26
|
Wu JJS, Chang WP, Shih HC, Yen CT, Shyu BC. Cingulate seizure-like activity reveals neuronal avalanche regulated by network excitability and thalamic inputs. BMC Neurosci 2014; 15:3. [PMID: 24387299 PMCID: PMC3893465 DOI: 10.1186/1471-2202-15-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cortical neurons display network-level dynamics with unique spatiotemporal patterns that construct the backbone of processing information signals and contribute to higher functions. Recent years have seen a wealth of research on the characteristics of neuronal networks that are sufficient conditions to activate or cease network functions. Local field potentials (LFPs) exhibit a scale-free and unique event size distribution (i.e., a neuronal avalanche) that has been proven in the cortex across species, including mice, rats, and humans, and may be used as an index of cortical excitability. In the present study, we induced seizure activity in the anterior cingulate cortex (ACC) with medial thalamic inputs and evaluated the impact of cortical excitability and thalamic inputs on network-level dynamics. We measured LFPs from multi-electrode recordings in mouse cortical slices and isoflurane-anesthetized rats. RESULTS The ACC activity exhibited a neuronal avalanche with regard to avalanche size distribution, and the slope of the power-law distribution of the neuronal avalanche reflected network excitability in vitro and in vivo. We found that the slope of the neuronal avalanche in seizure-like activity significantly correlated with cortical excitability induced by γ-aminobutyric acid system manipulation. The thalamic inputs desynchronized cingulate seizures and affected the level of cortical excitability, the modulation of which could be determined by the slope of the avalanche size. CONCLUSIONS We propose that the neuronal avalanche may be a tool for analyzing cortical activity through LFPs to determine alterations in network dynamics.
Collapse
|
27
|
Chiou RJ, Kuo CC, Yen CT. Comparisons of terminal densities of cardiovascular function-related projections from the amygdala subnuclei. Auton Neurosci 2013; 181:21-30. [PMID: 24412638 DOI: 10.1016/j.autneu.2013.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 11/16/2013] [Accepted: 12/10/2013] [Indexed: 02/05/2023]
Abstract
The amygdala is important in higher-level control of cardiovascular functions. In this study, we compared cardiovascular-related projections among the subnuclei of the amygdala. Biotinylated dextran amine was injected into the central, medial, and basolateral nuclei of the amygdala, and the distributions and densities of anterograde-labeled terminal boutons were analyzed. We found that the medial, basolateral, and central nuclei all had projections into the cardiovascular-related areas of the hypothalamus. However, only the central nucleus had a significant direct projection into the medulla. By contrast, the medial nucleus had limited projections, and the basolateral nucleus had no terminals extending into the medulla. We concluded that the medial, central, and basolateral nuclei of the amygdala may influence cardiovascular-related nuclei through monosynaptic connections with cardiovascular-related nuclei in the hypothalamus and medulla.
Collapse
|
28
|
Yang PF, Chen YY, Chen DY, Hu JW, Chen JH, Yen CT. Comparison of fMRI BOLD response patterns by electrical stimulation of the ventroposterior complex and medial thalamus of the rat. PLoS One 2013; 8:e66821. [PMID: 23826146 PMCID: PMC3691267 DOI: 10.1371/journal.pone.0066821] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 05/10/2013] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to compare the functional connectivity of the lateral and medial thalamocortical pain pathways by investigating the blood oxygen level-dependent (BOLD) activation patterns in the forebrain elicited by direct electrical stimulation of the ventroposterior (VP) and medial (MT) thalamus. An MRI-compatible stimulation electrode was implanted in the VP or MT of α-chloralose-anesthetized rats. Electrical stimulation was applied to the VP or MT at various intensities (50 µA to 300 µA) and frequencies (1 Hz to 12 Hz). BOLD responses were analyzed in the ipsilateral forelimb region of the primary somatosensory cortex (iS1FL) after VP stimulation and in the ipsilateral cingulate cortex (iCC) after MT stimulation. When stimulating the VP, the strongest activation occurred at 3 Hz. The stimulation intensity threshold was 50 µA and the response rapidly peaked at 100 µA. When stimulating the MT, The optimal frequency for stimulation was 9 Hz or 12 Hz, the stimulation intensity threshold was 100 µA and we observed a graded increase in the BOLD response following the application of higher intensity stimuli. We also evaluated c-Fos expression following the application of a 200-µA stimulus. Ventroposterior thalamic stimulation elicited c-Fos-positivity in few cells in the iS1FL and caudate putamen (iCPu). Medial thalamic stimulation, however, produced numerous c-Fos-positive cells in the iCC and iCPu. The differential BOLD responses and c-Fos expressions elicited by VP and MT stimulation indicate differences in stimulus-response properties of the medial and lateral thalamic pain pathways.
