.
Collapse
|
Review |
13 |
172 |
7
|
Collins AG, Schuchert P, Marques AC, Jankowski T, Medina M, Schierwater B. Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Syst Biol 2006; 55:97-115. [PMID: 16507527 DOI: 10.1080/10635150500433615] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A newly compiled data set of nearly complete sequences of the large subunit of the nuclear ribosome (LSU or 28S) sampled from 31 diverse medusozoans greatly clarifies the phylogenetic history of Cnidaria. These data have substantial power to discern among many of the competing hypotheses of relationship derived from prior work. Moreover, LSU data provide strong support at key nodes that were equivocal based on other molecular markers. Combining LSU sequences with those of the small subunit of the nuclear ribosome (SSU or 18S), we present a detailed working hypothesis of medusozoan relationships and discuss character evolution within this diverse clade. Stauromedusae, comprising the benthic, so-called stalked jellyfish, appears to be the sister group of all other medusozoans, implying that the free-swimming medusa stage, the motor nerve net, and statocysts of ecto-endodermal origin are features derived within Medusozoa. Cubozoans, which have had uncertain phylogenetic affinities since the elucidation of their life cycles, form a clade-named Acraspeda-with the scyphozoan groups Coronatae, Rhizostomeae, and Semaeostomeae. The polyps of both cubozoans and hydrozoans appear to be secondarily simplified. Hydrozoa is comprised by two well-supported clades, Trachylina and Hydroidolina. The position of Limnomedusae within Trachylina indicates that the ancestral hydrozoan had a biphasic life cycle and that the medusa was formed via an entocodon. Recently hypothesized homologies between the entocodon and bilaterian mesoderm are therefore suspect. Laingiomedusae, which has often been viewed as a close ally of the trachyline group Narcomedusae, is instead shown to be unambiguously a member of Hydroidolina. The important model organisms of the Hydra species complex are part of a clade, Aplanulata, with other hydrozoans possessing direct development not involving a ciliated planula stage. Finally, applying phylogenetic mixture models to our data proved to be of little additional value over a more traditional phylogenetic approach involving explicit hypothesis testing and bootstrap analyses under multiple optimality criteria. [18S; 28S; Cubozoa; Hydrozoa; medusa; molecular systematics; polyp; Scyphozoa; Staurozoa.].
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
169 |
8
|
Dellaporta SL, Xu A, Sagasser S, Jakob W, Moreno MA, Buss LW, Schierwater B. Mitochondrial genome of Trichoplax adhaerens supports placozoa as the basal lower metazoan phylum. Proc Natl Acad Sci U S A 2006; 103:8751-6. [PMID: 16731622 PMCID: PMC1470968 DOI: 10.1073/pnas.0602076103] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial genomes of multicellular animals are typically 15- to 24-kb circular molecules that encode a nearly identical set of 12-14 proteins for oxidative phosphorylation and 24-25 structural RNAs (16S rRNA, 12S rRNA, and tRNAs). These genomes lack significant intragenic spacers and are generally without introns. Here, we report the complete mitochondrial genome sequence of the placozoan Trichoplax adhaerens, a metazoan with the simplest known body plan of any animal, possessing no organs, no basal membrane, and only four different somatic cell types. Our analysis shows that the Trichoplax mitochondrion contains the largest known metazoan mtDNA genome at 43,079 bp, more than twice the size of the typical metazoan mtDNA. The mitochondrion's size is due to numerous intragenic spacers, several introns and ORFs of unknown function, and protein-coding regions that are generally larger than those found in other animals. Not only does the Trichoplax mtDNA have characteristics of the mitochondrial genomes of known metazoan outgroups, such as chytrid fungi and choanoflagellates, but, more importantly, it shares derived features unique to the Metazoa. Phylogenetic analyses of mitochondrial proteins provide strong support for the placement of the phylum Placozoa at the root of the Metazoa.
