26
|
Rach J, Bergmann T, Paknia O, DeSalle R, Schierwater B, Hadrys H. The marker choice: Unexpected resolving power of an unexplored CO1 region for layered DNA barcoding approaches. PLoS One 2017; 12:e0174842. [PMID: 28406914 PMCID: PMC5390999 DOI: 10.1371/journal.pone.0174842] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/16/2017] [Indexed: 01/13/2023] Open
Abstract
The potential of DNA barcoding approaches to identify single species and characterize species compositions strongly depends on the marker choice. The prominent “Folmer region”, a 648 basepair fragment at the 5’ end of the mitochondrial CO1 gene, has been traditionally applied as a universal DNA barcoding region for metazoans. In order to find a suitable marker for biomonitoring odonates (dragonflies and damselflies), we here explore a new region of the CO1 gene (CO1B) for DNA barcoding in 51 populations of 23 dragonfly and damselfly species. We compare the “Folmer region”, the mitochondrial ND1 gene (NADH dehydrogenase 1) and the new CO1 region with regard to (i) speed and reproducibility of sequence generation, (ii) levels of homoplasy and (iii) numbers of diagnostic characters for discriminating closely related sister taxa and populations. The performances of the gene regions regarding these criteria were quite different. Both, the amplification of CO1B and ND1 was highly reproducible and CO1B showed the highest potential for discriminating sister taxa at different taxonomic levels. In contrast, the amplification of the “Folmer region” using the universal primers was difficult and the third codon positions of this fragment have experienced nucleotide substitution saturation. Most important, exploring this new barcode region of the CO1 gene identified a higher discriminating power between closely related sister taxa. Together with the design of layered barcode approaches adapted to the specific taxonomic “environment”, this new marker will further enhance the discrimination power at the species level.
Collapse
|
27
|
Schleicherová D, Dulias K, Osigus HJ, Paknia O, Hadrys H, Schierwater B. The most primitive metazoan animals, the placozoans, show high sensitivity to increasing ocean temperatures and acidities. Ecol Evol 2017; 7:895-904. [PMID: 28168026 PMCID: PMC5288258 DOI: 10.1002/ece3.2678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 01/14/2023] Open
Abstract
The increase in atmospheric carbon dioxide (CO2) leads to rising temperatures and acidification in the oceans, which directly or indirectly affects all marine organisms, from bacteria to animals. We here ask whether the simplest-and possibly also the oldest-metazoan animals, the placozoans, are particularly sensitive to ocean warming and acidification. Placozoans are found in all warm and temperate oceans and are soft-bodied, microscopic invertebrates lacking any calcified structures, organs, or symmetry. We here show that placozoans respond highly sensitive to temperature and acidity stress. The data reveal differential responses in different placozoan lineages and encourage efforts to develop placozoans as a potential biomarker system.
Collapse
|
28
|
Herzog R, Osigus H, Feindt W, Schierwater B, Hadrys H. The complete mitochondrial genome of the emperor dragonfly Anax imperator LEACH, 1815 (Odonata : Aeshnidae) via NGS sequencing. Mitochondrial DNA B Resour 2016; 1:783-786. [PMID: 33473626 PMCID: PMC7799497 DOI: 10.1080/23802359.2016.1186523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/03/2016] [Indexed: 11/05/2022] Open
Abstract
Here we report the complete mitochondrial genome of the emperor dragonfly, Anax imperator (Odonata: Aeshnidae) as the first of its genus. Data were generated via next generation sequencing (NGS) and assembled using an iterative approach. The typical metazoan set of 37 genes (13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes) was detected in the same gene order as in other odonate mitogenomes. However, only three intergenic spacer regions are present in A. imperator lacking the distinct s5 spacer, which was regarded as informative feature of the odonate suborder Anisoptera (dragonflies) but absent in Zygoptera (damselflies). With 16,087 bp, it is the longest anisopteran mitogenome to date, mainly due to the long A + T-rich control region of 1291 bp.