Collapse
|
29
|
Yen CT, Lu PL. Thalamus and pain. ACTA ACUST UNITED AC 2013; 51:73-80. [DOI: 10.1016/j.aat.2013.06.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 02/02/2023]
|
30
|
Hsu SH, Kuo WC, Chen YT, Yen CT, Chen YF, Chen KS, Huang WC, Cheng H. New nerve regeneration strategy combining laminin-coated chitosan conduits and stem cell therapy. Acta Biomater 2013; 9:6606-15. [PMID: 23376237 DOI: 10.1016/j.actbio.2013.01.025] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 01/07/2013] [Accepted: 01/23/2013] [Indexed: 11/24/2022]
Abstract
Nerve regeneration remains a difficult challenge due to the lack of safe and efficient matrix support. We designed a laminin (LN)-modified chitosan multi-walled nerve conduit combined with bone marrow stem cell (BMSC) grating to bridge a 10 mm long gap in the sciatic nerve of Sprague-Dawley rats. The repair outcome was monitored during 16 weeks after surgery. Successful grafting of LN onto the chitosan film, confirmed by immunolocalization, significantly improved cell adhesion. In vivo study showed that newly formed nerve cells covered the interior of the conduit to connect the nerve gap successfully in all groups. The rats implanted with the conduit combined with BMSCs showed the best results, in terms of nerve regrowth, muscle mass of gastrocnemius, function recovery and tract tracing. Neuroanatomical horseradish peroxidase tracer analysis of motor neurons in the lumbar spinal cord indicated that the amount and signal intensity were significantly improved. Furthermore, BMSCs suppressed neuronal cell death and promoted regeneration by suppressing the inflammatory and fibrotic response induced by chitosan after long-term implantation. In summary, this study suggests that LN-modified chitosan multi-walled nerve conduit combined with BMSCs is an efficient and safe conduit matrix for nerve regeneration.
Collapse
|
31
|
Wu MT, Huang PY, Yen CT, Chen CC, Lee MJ. A novel SCN9A mutation responsible for primary erythromelalgia and is resistant to the treatment of sodium channel blockers. PLoS One 2013; 8:e55212. [PMID: 23383113 PMCID: PMC3561374 DOI: 10.1371/journal.pone.0055212] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/19/2012] [Indexed: 01/14/2023] Open
Abstract
Primary erythromelalgia (PE) is an autosomal dominant neurological disorder characterized by severe burning pain and erythema in the extremities upon heat stimuli or exercise. Mutations in human SCN9A gene, encoding the α-subunit of the voltage-gated sodium channel, Na(v)1.7, were found to be responsible for PE. Three missense mutations of SCN9A gene have recently been identified in Taiwanese patients including a familial (I136V) and two sporadic mutations (I848T, V1316A). V1316A is a novel mutation and has not been characterized yet. Topologically, I136V is located in DI/S1 segment and both I848T and V1316A are located in S4-S5 linker region of DII and DIII domains, respectively. To characterize the elelctrophysiological manifestations, the channel conductance with whole-cell patch clamp was recorded on the over-expressed Chinese hamster overy cells. As compared with wild type, the mutant channels showed a significant hyperpolarizing shift in voltage dependent activation and a depolarizing shift in steady-state fast inactivation. The recovery time from channel inactivation is faster in the mutant than in the wild type channels. Since warmth can trigger and exacerbate symptoms, we then examine the influence of tempearture on the sodium channel conduction. At 35°C, I136V and V1316A mutant channels exhibit a further hyperpolarizing shift at activation as compared with wild type channel, even though wild type channel also produced a significant hyperpolarizing shift compared to that of 25°C. High temperature caused a significant depolarizing shift in steady-state fast inactivation in all three mutant channels. These findings may confer to the hyperexcitability of sensory neurons, especially at high temperature. In order to identifying an effective treatment, we tested the IC₅₀ values of selective sodium channel blockers, lidocaine and mexiletine. The IC₅₀ for mexiletine is lower for I848T mutant channel as compared to that of the wild type and other two mutants which is comparable to the clinical observations.