Collapse
|
research-article |
19 |
168 |
9
|
Bernt M, Bleidorn C, Braband A, Dambach J, Donath A, Fritzsch G, Golombek A, Hadrys H, Jühling F, Meusemann K, Middendorf M, Misof B, Perseke M, Podsiadlowski L, von Reumont B, Schierwater B, Schlegel M, Schrödl M, Simon S, Stadler PF, Stöger I, Struck TH. A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. Mol Phylogenet Evol 2013; 69:352-64. [PMID: 23684911 DOI: 10.1016/j.ympev.2013.05.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/27/2013] [Accepted: 05/03/2013] [Indexed: 12/16/2022]
Abstract
About 2800 mitochondrial genomes of Metazoa are present in NCBI RefSeq today, two thirds belonging to vertebrates. Metazoan phylogeny was recently challenged by large scale EST approaches (phylogenomics), stabilizing classical nodes while simultaneously supporting new sister group hypotheses. The use of mitochondrial data in deep phylogeny analyses was often criticized because of high substitution rates on nucleotides, large differences in amino acid substitution rate between taxa, and biases in nucleotide frequencies. Nevertheless, mitochondrial genome data might still be promising as it allows for a larger taxon sampling, while presenting a smaller amount of sequence information. We present the most comprehensive analysis of bilaterian relationships based on mitochondrial genome data. The analyzed data set comprises more than 650 mitochondrial genomes that have been chosen to represent a profound sample of the phylogenetic as well as sequence diversity. The results are based on high quality amino acid alignments obtained from a complete reannotation of the mitogenomic sequences from NCBI RefSeq database. However, the results failed to give support for many otherwise undisputed high-ranking taxa, like Mollusca, Hexapoda, Arthropoda, and suffer from extreme long branches of Nematoda, Platyhelminthes, and some other taxa. In order to identify the sources of misleading phylogenetic signals, we discuss several problems associated with mitochondrial genome data sets, e.g. the nucleotide and amino acid landscapes and a strong correlation of gene rearrangements with long branches.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
166 |
10
|
Möller A, Sagasser S, Wiltschko W, Schierwater B. Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2004; 91:585-8. [PMID: 15551029 DOI: 10.1007/s00114-004-0578-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Accepted: 09/26/2004] [Indexed: 11/25/2022]
Abstract
The currently discussed model of magnetoreception in birds proposes that the direction of the magnetic field is perceived by radical-pair processes in specialized photoreceptors, with cryptochromes suggested as potential candidate molecules mediating magnetic compass information. Behavioral studies have shown that magnetic compass orientation takes place in the eye and requires light from the blue-green part of the spectrum. Cryptochromes are known to absorb in the same spectral range. Because of this we searched for cryptochrome (CRY) in the retina of European robins, Erithacus rubecula, passerine birds that migrate at night. Here, we report three individually expressed cryptochromes, eCRY1a, eCRY1b, and eCRY2. While eCRY1a and eCRY2 are similar to the cryptochromes found in the retina of the domestic chicken, eCRY1b has a unique carboxy (C)-terminal. In light of the 'radical-pair' model, our findings support a potential role of cryptochromes as transducers for the perception of magnetic compass information in birds.
Collapse
|
Comparative Study |
21 |
143 |
11
|
Schierwater B, Ender A. Different thermostable DNA polymerases may amplify different RAPD products. Nucleic Acids Res 1993; 21:4647-8. [PMID: 8233808 PMCID: PMC311208 DOI: 10.1093/nar/21.19.4647] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
research-article |
32 |
126 |
12
|
Laurent L, Casale P, Bradai MN, Godley BJ, Gerosa G, Broderick AC, Schroth W, Schierwater B, Levy AM, Freggi D, Abd el-Mawla EM, Hadoud DA, Gomati HE, Domingo M, Hadjichristophorou M, Kornaraky L, Demirayak F, Gautier C. Molecular resolution of marine turtle stock composition in fishery bycatch: a case study in the Mediterranean. Mol Ecol 1998; 7:1529-42. [PMID: 9819906 DOI: 10.1046/j.1365-294x.1998.00471.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Based on an extensive sampling regime from both nesting populations and bycatch, frequency analyses of mitochondrial (mt) DNA control region haplotypes in the Mediterranean were used to assess the genetic structure and stock composition of the loggerhead sea turtle, Caretta caretta, in different marine fisheries. The analyses show the following. (i) In drifting longline fisheries working in Mediterranean pelagic habitats 53-55% of turtles caught originated from the Mediterranean stock; (ii) In bottom-trawl fisheries all turtle bycatch is derived from this regional stock; (iii) This regional stock contribution to fishery bycatch suggests that the population size of the Mediterranean loggerhead nesting population is significantly larger than previously thought. This is consistent with a recent holistic estimate based on the discovery of a large rookery in Libya. (iv) Present impact of fishery-related mortality on the Mediterranean nesting population is probably incompatible with its long-term conservation. Sea turtle conservation regulations are urgently needed for the Mediterranean fisheries. (v) The significant divergence of mtDNA haplotype frequencies of the Turkish loggerhead colonies define this nesting population as a particularly important management unit. Large immature and adult stages from this management unit seem to be harvested predominantly by Egyptian fisheries. (vi) Combined with other data, our findings suggest that all the nesting populations in the Mediterranean should be considered as management units sharing immature pelagic habitats throughout the Mediterranean (and possibly the eastern Atlantic), with distinct and more localized benthic feeding habitats in the eastern basin used by large immatures and adults. (vii) Between the strict oceanic pelagic and the benthic stages, immature turtles appear to live through an intermediate neritic stage, in which they switch between pelagic and benthic foods.