Collapse
|
29
|
Feindt W, Herzog R, Osigus HJ, Schierwater B, Hadrys H. Short read sequencing assembly revealed the complete mitochondrial genome of Ischnura elegans Vander Linden, 1820 (Odonata: Zygoptera). Mitochondrial DNA B Resour 2016; 1:574-576. [PMID: 33473559 PMCID: PMC7800176 DOI: 10.1080/23802359.2016.1192510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/18/2016] [Indexed: 11/23/2022] Open
Abstract
Damselflies of the genus Ischnura emerge as organisms with high potential in ecological, evolutionary and developmental research at the base of flying insects. Ischnura elegans and Ischnura hastata are for example one of the few odonate species where a complete life cycle over generations can be reared under laboratory conditions. We here report the complete mitochondrial genome of Ischnura elegans as a valuable genomic resource for future eco-evo-devo studies at the base of flying insects. The genome has a total length of 15,962 bp and displays all typical features of Odonata (dragonflies and damselflies) mitochondrial genomes in gene content and order as well as A + T content. Start and stop codons of all protein-coding genes are consistent. Most interestingly, we found four intergenic spacer regions and a long A + T rich (control) region of 1196 bp, which is almost double the size of the close relative Ischnura pumilio. We assume that the adequate insert size and iterative mapping may be more efficient in assembling this duplicated and repetitive region.
Collapse
|
30
|
Schierwater B, Holland PWH, Miller DJ, Stadler PF, Wiegmann BM, Wörheide G, Wray GA, DeSalle R. Never Ending Analysis of a Century Old Evolutionary Debate: “Unringing” the Urmetazoon Bell. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Paknia O, Schierwater B. Global Habitat Suitability and Ecological Niche Separation in the Phylum Placozoa. PLoS One 2015; 10:e0140162. [PMID: 26580806 PMCID: PMC4651326 DOI: 10.1371/journal.pone.0140162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/10/2015] [Indexed: 02/02/2023] Open
Abstract
The enigmatic placozoans, which hold a key position in the metazoan Tree of Life, have attracted substantial attention in many areas of biological and biomedical research. While placozoans have become an emerging model system, their ecology and particularly biogeography remain widely unknown. In this study, we use modelling approaches to explore habitat preferences, and distribution pattern of the placozoans phylum. We provide hypotheses for discrete ecological niche separation between genetic placozoan lineages, which may also help to understand biogeography patterns in other small marine invertebrates. We, here, used maximum entropy modelling to predict placozoan distribution using 20 environmental grids of 9.2 km2 resolution. In addition, we used recently developed metrics of niche overlap to compare habitat suitability models of three genetic clades. The predicted distributions range from 55°N to 44°S and are restricted to regions of intermediate to warm sea surface temperatures. High concentrations of salinity and low nutrient concentrations appear as secondary factors. Tests of niche equivalency reveal the largest differences between placozoan clades I and III. Interestingly, the genetically well-separated clades I and V appear to be ecologically very similar. Our habitat suitability models predict a wider latitudinal distribution for placozoans, than currently described, especially in the northern hemisphere. With respect to biogeography modelling, placozoans show patterns somewhere between higher metazoan taxa and marine microorganisms, with the first group usually showing complex biogeographies and the second usually showing “no biogeography.”