Collapse
|
32
|
Hsu SH, Lin CH, Yen CT, Wang PH, Dai LG, Jiang CF. A Comparison Study for the Efficacy of Novel Micropatterned Nerve Conduits versus Commercial Ones in Regeneration of Transected Rat Sciatic Nerve. ACTA ACUST UNITED AC 2012. [DOI: 10.1166/jnsne.2012.1026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Lu PL, Hsu SS, Tsai ML, Jaw FS, Wang AB, Yen CT. Temporal and spatial temperature distribution in the glabrous skin of rats induced by short-pulse CO2 laser. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:117002. [PMID: 23117813 DOI: 10.1117/1.jbo.17.11.117002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Pain is a natural alarm that aids the body in avoiding potential danger and can also present as an important indicator in clinics. Infrared laser-evoked potentials can be used as an objective index to evaluate nociception. In animal studies, a short-pulse laser is crucial because it completes the stimulation before escape behavior. The objective of the present study was to obtain the temporal and spatial temperature distributions in the skin caused by the irradiation of a short-pulse laser. A fast speed infrared camera was used to measure the surface temperature caused by a CO2 laser of different durations (25 and 35 ms) and power. The measured results were subsequently implemented with a three-layer finite element model to predict the subsurface temperature. We found that stratum corneum was crucial in the modeling of fast temperature response, and escape behaviors correlated with predictions of temperature at subsurface. Results indicated that the onset latency and duration of activated nociceptors must be carefully considered when interpreting physiological responses evoked by infrared irradiation.
Collapse
|
34
|
Chu YF, Yen CT, Lee LJ. Neonatal whisker clipping alters behavior, neuronal structure and neural activity in adult rats. Behav Brain Res 2012; 238:124-33. [PMID: 23098795 DOI: 10.1016/j.bbr.2012.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 10/09/2012] [Accepted: 10/13/2012] [Indexed: 12/31/2022]
Abstract
Early experience plays critical roles during the development of sensory systems. For example, neonatal surgical manipulations of the whiskers in rodents lead to altered neural activity and behaviors later in life. However, while surgical procedures damage the sensory pathway; it is hard to examine the impact of whisker deprivation on adult animals. To address this issue, we performed a neonatal whisker clipping (WC0-3) paradigm, a non-invasive procedure, from the day of birth (P0) to postnatal day (P) 3, and examined behavioral performances in their adult age. With fully regrown whiskers, the WC0-3 rats exhibited shorter crossable distance than controls in a gap-crossing task, suggesting a defect in their whisker-specific tactile function. In their somatosensory cortex, the layer IV spiny stellate neurons had reduced dendritic complexity and spine density. After exploration in a novel environment, the expression of an activity-dependent immediate early gene, c-fos, increased dramatically in the somatosensory cortex. However, in WC0-3 rats, the number of c-Fos positive cells was less than those in control rats, indicating a fault in transducing sensory-related neural activity between cortical layers in WC0-3 rats. Together, our results demonstrate the roles of early tactile experience on the establishment of layer-specific excitatory connection in the barrel cortex. Early sensory insufficiency would leave long-lasting functional deficits in the sensory system.