Collapse
|
|
27 |
123 |
13
|
Abstract
Trichoplax adhaerens is more simply organized than any other living metazoan. This tiny marine animal looks like a irregular "hairy plate" ("tricho plax") with a simple upper and lower epithelium and some loose cells in between. After its original description by F.E. Schulze 1883, it attracted particular attention as a potential candidate representing the basic and ancestral state of metazoan organization. The lack of any kind of symmetry, organs, nerve cells, muscle cells, basal lamina and extracellular matrix originally left little doubt about the basal position of T. adhaerens. Nevertheless, the interest of zoologists and evolutionary biologists suddenly vanished for more than half a century when Trichoplax was claimed to be an aberrant hydrozoan planula larva. Recently, Trichoplax has been rediscovered as a key species for unraveling early metazoan evolution. For example, research on regulatory genes and whole genome sequencing promise insights into the genetics underlying the origin and development of basal metazoan phyla. Trichoplax offers unique potential for understanding the minimal requirements of metazoan animal organization.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
99 |
14
|
Sarkar IN, Thornton JW, Planet PJ, Figurski DH, Schierwater B, DeSalle R. An automated phylogenetic key for classifying homeoboxes. Mol Phylogenet Evol 2002; 24:388-99. [PMID: 12220982 DOI: 10.1016/s1055-7903(02)00259-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
When novel gene sequences are discovered, they are usually identified, classified, and annotated based on aggregate measures of sequence similarity. This method is prone to errors, however. Phylogenetic analysis is a more accurate basis for gene classification and ortholog identification, but it is relatively labor-intensive and computationally demanding. Here we report and demonstrate a rapid new method for gene classification based on phylogenetic principles. Given the phylogeny of a minimal sample of gene family members, our method automatically identifies amino acids that are phylogenetically characteristic of each class of sequences in the family; it then classifies a novel sequence based on the presence of these characteristic attributes in its sequence. Using a subset of homeobox protein sequences as a test case, we show that our method approximates classification based on full-scale phylogenetic analysis with very high accuracy in a tiny fraction of the time.