Collapse
|
32
|
Schierwater B, Stadler P, Desalle R, Podsiadlowski L. Mitogenomics and metazoan evolution. Mol Phylogenet Evol 2014; 69:311-2. [PMID: 24010851 DOI: 10.1016/j.ympev.2013.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
von der Chevallerie K, Rolfes S, Schierwater B. Inhibitors of the p53-Mdm2 interaction increase programmed cell death and produce abnormal phenotypes in the placozoon Trichoplax adhaerens (F.E. Schulze). Dev Genes Evol 2014; 224:79-85. [DOI: 10.1007/s00427-014-0465-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/17/2014] [Indexed: 01/21/2023]
|
34
|
Osigus HJ, Eitel M, Bernt M, Donath A, Schierwater B. Mitogenomics at the base of Metazoa. Mol Phylogenet Evol 2013; 69:339-51. [PMID: 23891951 DOI: 10.1016/j.ympev.2013.07.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/29/2013] [Accepted: 07/09/2013] [Indexed: 11/25/2022]
Abstract
Unraveling the base of metazoan evolution is of crucial importance for rooting the metazoan Tree of Life. This subject has attracted substantial attention for more than a century and recently fueled a burst of modern phylogenetic studies. Conflicting scenarios from different studies and incongruent results from nuclear versus mitochondrial markers challenge current molecular phylogenetic approaches. Here we analyze the presently most comprehensive data sets of mitochondrial genomes from non-bilaterian animals to illuminate the phylogenetic relationships among early branching metazoan phyla. The results of our analyses illustrate the value of mitogenomics and support previously known topologies between animal phyla but also identify several problematic taxa, which are sensitive to long branch artifacts or missing data.
Collapse
|
35
|
Bergmann T, Rach J, Damm S, DeSalle R, Schierwater B, Hadrys H. The potential of distance-based thresholds and character-based DNA barcoding for defining problematic taxonomic entities by CO1 and ND1. Mol Ecol Resour 2013; 13:1069-81. [DOI: 10.1111/1755-0998.12125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 04/09/2013] [Indexed: 11/28/2022]
|
36
|
Bernt M, Bleidorn C, Braband A, Dambach J, Donath A, Fritzsch G, Golombek A, Hadrys H, Jühling F, Meusemann K, Middendorf M, Misof B, Perseke M, Podsiadlowski L, von Reumont B, Schierwater B, Schlegel M, Schrödl M, Simon S, Stadler PF, Stöger I, Struck TH. A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. Mol Phylogenet Evol 2013; 69:352-64. [PMID: 23684911 DOI: 10.1016/j.ympev.2013.05.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/27/2013] [Accepted: 05/03/2013] [Indexed: 12/16/2022]
Abstract
About 2800 mitochondrial genomes of Metazoa are present in NCBI RefSeq today, two thirds belonging to vertebrates. Metazoan phylogeny was recently challenged by large scale EST approaches (phylogenomics), stabilizing classical nodes while simultaneously supporting new sister group hypotheses. The use of mitochondrial data in deep phylogeny analyses was often criticized because of high substitution rates on nucleotides, large differences in amino acid substitution rate between taxa, and biases in nucleotide frequencies. Nevertheless, mitochondrial genome data might still be promising as it allows for a larger taxon sampling, while presenting a smaller amount of sequence information. We present the most comprehensive analysis of bilaterian relationships based on mitochondrial genome data. The analyzed data set comprises more than 650 mitochondrial genomes that have been chosen to represent a profound sample of the phylogenetic as well as sequence diversity. The results are based on high quality amino acid alignments obtained from a complete reannotation of the mitogenomic sequences from NCBI RefSeq database. However, the results failed to give support for many otherwise undisputed high-ranking taxa, like Mollusca, Hexapoda, Arthropoda, and suffer from extreme long branches of Nematoda, Platyhelminthes, and some other taxa. In order to identify the sources of misleading phylogenetic signals, we discuss several problems associated with mitochondrial genome data sets, e.g. the nucleotide and amino acid landscapes and a strong correlation of gene rearrangements with long branches.
Collapse
|
37
|
Eitel M, Osigus HJ, DeSalle R, Schierwater B. Global diversity of the Placozoa. PLoS One 2013; 8:e57131. [PMID: 23565136 PMCID: PMC3614897 DOI: 10.1371/journal.pone.0057131] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 01/17/2013] [Indexed: 11/18/2022] Open
Abstract
The enigmatic animal phylum Placozoa holds a key position in the metazoan Tree of Life. A simple bauplan makes it appear to be the most basal metazoan known and genetic evidence also points to a position close to the last common metazoan ancestor. Trichoplax adhaerens is the only formally described species in the phylum to date, making the Placozoa the only monotypic phylum in the animal kingdom. However, recent molecular genetic as well as morphological studies have identified a high level of diversity, and hence a potential high level of taxonomic diversity, within this phylum. Different taxa, possibly at different taxonomic levels, are awaiting description. In this review we firstly summarize knowledge on the morphology, phylogenetic position and ecology of the Placozoa. Secondly, we give an overview of placozoan morphological and genetic diversity and finally present an updated distribution of placozoan populations. We conclude that there is great potential and need to erect new taxa and to establish a firm system for this taxonomic tabula rasa.