Collapse
|
35
|
Huang JJ, Yen CT, Tsai ML, Valenzuela CF, Huang C. Acute ethanol exposure increases firing and induces oscillations in cerebellar Golgi cells of freely moving rats. Alcohol Clin Exp Res 2012; 36:2110-6. [PMID: 22563923 DOI: 10.1111/j.1530-0277.2012.01818.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 03/02/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcohol is a widely abused substance and is responsible for significant morbidity and mortality worldwide. The precise mechanisms underlying ethanol (EtOH)'s actions in the central nervous system (CNS) remain elusive. In vitro studies suggest that GABAergic interneurons are important targets of EtOH action in the CNS. Although EtOH generally acts to inhibit CNS neurons, it appears to cause an increase in GABAergic interneuron excitability. However, it has yet to be demonstrated that EtOH produces this effect in the brain of behaving animals. Here, we demonstrate for the first time that acute EtOH exposure excites a subtype of GABAergic interneuron (cerebellar Golgi cell [GoC]) in a freely moving animal. METHODS Electrophysiological recordings were made from microwire arrays implanted in the anterior cerebellum of freely moving rats. RESULTS Cerebellar GoCs display a slow, irregular, spontaneous action potential firing pattern under control conditions. EtOH caused dramatic and consistent increases in the rate and regularity of GoC discharges, including a redistribution of the power in the GoC spike train, such that power became concentrated in the 26.7 ± 7.3 Hz region. CONCLUSIONS Taken together with our previous findings, these data suggest that a major mechanism of EtOH actions on cerebellar function is an EtOH-induced de-afferentation at the input stage of the cerebellar cortex in the form of granule cell inhibition, and that this inhibition is caused by an increase in GoC firing. It is likely that GoCs may play a significant role both in the gating of information transmission to granule cells and in the modulation of the overall excitability of the cerebellum by tonically controlling granule cell activity.
Collapse
|
36
|
Wu JJS, Shih HC, Yen CT, Shyu BC. Network dynamics in nociceptive pathways assessed by the neuronal avalanche model. Mol Pain 2012; 8:33. [PMID: 22537828 PMCID: PMC3478175 DOI: 10.1186/1744-8069-8-33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/26/2012] [Indexed: 01/04/2023] Open
Abstract
Background Traditional electroencephalography provides a critical assessment of pain responses. The perception of pain, however, may involve a series of signal transmission pathways in higher cortical function. Recent studies have shown that a mathematical method, the neuronal avalanche model, may be applied to evaluate higher-order network dynamics. The neuronal avalanche is a cascade of neuronal activity, the size distribution of which can be approximated by a power law relationship manifested by the slope of a straight line (i.e., the α value). We investigated whether the neuronal avalanche could be a useful index for nociceptive assessment. Findings Neuronal activity was recorded with a 4 × 8 multichannel electrode array in the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC). Under light anesthesia, peripheral pinch stimulation increased the slope of the α value in both the ACC and S1, whereas brush stimulation increased the α value only in the S1. The increase in α values was blocked in both regions under deep anesthesia. The increase in α values in the ACC induced by peripheral pinch stimulation was blocked by medial thalamic lesion, but the increase in α values in the S1 induced by brush and pinch stimulation was not affected. Conclusions The neuronal avalanche model shows a critical state in the cortical network for noxious-related signal processing. The α value may provide an index of brain network activity that distinguishes the responses to somatic stimuli from the control state. These network dynamics may be valuable for the evaluation of acute nociceptive processes and may be applied to chronic pathological pain conditions.