Collapse
|
|
23 |
96 |
15
|
Kamm K, Schierwater B, Jakob W, Dellaporta SL, Miller DJ. Axial patterning and diversification in the cnidaria predate the Hox system. Curr Biol 2006; 16:920-6. [PMID: 16563766 DOI: 10.1016/j.cub.2006.03.036] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/14/2006] [Accepted: 03/14/2006] [Indexed: 11/18/2022]
Abstract
Across the animal kingdom, Hox genes are organized in clusters whose genomic organization reflects their central roles in patterning along the anterior/posterior (A/P) axis . While a cluster of Hox genes was present in the bilaterian common ancestor, the origins of this system remain unclear (cf. ). With new data for two representatives of the closest extant phylum to the Bilateria, the sea anemone Nematostella and the hydromedusa Eleutheria, we argue here that the Cnidaria predate the evolution of the Hox system. Although Hox-like genes are present in a range of cnidarians, many of these are paralogs and in neither Nematostella nor Eleutheria is an equivalent of the Hox cluster present. With the exception of independently duplicated genes, the cnidarian genes are unlinked and in several cases are flanked by non-Hox genes. Furthermore, the cnidarian genes are expressed in patterns that are inconsistent with the Hox paradigm. We conclude that the Cnidaria/Bilateria split occurred before a definitive Hox system developed. The spectacular variety in morphological and developmental characteristics shown by extant cnidarians demonstrates that there is no obligate link between the Hox system and morphological diversity in the animal kingdom and that a canonical Hox system is not mandatory for axial patterning.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
92 |
16
|
Schroth W, Jarms G, Streit B, Schierwater B. Speciation and phylogeography in the cosmopolitan marine moon jelly, Aurelia sp. BMC Evol Biol 2002; 2:1. [PMID: 11801181 PMCID: PMC64640 DOI: 10.1186/1471-2148-2-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2001] [Accepted: 01/02/2002] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The cosmopolitan moon jelly Aurelia is characterized by high degrees of morphological and ecological plasticity, and subsequently by an unclear taxonomic status. The latter has been revised repeatedly over the last century, dividing the genus Aurelia in as many as 12 or as little as two species. We used molecular data and phenotypic traits to unravel speciation processes and phylogeographic patterns in Aurelia. RESULTS Mitochondrial and nuclear DNA data (16S and ITS-1/5.8S rDNA) from 66 world-wide sampled specimens reveal star-like tree topologies, unambiguously differentiating 7 (mtDNA) and 8 (ncDNA) genetic entities with sequence divergences ranging from 7.8 to 14% (mtDNA) and 5 to 32% (ncDNA), respectively. Phylogenetic patterns strongly suggest historic speciation events and the reconstruction of at least 7 different species within Aurelia. Both genetic divergences and life history traits showed associations to environmental factors, suggesting ecological differentiation forced by divergent selection. Hybridization and introgression between Aurelia lineages likely occurred due to secondary contacts, which, however, did not disrupt the unambiguousness of genetic separation. CONCLUSIONS Our findings recommend Aurelia as a model system for using the combined power of organismic, ecological, and molecular data to unravel speciation processes in cosmopolitan marine organisms.
Collapse
|
research-article |
23 |
80 |
17
|
Schierwater B, Kuhn K. Homology of Hox genes and the zootype concept in early metazoan evolution. Mol Phylogenet Evol 1998; 9:375-81. [PMID: 9667985 DOI: 10.1006/mpev.1998.0489] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The correct identification of homologous Hox genes within and between diplo- and triploblastic animals is of crucial importance for recent hypotheses on the anagenetic evolution of animal bauplans. While the homology discussion in general has reached new heights, we apply traditional homology criteria to assign homology to Hox genes from diploblastic animals. Comparison of the Trox-2 gene from the presumably most basal metazoan animal, the placozoan Trichoplax adhaerens, to other Hox genes suggests the presence of unambiguous homologs in Hydrozoa and Scyphozoa and the absence of any specific homolog in triploblasts. Furthermore, the comparisons provide support for the idea that Hox genes-at least in diploblastic animals-are composed of functional subunits (modules), which to some degree have undergone independent evolution. The findings are not readily compatible with the existence of the "zootype" in diploblastic animals.
Collapse
|
Comparative Study |
27 |
75 |
18
|
Ender A, Schierwater B. Placozoa are not derived cnidarians: evidence from molecular morphology. Mol Biol Evol 2003; 20:130-4. [PMID: 12519915 DOI: 10.1093/molbev/msg018] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The phylum Placozoa is represented by a single known species, Trichoplax adhaerens, a tiny marine organism that represents the most simple metazoan bauplan. Because of the latter, placozoans were originally considered the most basal metazoan phylum. A misinterpretation of the life cycle at the turn of the century and some more recent molecular phylogenetic analyses have placed Trichoplax as a derived species within the Cnidaria. The latter hypothesis assumes that the primitive organization of the Placozoa is the result of secondary reduction. Here we compare the molecular morphology of the predicted 16S rDNA structure and the mitochondrial genome between Trichoplax and representatives of all four cnidarian classes. Trichoplax shares a circular mtDNA molecule as a plesiomorphy with all other metazoans except for the derived cnidarian classes Hydrozoa, Scyphozoa, and Cubozoa. The predicted secondary structure of the 16S rRNA molecule differs substantially between Trichoplax and cnidarians, particularly with respect to the number and length of stem and loop regions. The new molecular morphological characters provide compelling evidence that Trichoplax is not a derived (medusozoan) cnidarian. Furthermore, it was found that the mitochondrial genome in Cubozoa consists of four linear molecules instead of a single circular molecule or two linear molecules, suggesting that the cubozoans may represent the most derived cnidarian group.