Collapse
|
38
|
Vij S, Rink JC, Ho HK, Babu D, Eitel M, Narasimhan V, Tiku V, Westbrook J, Schierwater B, Roy S. Evolutionarily ancient association of the FoxJ1 transcription factor with the motile ciliogenic program. PLoS Genet 2012; 8:e1003019. [PMID: 23144623 PMCID: PMC3493443 DOI: 10.1371/journal.pgen.1003019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 08/22/2012] [Indexed: 01/03/2023] Open
Abstract
It is generally believed that the last eukaryotic common ancestor (LECA) was a unicellular organism with motile cilia. In the vertebrates, the winged-helix transcription factor FoxJ1 functions as the master regulator of motile cilia biogenesis. Despite the antiquity of cilia, their highly conserved structure, and their mechanism of motility, the evolution of the transcriptional program controlling ciliogenesis has remained incompletely understood. In particular, it is presently not known how the generation of motile cilia is programmed outside of the vertebrates, and whether and to what extent the FoxJ1-dependent regulation is conserved. We have performed a survey of numerous eukaryotic genomes and discovered that genes homologous to foxJ1 are restricted only to organisms belonging to the unikont lineage. Using a mis-expression assay, we then obtained evidence of a conserved ability of FoxJ1 proteins from a number of diverse phyletic groups to activate the expression of a host of motile ciliary genes in zebrafish embryos. Conversely, we found that inactivation of a foxJ1 gene in Schmidtea mediterranea, a platyhelminth (flatworm) that utilizes motile cilia for locomotion, led to a profound disruption in the differentiation of motile cilia. Together, all of these findings provide the first evolutionary perspective into the transcriptional control of motile ciliogenesis and allow us to propose a conserved FoxJ1-regulated mechanism for motile cilia biogenesis back to the origin of the metazoans. Cilia are microtubule-based, hair-like organelles that project from the surfaces of eukaryotic cells. Protists use motile cilia for locomotion as well as for sensory perception. In metazoans, motile cilia also function in fluid transport over epithelia, such as in the mammalian lungs. Most vertebrate and some invertebrate cell-types differentiate non-motile primary cilia, which function exclusively in sensory transduction. It is believed that primary cilia arose from motile cilia through the loss of the motility apparatus. Cilia are complex organelles: a large number of proteins are involved in their assembly and maintenance. FoxJ1, a forkhead-domain transcription factor, is the master regulator of motile ciliogenesis in vertebrates. It is not known to what extent this transcriptional control is conserved and how it may have evolved. Here, we document the existence of FoxJ1 orthologs in several eukaryotic groups besides the vertebrates. FoxJ1 proteins from three representative phyla—Placozoa, Platyhelminthes, and Echinodermata—were able to activate the expression of ciliary genes when mis-expressed in zebrafish embryos. Moreover, inactivation of FoxJ1 in planaria (Platyhelminthes) abolished motile cilia differentiation. These results provide new insights into the transcriptional regulation of motile cilia biogenesis outside the vertebrates and demonstrate a remarkable conservation of the activity of FoxJ1.