Collapse
|
37
|
Ono Y, Lin HC, Tzen KY, Chen HH, Yang PF, Lai WS, Chen JH, Onozuka M, Yen CT. Active coping with stress suppresses glucose metabolism in the rat hypothalamus. Stress 2012; 15:207-17. [PMID: 21936685 DOI: 10.3109/10253890.2011.614296] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We used 18F-fluorodeoxyglucose small-animal positron-emission tomography to determine whether different styles of coping with stress are associated with different patterns of neuronal activity in the hypothalamus. Adult rats were subjected to immobilization (IMO)-stress or to a non-immobilized condition for 30 min, in random order on separate days, each of which was followed by brain-scanning. Some rats in the immobilized condition were allowed to actively cope with the stress by chewing a wooden stick during IMO, while the other immobilized rats were given nothing to chew on. Voxel-based statistical analysis of the brain imaging data shows that chewing counteracted the stress-induced increased glucose uptake in the hypothalamus to the level of the non-immobilized condition. Region-of-interest analysis of the glucose uptake values further showed that chewing significantly suppressed stress-induced increased glucose uptake in the paraventricular hypothalamic nucleus and the anterior hypothalamic area but not in the lateral hypothalamus. Together with the finding that the mean plasma corticosterone concentration at the termination of the IMO was also significantly suppressed when rats had an opportunity to chew a wooden stick, our results showed that active coping by chewing inhibited the activation of the hypothalamic-pituitary-adrenal axis to reduce the endocrine stress response.
Collapse
|
38
|
Tseng WT, Yen CT, Tsai ML. A bundled microwire array for long-term chronic single-unit recording in deep brain regions of behaving rats. J Neurosci Methods 2011; 201:368-76. [PMID: 21889539 DOI: 10.1016/j.jneumeth.2011.08.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/17/2011] [Accepted: 08/18/2011] [Indexed: 11/29/2022]
|
39
|
Ono Y, Lin HC, Chen HH, Yang PF, Lai WS, Chen JH, Onozuka M, Tzen KY, Yen CT. Active coping prevents stress-increased glucose metabolism in the rat hypothalamus. Neurosci Res 2011. [DOI: 10.1016/j.neures.2011.07.1608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Ou-Yang TH, Tsai ML, Yen CT, Lin TT. An infrared range camera-based approach for three-dimensional locomotion tracking and pose reconstruction in a rodent. J Neurosci Methods 2011; 201:116-23. [PMID: 21835202 DOI: 10.1016/j.jneumeth.2011.07.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 11/18/2022]
Abstract
We herein introduce an automated three-dimensional (3D) locomotion tracking and pose reconstruction system for rodents with superior robustness, rapidity, reliability, resolution, simplicity, and cost. An off-the-shelf composite infrared (IR) range camera was adopted to grab high-resolution depth images (640×480×2048 pixels at 20Hz) in our system for automated behavior analysis. For the inherent 3D structure of the depth images, we developed a compact algorithm to reconstruct the locomotion and body behavior with superior temporal and solid spatial resolution. Since the range camera operates in the IR spectrum, interference from the visible light spectrum did not affect the tracking performance. The accuracy of our system was 98.1±3.2%. We also validated the system, which yielded strong correlation with automated and manual tracking. Meanwhile, the system replicates a detailed dynamic rat model in virtual space, which demonstrates the movements of the extremities of the body and locomotion in detail on varied terrain.
Collapse
|
41
|
Min MY, Yang HW, Yen CT, Chen CC, Chen CC, Cheng SJ. ERK, synaptic plasticity and acid-induced muscle pain. Commun Integr Biol 2011; 4:394-6. [PMID: 21966555 DOI: 10.4161/cib.4.4.15694] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/04/2011] [Indexed: 11/19/2022] Open
Abstract
Chronic pain is characterized by post-injury pain hypersensitivity. Current evidence suggests that it might result from altered neuronal excitability and/or synaptic functions in pain-related pathways and brain areas, an effect known as central sensitization. Increased activity of extracellular signal-regulated kinase (ERK) has been well-demonstrated in the dorsal horn of the spinal cord in chronic pain animal models. Recently, increased ERK activity has also been identified in two supraspinal areas, the central amygdala and the paraventricular thalamic nucleus anterior. Our recent work on the capsular central amygdala has shown that this increased ERK activity can enhance synaptic transmission, which might account for central sensitization and behavior hypersensitivity in animals receiving noxious stimuli.