Collapse
|
|
22 |
69 |
19
|
Jakob W, Sagasser S, Dellaporta S, Holland P, Kuhn K, Schierwater B. The Trox-2 Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary. Dev Genes Evol 2004; 214:170-5. [PMID: 14997392 DOI: 10.1007/s00427-004-0390-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Accepted: 01/29/2004] [Indexed: 10/26/2022]
Abstract
Hox and ParaHox genes are implicated in axial patterning of cnidarians and bilaterians, and are thought to have originated by tandem duplication of a single "ProtoHox" gene followed by duplication of the resultant gene cluster. It is unclear what the ancestral role of Hox/ParaHox genes was before the divergence of Cnidaria and Bilateria, or what roles the postulated ProtoHox gene(s) played. Here we describe the full coding region, spatial expression and function of Trox-2, the single Hox/ParaHox-type gene identified in Trichoplax adhaerens (phylum Placozoa) and either a candidate ProtoHox or a ParaHox gene. Trox-2 is expressed in a ring around the periphery of Trichoplax, in small cells located between the outer margins of the upper and lower epithelial cell layers. Inhibition of Trox-2 function, either by uptake of morpholino antisense oligonucleotides or by RNA interference, causes complete cessation of growth and binary fission. We speculate that Trox-2 functions within a hitherto unrecognized population of possibly multipotential peripheral stem cells that contribute to differentiated cells at the epithelial boundary of Trichoplax.
Collapse
|
|
21 |
67 |
20
|
Voigt O, Collins AG, Pearse VB, Pearse JS, Ender A, Hadrys H, Schierwater B. Placozoa -- no longer a phylum of one. Curr Biol 2005; 14:R944-5. [PMID: 15556848 DOI: 10.1016/j.cub.2004.10.036] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
67 |
21
|
Osigus HJ, Eitel M, Bernt M, Donath A, Schierwater B. Mitogenomics at the base of Metazoa. Mol Phylogenet Evol 2013; 69:339-51. [PMID: 23891951 DOI: 10.1016/j.ympev.2013.07.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/29/2013] [Accepted: 07/09/2013] [Indexed: 11/25/2022]
Abstract
Unraveling the base of metazoan evolution is of crucial importance for rooting the metazoan Tree of Life. This subject has attracted substantial attention for more than a century and recently fueled a burst of modern phylogenetic studies. Conflicting scenarios from different studies and incongruent results from nuclear versus mitochondrial markers challenge current molecular phylogenetic approaches. Here we analyze the presently most comprehensive data sets of mitochondrial genomes from non-bilaterian animals to illuminate the phylogenetic relationships among early branching metazoan phyla. The results of our analyses illustrate the value of mitogenomics and support previously known topologies between animal phyla but also identify several problematic taxa, which are sensitive to long branch artifacts or missing data.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
65 |
22
|
Hadrys H, Schierwater B, Dellaporta SL, DeSalle R, Buss LW. Determination of paternity in dragonflies by Random Amplified Polymorphic DNA fingerprinting. Mol Ecol 1993; 2:79-87. [PMID: 8180736 DOI: 10.1111/j.1365-294x.1993.tb00002.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We used Random Amplified Polymorphic DNA (RAPD) fingerprinting to address issues of paternity in two odonate species. Amplification artifacts of RAPD markers were controlled by assessing paternity patterns relative to the banding patterns generated by quantitative mixtures of DNA from putative parents ('synthetic offspring'). In the aeshnid dragonfly Anax parthenope, for which the mating histories of both males and females were unknown, we found strong evidence for complete paternity success for the contact guarding male. In the highly polygamous libellulid dragonfly Orthetrum coerulescens, we detected and quantified mixed paternity in sequentially produced offspring clutches and demonstrated that fertilization success is correlated with the duration of copulation. Our results suggest that RAPD fingerprinting is suitable to address issues of paternity in systems which are genetically uncharacterized and produce large offspring clutches.