Collapse
|
39
|
Bernt M, Braband A, Schierwater B, Stadler PF. Genetic aspects of mitochondrial genome evolution. Mol Phylogenet Evol 2012; 69:328-38. [PMID: 23142697 DOI: 10.1016/j.ympev.2012.10.020] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 10/20/2012] [Accepted: 10/22/2012] [Indexed: 11/30/2022]
Abstract
Many years of extensive studies of metazoan mitochondrial genomes have established differences in gene arrangements and genetic codes as valuable phylogenetic markers. Understanding the underlying mechanisms of replication, transcription and the role of the control regions which cause e.g. different gene orders is important to assess the phylogenetic signal of such events. This review summarises and discusses, for the Metazoa, the general aspects of mitochondrial transcription and replication with respect to control regions as well as several proposed models of gene rearrangements. As whole genome sequencing projects accumulate, more and more observations about mitochondrial gene transfer to the nucleus are reported. Thus occurrence and phylogenetic aspects concerning nuclear mitochondrial-like sequences (NUMTS) is another aspect of this review.
Collapse
|
40
|
Collins AG, Cartwright P, McFadden CS, Schierwater B. Phylogenetic context and Basal metazoan model systems. Integr Comp Biol 2012; 45:585-94. [PMID: 21676805 DOI: 10.1093/icb/45.4.585] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In comparative studies using model organisms, extant taxa are often referred to as basal. The term suggests that such taxa are descendants of lineages that diverged early in the history of some larger taxon. By this usage, the basal metazoans comprise just four phyla (Placozoa, Porifera, Cnidaria, and Ctenophora) and the large clade Bilateria. We advise against this practice because basal refers to a region at the base or root of a phylogenetic tree. Thus, referring to an extant taxon or species as basal, or as more basal than another, can be misleading. While much progress has been made toward understanding some of the phylogenetic relationships within these groups, the relationships among them are still largely not known with certainty. Thus, sound inferences from comparative studies of model organisms demand continued illumination of phylogeny. Hypotheses about the mechanisms underlying metazoan evolution can be drawn from the study of model organisms in Cnidaria, Ctenophora, Placozoa, and Porifera, but it is clear that these model organisms are likely to be derived in many respects. Therefore, testing these hypotheses requires the study of yet additional model organisms. The most effective tests are those that investigate model organisms with phylogenetic positions among two sister groups comprising a larger clade of interest.
Collapse
|
41
|
Hadrys H, Simon S, Kaune B, Schmitt O, Schöner A, Jakob W, Schierwater B. Isolation of Hox cluster genes from insects reveals an accelerated sequence evolution rate. PLoS One 2012; 7:e34682. [PMID: 22685537 PMCID: PMC3369913 DOI: 10.1371/journal.pone.0034682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/08/2012] [Indexed: 01/10/2023] Open
Abstract
Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda) that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera). We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx) from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution.
Collapse
|
42
|
Osigus HJ, Eitel M, Schierwater B. Chasing the urmetazoon: striking a blow for quality data? Mol Phylogenet Evol 2012; 66:551-7. [PMID: 22683435 DOI: 10.1016/j.ympev.2012.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
Abstract
The ever-lingering question: "What did the urmetazoan look like?" has not lost its charm, appeal or elusiveness for one and a half centuries. A solid amount of organismal data give what some feel is a clear answer (e.g. Placozoa are at the base of the metazoan tree of life (ToL)), but a diversity of modern molecular data gives almost as many answers as there are exemplars, and even the largest molecular data sets could not solve the question and sometimes even suggest obvious zoological nonsense. Since the problems involved in this phylogenetic conundrum encompass a wide array of analytical freedom and uncertainty it seems questionable whether a further increase in molecular data (quantity) can solve this classical deep phylogeny problem. This review thus strikes a blow for evaluating quality data (including morphological, molecule morphologies, gene arrangement, and gene loss versus gene gain data) in an appropriate manner.