Collapse
|
42
|
Liao YF, Tsai ML, Chen CC, Yen CT. Involvement of the Cav3.2 T-type calcium channel in thalamic neuron discharge patterns. Mol Pain 2011; 7:43. [PMID: 21639922 PMCID: PMC3127773 DOI: 10.1186/1744-8069-7-43] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 06/04/2011] [Indexed: 11/30/2022] Open
Abstract
Background Mice that have defects in their low-threshold T-type calcium channel (T-channel) genes show altered pain behaviors. The changes in the ratio of nociceptive neurons and the burst firing property of reticular thalamic (RT) and ventroposterior (VP) neurons in Cav3.2 knockout (KO) mice were studied to test the involvement of thalamic T-channel and burst firing activity in pain function. Results Under pentobarbital or urethane anesthesia, the patterns of tonic and burst firings were recorded in functionally characterized RT and VPL neurons of Cav3.2 KO mice. Many RT neurons were nociceptive (64% under pentobarbital anesthesia and 50% under urethane anesthesia). Compared to their wild-type (WT) controls, fewer nociceptive RT neurons were found in Cav3.2 KO mice. Both nociceptive and tactile RT neurons showed fewer bursts in Cav3.2 KO mice. Within a burst, RT neurons of Cav3.2 KO mice had a lower spike frequency and less-prominent accelerando-decelerando change. In contrast, VP neurons of Cav3.2 KO mice showed a higher ratio of bursts and a higher discharge rate within a burst than those of the WT control. In addition, the long-lasting tonic firing episodes in RT neurons of the Cav3.2 KO had less stereotypic regularity than their counterparts in WT mice. Conclusions RT might be important in nociception of the mouse. In addition, we showed an important role of Cav3.2 subtype of T-channel in RT burst firing pattern. The decreased occurrence and slowing of the bursts in RT neurons might cause the increased VP bursts. These changes would be factors contributing to alternation of pain behavior in the Cav3.2 KO mice.
Collapse
|
43
|
Kapoor A, Hsu WM, Wang BJ, Wu GH, Lin TY, Lee SJ, Yen CT, Liang SM, Liao YF. Caveolin-1 regulates γ-secretase-mediated AβPP processing by modulating spatial distribution of γ-secretase in membrane. J Alzheimers Dis 2011; 22:423-42. [PMID: 20847442 DOI: 10.3233/jad-2010-100531] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Amyloidogenic processing of amyloid-β precursor protein (AβPP) is associated with cholesterol- and sphingolipid-rich lipid rafts. Caveolin-1, a raft-residing protein, has been implicated in the pathogenesis of Alzheimer's disease. To determine the role of caveolin-1 in governing γ-secretase-mediated AβPP proteolysis, cellular γ-secretase activity was assessed in response to alteration in caveolin-1 expression. We demonstrated that suppression of caveolin-1 expression by RNA interference resulted in a significant increase in γ-secretase-mediated proteolysis of AβPP, generation of amyloid-β, and cleavage of Notch. Overexpression of caveolin-1 attenuated γ-secretase-mediated proteolysis of AβPP and Notch, substantiating the negative regulation of γ-secretase by caveolin-1. Furthermore, we found that cells deficient in caveolin-1 exhibited significantly increased co-localization of γ-secretase with clathrin-coated non-caveolar endocytic vesicles, demonstrating that the partitioning of γ-secretase between caveolar and non-caveolar membranes can be modulated by caveolin-1. Our data also showed that JNK activation is essential for caveolin-1-mediated regulation of γ-secretase. Together, our results strongly suggest that caveolin-1 is an important regulator of γ-secretase activity.
