26
|
Connell M, Chen H, Jiang J, Kuan CW, Fotovati A, Chu TLH, He Z, Lengyell TC, Li H, Kroll T, Li AM, Goldowitz D, Frappart L, Ploubidou A, Patel MS, Pilarski LM, Simpson EM, Lange PF, Allan DW, Maxwell CA. HMMR acts in the PLK1-dependent spindle positioning pathway and supports neural development. eLife 2017; 6:e28672. [PMID: 28994651 PMCID: PMC5681225 DOI: 10.7554/elife.28672] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023] Open
Abstract
Oriented cell division is one mechanism progenitor cells use during development and to maintain tissue homeostasis. Common to most cell types is the asymmetric establishment and regulation of cortical NuMA-dynein complexes that position the mitotic spindle. Here, we discover that HMMR acts at centrosomes in a PLK1-dependent pathway that locates active Ran and modulates the cortical localization of NuMA-dynein complexes to correct mispositioned spindles. This pathway was discovered through the creation and analysis of Hmmr-knockout mice, which suffer neonatal lethality with defective neural development and pleiotropic phenotypes in multiple tissues. HMMR over-expression in immortalized cancer cells induces phenotypes consistent with an increase in active Ran including defects in spindle orientation. These data identify an essential role for HMMR in the PLK1-dependent regulatory pathway that orients progenitor cell division and supports neural development.
Collapse
|
research-article |
8 |
37 |
27
|
Maxwell CA, Edwards R, Dixon RA. Identification, purification, and characterization of S-adenosyl-L-methionine: isoliquiritigenin 2'-O-methyltransferase from alfalfa (Medicago sativa L.). Arch Biochem Biophys 1992; 293:158-66. [PMID: 1731632 DOI: 10.1016/0003-9861(92)90379-b] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An O-methyltransferase (OMT) which methylates the 2'-hydroxyl of isoliquiritigenin (2',4,4'-trihydroxychalcone) was identified in alfalfa (Medicago sativa L.) seedlings and cell cultures. The OMT activity increased during early stages of seedling development and was predominantly located in roots. Treatment of alfalfa cell cultures with an elicitor from yeast resulted in a fivefold increase in chalcone OMT activity, whereas treatment of seedlings with CuCl2 caused a reduction in activity. The chalcone OMT was purified to near homogeneity from elicited alfalfa cell cultures. Only one form of the enzyme was found. It consisted of an active monomer of subunit Mr 43,000 which could be photoaffinity labeled with S-adenosyl-L-[methyl-3H]methionine. The purified OMT had a pH optimum of 9.0, pI of 4.7, and was highly specific for the 2'-hydroxyl of 2',4,4'-trihydroxychalcone, with essentially no activity toward narigenin chalcone, caffeic acid, or daidzein. Kinetic analysis indicated a sequential bi bi mechanism with Km values of 2.2 and 17.7 microM for 2',4,4'-trihydroxychalcone and S-adenosyl-L-methionine, respectively. S-Adenosyl-L-homocysteine was a potent inhibitor. The chalcone OMT represents the third distinct OMT isolated from alfalfa cell cultures.
Collapse
|
|
33 |
36 |
28
|
Curtis CF, Malecela-Lazaro M, Reuben R, Maxwell CA. Use of floating layers of polystyrene beads to control populations of the filaria vector Culex quinquefasciatus. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2002; 96 Suppl 2:S97-104. [PMID: 12625923 DOI: 10.1179/000349802125002446] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Floating layers of polystyrene beads suffocate mosquito larvae and pupae and inhibit egg laying. The layers are very durable in breeding sites with water contained within walls, as in wet pit latrines and soakage pits. In some areas such pits constitute an important breeding site for Culex quinquefasciatus. Trials have been conducted in communities in Zanzibar, Tanzania, and in Tamil Nadu, India, where such mosquito populations were the vectors of Wuchereria bancrofti. In each case, treatment of all the pits with polystyrene beads was integrated with mass treatment of the people with antifilarial drugs-in Zanzibar in 1988 with diethylcarbamazine (DEC) and in India in the 1990s with DEC plus ivermectin. The results were compared with those in communities with the mass drug treatment alone and with control communities with neither treatment. The polystyrene-bead treatments greatly and sustainably reduced the vector populations. Comparison of the communities after drug treatment ceased showed that this form of vector control contributed markedly to the prevention of a resurgence of filarial infection. Where Cx. quinquefasciatus breeding in pits form a major component of the vector population, use of polystyrene-bead layers could assist considerably in the process of eliminating lymphatic filariasis by mass drug administration.