Collapse
|
43
|
Eitel M, Guidi L, Hadrys H, Balsamo M, Schierwater B. New insights into placozoan sexual reproduction and development. PLoS One 2011; 6:e19639. [PMID: 21625556 PMCID: PMC3098260 DOI: 10.1371/journal.pone.0019639] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 04/13/2011] [Indexed: 11/18/2022] Open
Abstract
Unraveling animal life cycles and embryonic development is basic to understanding animal biology and often sheds light on phylogenetic relationships. A key group for understanding the evolution of the Metazoa is the early branching phylum Placozoa, which has attracted rapidly increasing attention. Despite over a hundred years of placozoan research the life cycle of this enigmatic phylum remains unknown. Placozoa are a unique model system for which the nuclear genome was published before the basic biology (i.e. life cycle and development) has been unraveled. Four organismal studies have reported the development of oocytes and one genetic study has nourished the hypothesis of sexual reproduction in natural populations at least in the past. Here we report new observations on sexual reproduction and embryonic development in the Placozoa and support the hypothesis of current sexual reproduction. The regular observation of oocytes and expressed sperm markers provide support that placozoans reproduce sexually in the field. Using whole genome and EST sequences and additional cDNA cloning we identified five conserved sperm markers, characteristic for different stages in spermatogenesis. We also report details on the embryonic development up to a 128-cell stage and new ultrastructural features occurring during early development. These results suggest that sperm and oocyte generation and maturation occur in different placozoans and that clonal lineages reproduce bisexually in addition to the standard mode of vegetative reproduction. The sum of observations is best congruent with the hypothesis of a simple life cycle with an alternation of reproductive modes between bisexual and vegetative reproduction.
Collapse
|
44
|
Guidi L, Eitel M, Cesarini E, Schierwater B, Balsamo M. Ultrastructural analyses support different morphological lineages in the phylum Placozoa Grell, 1971. J Morphol 2011; 272:371-8. [PMID: 21246596 DOI: 10.1002/jmor.10922] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/01/2010] [Accepted: 10/03/2010] [Indexed: 11/12/2022]
Abstract
The morphology and ultrastructure of 10 clonal placozoan lineages were studied. We scored several morphological characters at a cellular and intracellular level and identified a number of morphological differences among clones. Some differences appear clone specific and allow recognizing five distinct lineages based on morphological criteria only. These data will be crucial for a yet to be established placozoan systematics. Furthermore, we here describe three new diagnostic morphological characters for Placozoa: a new structure in the upper epithelium, called "concave disc," two distinct subpopulations of fiber cells, and especially small cells in the body margin. Besides the fiber cells appear to be arranged in several layers forming a complex, three-dimensional net not previously described. We also describe the marginal cells as the formerly suggested potential stem-cell type. The basic morphology is revised.
Collapse
|
45
|
Damm S, Schierwater B, Hadrys H. An integrative approach to species discovery in odonates: from character-based DNA barcoding to ecology. Mol Ecol 2010; 19:3881-93. [PMID: 20701681 DOI: 10.1111/j.1365-294x.2010.04720.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modern taxonomy requires an analytical approach incorporating all lines of evidence into decision-making. Such an approach can enhance both species identification and species discovery. The character-based DNA barcode method provides a molecular data set that can be incorporated into classical taxonomic data such that the discovery of new species can be made in an analytical framework that includes multiple sources of data. We here illustrate such a corroborative framework in a dragonfly model system that permits the discovery of two new, but visually cryptic species. In the African dragonfly genus Trithemis three distinct genetic clusters can be detected which could not be identified by using classical taxonomic characters. In order to test the hypothesis of two new species, DNA-barcodes from different sequence markers (ND1 and COI) were combined with morphological, ecological and biogeographic data sets. Phylogenetic analyses and incorporation of all data sets into a scheme called taxonomic circle highly supports the hypothesis of two new species. Our case study suggests an analytical approach to modern taxonomy that integrates data sets from different disciplines, thereby increasing the ease and reliability of both species discovery and species assignment.