Collapse
|
44
|
Yang PF, Chen DY, Hu JW, Chen JH, Yen CT. Functional tracing of medial nociceptive pathways using activity-dependent manganese-enhanced MRI. Pain 2011; 152:194-203. [DOI: 10.1016/j.pain.2010.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 10/09/2010] [Accepted: 10/20/2010] [Indexed: 11/30/2022]
|
45
|
Hsu JW, Lee LC, Chen RF, Yen CT, Chen YS, Tsai ML. Striatal volume changes in a rat model of childhood attention-deficit/hyperactivity disorder. Psychiatry Res 2010; 179:338-41. [PMID: 20493538 DOI: 10.1016/j.psychres.2009.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/20/2009] [Accepted: 08/21/2009] [Indexed: 01/26/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is one of the most common childhood neuropsychiatric disorders. Based on neuroimaging studies, the striatum is reported to be abnormal in size, but it is still not clear how they change during developmental stages. Spontaneously hypertensive rats (SHRs) are the commonly used animal model for ADHD. We investigated volume differences of the striatum at various ages before puberty in SHRs versus a control strain, Wistar-Kyoto rats (WKYs). Volumes of the bilateral striatum were measured using micrographs of Nissl-stained serial sections in both strains of rats at the ages of 4, 5, 6, 7, 8, 9, and 10weeks (n=4, each strain at each age). The results demonstrated that the age of a significant striatal volume difference between SHRs and WKYs was 5weeks; however, there was no significant difference for the corresponding total brain volume at each matched age. It suggested that the timing for striatal abnormalities in ADHD occurs during an early stage of childhood.
Collapse
|
46
|
Liao CC, Chen RF, Lai WS, Lin RCS, Yen CT. Distribution of large terminal inputs from the primary and secondary somatosensory cortices to the dorsal thalamus in the rodent. J Comp Neurol 2010; 518:2592-611. [PMID: 20503429 DOI: 10.1002/cne.22354] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study was undertaken to determine the precise projection pattern from the primary (S1) and secondary (S2) somatosensory cortices to the posterior nuclear proper (POm) and ventroposterior thalamic nuclei (VP). The POm was previously shown to receive large boutons arising exclusively from layer V of the S1 barrel region. This descending input was proposed to play a key role, namely, as a driver, in shaping the receptive property of POm neurons. To determine whether other body parts and the S2 also contribute such unique inputs to the dorsal thalamus, anterograde neuroanatomical tracers were focally deposited in the S1 and S2 forepaw and whisker regions of rats and C57BL6-Tg (GFPm)/Thy1 transgenic mice. Our major findings were that, 1) irrespective of body representations, both the S1 and the S2 provided corticothalamic large terminals to the POm with comparable morphological characteristics and 2) descending large terminals were also noted in particular subzones within the VP, including boundary and caudal areas. We concluded, based on these findings, that the rodent VP has three partitions: the rostral VP innervated by small corticothalamic terminals, the caudal VP with both corticothalamic small and large terminals, and a surrounding shell region, which also contained large terminals. Furthermore, assuming that the large terminal has a driver's role, we propose that particular subzones in the VP may play a role as a multiple-order thalamic relay so that they can simultaneously coordinate with first- and higher-order relays in the thalamocortical circuitry for processing somatosensory information.
Collapse
|
47
|
Tsai ML, Tseng WT, Yen CT, Chen RF. The correlation of mean sympathetic activity with low-frequency blood pressure and sympathetic variability. Clin Exp Hypertens 2010; 31:615-24. [PMID: 19886859 DOI: 10.3109/10641960902929461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The low-frequency (0.2-0.8 Hz) component of blood pressure (BP) variability (LF(BP)) is used as an index of the low-frequency variability of sympathetic nerve activity (SNA) (LF(SNA)) in rats. It is unclear whether the LF(BP) can be used as an index of the mean SNA (mSNA). We investigated the correlation of the LF(BP) with different levels of the mSNA in this study to evaluate if it is a feasible tool for detecting differences in mSNA under physiological conditions. Correlation of the LF(SNA) with different mSNA levels was also investigated. The BP and renal SNA of rats were recorded in a nonanesthetized state. Values of the mSNA obtained from 531 recording epochs in six rats were graded into 30 levels with a bin resolution of 0.05 normalized units. A linear regression analysis showed that the correlation between the mSNA and LF(SNA) was higher than that between the mSNA and LF(BP). The mSNA was well correlated with the LF(SNA) over a wider mSNA range, while it was correlated with the LF(BP) only in a restricted range. These results demonstrated a restricted condition under which measuring the LF(BP) can be a definitive index of the mSNA, and further suggest the possibility of using the weighted LF(BP) as an index of the mSNA via intermediation by the LF(SNA) for a wider mSNA range.