Collapse
|
|
32 |
62 |
23
|
Monteiro AS, Schierwater B, Dellaporta SL, Holland PWH. A low diversity of ANTP class homeobox genes in Placozoa. Evol Dev 2006; 8:174-82. [PMID: 16509895 DOI: 10.1111/j.1525-142x.2006.00087.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Homeobox genes of the ANTP and PRD classes play important roles in body patterning of metazoans, and a large diversity of these genes have been described in bilaterian animals and cnidarians. Trichoplax adhaerens (Phylum Placozoa) is a small multicellular marine animal with one of the simplest body organizations of all metazoans, showing no symmetry and a small number of distinct cell types. Only two ANTP class genes have been described from Trichoplax: the Hox/ParaHox gene Trox-2 and a gene related to the Not family. Here we report an extensive screen for ANTP class genes in Trichoplax, leading to isolation of three additional ANTP class genes. These can be assigned to the Dlx, Mnx and Hmx gene families. Sequencing approximately 12-20 kb around each gene indicates that none are part of tight gene clusters, and in situ hybridization reveals that at least two have spatially restricted expression around the periphery of the animal. The low diversity of ANTP class genes isolated in Trichoplax can be reconciled with the low anatomical complexity of this animal, although the finding that these genes are assignable to recognized gene families is intriguing.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
57 |
24
|
Eitel M, Osigus HJ, DeSalle R, Schierwater B. Global diversity of the Placozoa. PLoS One 2013; 8:e57131. [PMID: 23565136 PMCID: PMC3614897 DOI: 10.1371/journal.pone.0057131] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 01/17/2013] [Indexed: 11/18/2022] Open
Abstract
The enigmatic animal phylum Placozoa holds a key position in the metazoan Tree of Life. A simple bauplan makes it appear to be the most basal metazoan known and genetic evidence also points to a position close to the last common metazoan ancestor. Trichoplax adhaerens is the only formally described species in the phylum to date, making the Placozoa the only monotypic phylum in the animal kingdom. However, recent molecular genetic as well as morphological studies have identified a high level of diversity, and hence a potential high level of taxonomic diversity, within this phylum. Different taxa, possibly at different taxonomic levels, are awaiting description. In this review we firstly summarize knowledge on the morphology, phylogenetic position and ecology of the Placozoa. Secondly, we give an overview of placozoan morphological and genetic diversity and finally present an updated distribution of placozoan populations. We conclude that there is great potential and need to erect new taxa and to establish a firm system for this taxonomic tabula rasa.
Collapse
|
research-article |
12 |
56 |
25
|
Eitel M, Francis WR, Varoqueaux F, Daraspe J, Osigus HJ, Krebs S, Vargas S, Blum H, Williams GA, Schierwater B, Wörheide G. Comparative genomics and the nature of placozoan species. PLoS Biol 2018; 16:e2005359. [PMID: 30063702 PMCID: PMC6067683 DOI: 10.1371/journal.pbio.2005359] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/28/2018] [Indexed: 12/30/2022] Open
Abstract
Placozoans are a phylum of nonbilaterian marine animals currently represented by a single described species, Trichoplax adhaerens, Schulze 1883. Placozoans arguably show the simplest animal morphology, which is identical among isolates collected worldwide, despite an apparently sizeable genetic diversity within the phylum. Here, we use a comparative genomics approach for a deeper appreciation of the structure and causes of the deeply diverging lineages in the Placozoa. We generated a high-quality draft genome of the genetic lineage H13 isolated from Hong Kong and compared it to the distantly related T. adhaerens. We uncovered substantial structural differences between the two genomes that point to a deep genomic separation and provide support that adaptation by gene duplication is likely a crucial mechanism in placozoan speciation. We further provide genetic evidence for reproductively isolated species and suggest a genus-level difference of H13 to T. adhaerens, justifying the designation of H13 as a new species, Hoilungia hongkongensis nov. gen., nov. spec., now the second described placozoan species and the first in a new genus. Our multilevel comparative genomics approach is, therefore, likely to prove valuable for species distinctions in other cryptic microscopic animal groups that lack diagnostic morphological characters, such as some nematodes, copepods, rotifers, or mites.
Collapse
|
research-article |
7 |
55 |