Collapse
|
46
|
Loenarz C, Coleman ML, Boleininger A, Schierwater B, Holland PWH, Ratcliffe PJ, Schofield CJ. The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens. EMBO Rep 2010; 12:63-70. [PMID: 21109780 DOI: 10.1038/embor.2010.170] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 01/09/2023] Open
Abstract
The hypoxic response in humans is mediated by the hypoxia-inducible transcription factor (HIF), for which prolyl hydroxylases (PHDs) act as oxygen-sensing components. The evolutionary origins of the HIF system have been previously unclear. We demonstrate a functional HIF system in the simplest animal, Trichoplax adhaerens: HIF targets in T. adhaerens include glycolytic and metabolic enzymes, suggesting a role for HIF in the adaptation of basal multicellular animals to fluctuating oxygen levels. Characterization of the T. adhaerens PHDs and cross-species complementation assays reveal a conserved oxygen-sensing mechanism. Cross-genomic analyses rationalize the relative importance of HIF system components, and imply that the HIF system is likely to be present in all animals, but is unique to this kingdom.
Collapse
|
47
|
Eitel M, Schierwater B. The phylogeography of the Placozoa suggests a taxon-rich phylum in tropical and subtropical waters. Mol Ecol 2010; 19:2315-27. [PMID: 20604867 DOI: 10.1111/j.1365-294x.2010.04617.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Placozoa has been a key phylum for understanding early metazoan evolution. Yet this phylum is officially monotypic and with respect to its general biology and ecology has remained widely unknown. Worldwide sampling and sequencing of the mitochondrial large ribosomal subunit (16S) reveals a cosmopolitan distribution in tropical and subtropical waters of genetically different clades. We sampled a total of 39 tropical and subtropical locations worldwide and found 23 positive sites for placozoans. The number of genetically characterized sites was thereby increased from 15 to 37. The new sampling identified the first genotypes from two new oceanographic regions, the Eastern Atlantic and the Indian Ocean. We found seven out of 11 previously known haplotypes as well as five new haplotypes. One haplotype resembles a new genetic clade, increasing the number of clades from six to seven. Some of these clades seem to be cosmopolitan whereas others appear to be endemic. The phylogeography also shows that different clades occupy different ecological niches and identifies several euryoecious haplotypes with a cosmopolitic distribution as well as some stenoecious haplotypes with an endemic distribution. Haplotypes of different clades differ substantially in their phylogeographic distribution according to latitude. The genetic data also suggest deep phylogenetic branching patterns between clades.
Collapse
|
48
|
Schierwater B, Kolokotronis SO, Eitel M, DeSalle R. The Diploblast-Bilateria Sister hypothesis: parallel revolution of a nervous systems may have been a simple step. Commun Integr Biol 2010; 2:403-5. [PMID: 19907700 DOI: 10.4161/cib.2.5.8763] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 04/17/2009] [Indexed: 11/19/2022] Open
Abstract
For many familiar with metazoan relationships and body plans, the hypothesis of a sister group relationship between Diploblasta and Bilateria1 comes as a surprise. One of the consequences of this hypothesis-the independent evolution of a nervous system in Coelenterata and Bilateria-seems highly unlikely to many. However, to a small number of scientists working on Metazoa, the parallel evolution of the nervous system is not surprising at all and rather a confirmation of old morphological and new genetic knowledge.2-4 The controversial hypothesis that the Diploblasta and Bilateria are sister taxa is, therefore, tantamount to reconciling the parallel evolution of the nervous system in Coelenterata and Bilateria. In this addendum to Schierwater et al.1 we discuss two aspects critical to the controversy. First we discuss the strength of the inference of the proposed sister relationship of Diploblasta and Bilateria and second we discuss the implications for the evolution of nerve cells and nervous systems.
Collapse
|
49
|
Simon S, Schierwater B, Hadrys H. On the value of Elongation factor-1α for reconstructing pterygote insect phylogeny. Mol Phylogenet Evol 2010; 54:651-6. [DOI: 10.1016/j.ympev.2009.09.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 09/12/2009] [Accepted: 09/22/2009] [Indexed: 11/25/2022]
|
50
|
Schierwater B, Kamm K. The Early Evolution of Hox Genes: A Battle of Belief? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 689:81-90. [DOI: 10.1007/978-1-4419-6673-5_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|