Collapse
|
48
|
Tseng WT, Chen RF, Tsai ML, Yen CT. Correlation of discharges of rostral ventrolateral medullary neurons with the low-frequency sympathetic rhythm in rats. Neurosci Lett 2009; 454:22-7. [PMID: 19429047 DOI: 10.1016/j.neulet.2009.02.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 02/17/2009] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
Abstract
The rostral ventrolateral medulla (RVLM) is critically important in the generation of sympathetic activity. The purpose of this study was to investigate whether discharges of RVLM neurons contribute to low-frequency (LF) sympathetic rhythms. Blood pressure (BP), renal sympathetic nerve activity (SNA), and neuronal activity in the RVLM were simultaneously recorded in seven anesthetized, paralyzed, and artificially ventilated rats. Fifty-one RVLM neurons were recorded and classified into three differential functional groups according to their activities related to baroreceptor input. Those in the category of spike firing inhibited by a BP increase (BP(I)) and which excited sympathetic discharges was the most abundant (24%). Coherence analysis was used to examine the relationship of the firing frequency of RVLM neurons with the LF (0.2-0.8Hz) rhythm of SNA. Forty-one percent of RVLM neurons showed a significant correlation to LF rhythms, and BP(I) neurons with sympathoexcitatory properties were the major contributors. In another 4 baroreceptor-denervated rats, 36 RVLM neurons were recorded. In these rats, RVLM neuronal activities no longer changed with BP fluctuations. Nevertheless, more than 40% of RVLM neurons were sympathoexcitatory, and 36% of RVLM neurons were still correlated with the LF SNA rhythm. Our results suggest that there are RVLM neurons involved in generating the LF rhythm in SNA and that the baroreflex can induce the participation of more neurons in LF rhythm generation.
Collapse
|
49
|
Yen CC, Shann WC, Yen CT, Tsai ML. Spike sorting by a minimax reduced feature set based on finite differences. J Physiol Sci 2009; 59:143-7. [PMID: 19340555 PMCID: PMC10717153 DOI: 10.1007/s12576-008-0010-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 11/12/2008] [Indexed: 10/20/2022]
Abstract
Spikes are classified according to their finite differences in various orders. The fundamental idea that makes it work is that finite differences can extract and isolate features from spikes. This method showed better sorting quality and involved less labor than the methods of principal component analysis, original reduced feature set, and wavelet-based spike classifiers.
Collapse
|
50
|
Kuo CC, Chiou RJ, Liang KC, Yen CT. Differential involvement of the anterior cingulate and primary sensorimotor cortices in sensory and affective functions of pain. J Neurophysiol 2008; 101:1201-10. [PMID: 19091928 DOI: 10.1152/jn.90347.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study examined the role of neurons in different pain-related functions of the anterior cingulate cortex (ACC) and primary sensorimotor cortex (SmI) by assessing their abilities to code different levels of noxious heat and activity changes evoked by classical fear conditioning involving electric shocks. Multiple single-unit activity was recorded with microwires implanted in the SmI and ACC of each rat. In the first set of experiments, the middle segment of the tail in each rat was irradiated with laser-heat pulses of various intensities. Neuronal responses in both the SmI and ACC increased with the intensity of the laser heat, although there was a significantly higher percentage of intensity-related units in the SmI. Furthermore, the stimulus-response curve of SmI ensemble activity had a steeper slope than that of the ACC. In the second set of experiments, rats were trained and tested on a conditioned fear-potentiated startle task in which a light was paired with an electric shock and, later, the startle response was elicited by a burst of noise in the presence or absence of light. A higher percentage of ACC units changed their neuronal responses to the conditioned stimulus after the light-shock pairing and the average activity change was also significantly stronger. Our results suggest that SmI neurons are better at coding laser-heat intensity than ACC neurons, whereas more ACC neurons are involved in conditioned fear associated with an electric shock than SmI neurons. These data provide evidence for differential contributions of the SmI and ACC to sensory and affective dimensions of pain.
Collapse
|