Collapse
|
|
23 |
34 |
29
|
Paterson AM, Martin GB, Foldes A, Maxwell CA, Pearce GP. Concentrations of plasma melatonin and luteinizing hormone in domestic gilts reared under artificial long or short days. JOURNAL OF REPRODUCTION AND FERTILITY 1992; 94:85-95. [PMID: 1552495 DOI: 10.1530/jrf.0.0940085] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Plasma melatonin concentrations were measured every 1-2 h over 24 h and plasma luteinizing hormone (LH) concentrations every 15 min over 12 h in domestic gilts reared under artificial light regimens that had previously been used to demonstrate photoperiodic effects on puberty. In Expt 1, the light regimens both commenced at 12 h light: 12 h dark (12L:12D) and either increased (long-day) or decreased (short-day) by 15 min/week until the long-day gilts were receiving 16L:8D and the short-day gilts 8L:16D at sampling. In Expt 2, both light regimens commenced at 12L:12D and either increased (long-day) or decreased (short-day) by 10 or 15 min/week to a maximum of 14.5L:9.5D or a minimum of 9.5L:14.5D before being reversed. Sampling took place when daylength had returned to 14L:10D (long-day) or 10L:14D (short-day). In immature gilts housed at 12L:12D (Expt 1) and in postpubertal (Expt 1) and prepubertal (Expt 2) gilts reared under long-day or short-day light regimens, mean plasma melatonin concentrations were basal (3.6 pg/ml) when the lights were on and increased to peak concentrations greater than 15 pg/ml within 1-2 h after dark, before declining gradually to basal concentrations at or near the end of the dark phase. In prepubertal gilts bearing subcutaneous melatonin implants and reared under long-days (Expt 2), mean plasma melatonin concentration in the 6 h before dark was 91.9 +/- 5.26 pg/ml and 125.0 +/- 6.66 pg/ml 1 h after dark, but this increase was not statistically significant. In Expt 2, the short-day gilts had fewer LH pulses (2.6 +/- 0.25 vs. 4.6 +/- 0.24; P less than 0.01) in the 12-h sampling period than the long-day gilts, but the amplitude of the pulses (2.28 +/- 0.23 vs. 1.26 +/- 0.16 ng/ml; P less than 0.01) and the area under the LH curve (78.8 +/- 5.60 vs. 47.3 +/- 6.16; P less than 0.01) was greater in the short-day gilts. In the short-day, but not in the long-day, gilts LH pulses were more frequent (2.0 +/- 0.0 vs. 0.6 +/- 0.25; P less than 0.01), but had a smaller area (61.9 +/- 7.2 vs. 120.2 +/- 23.6; P less than 0.05) in the 6 h of dark than in the 6 h of light, which together made up the 12-h sampling period.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
|
33 |
34 |
30
|
Maxwell CA, Harrison MJ, Dixon RA. Molecular characterization and expression of alfalfa isoliquiritigenin 2'-O-methyltransferase, an enzyme specifically involved in the biosynthesis of an inducer of Rhizobium meliloti nodulation genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1993; 4:971-981. [PMID: 8281189 DOI: 10.1046/j.1365-313x.1993.04060971.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A cDNA clone encoding an O-methyltransferase (OMT) from alfalfa has been isolated, which methylates the 2'-hydroxyl of isoliquiritigenin (2',4,4'-trihydroxychalcone) to form 4,4'-dihydroxy-2'-methoxychalcone, the most potent of the nod-gene-inducing flavonoid derivatives released from alfalfa roots. The cDNA clone was identified on the basis of N-terminal sequence identity to purified S-adenosyl-L-methionine:isoliquiritigenin 2'-O-methyltransferase (chalcone OMT) and expression of enzymatically active chalcone OMT protein in Escherichia coli. The deduced amino acid sequence showed significant similarities to other OMTs. Chalcone OMT is encoded by a small gene family in alfalfa and related sequences are present in other legumes. The chalcone OMT gene is expressed primarily in alfalfa roots; transcript levels were highest during the first 2 weeks of development. The OMT transcript was also detected, to a much lesser extent, in root nodules. In contrast, chalcone isomerase (CHI), although expressed at high levels in roots, was found in all plant organs and had a somewhat different developmental expression pattern. Chalcone OMT transcripts were localized primarily to epidermal and cortical cells starting 1.5-2.0 mm behind the root tip, whereas CHI transcripts were present at approximately equal levels in epidermal, cortical and vascular tissues, both at the root tip and throughout the root. Chalcone OMT transcripts were elicitor-inducible in alfalfa cell suspension cultures, although only low levels of methoxychalcone accumulated. The implications of these results for plant-microorganism interactions are discussed.
Collapse
|
|
32 |
34 |
31
|
Raman S, Maxwell CA, Barcellos-Hoff MH, Parvin B. Geometric approach to segmentation and protein localization in cell culture assays. J Microsc 2007; 225:22-30. [PMID: 17286692 DOI: 10.1111/j.1365-2818.2007.01712.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell-based fluorescence imaging assays are heterogeneous and require the collection of a large number of images for detailed quantitative analysis. Complexities arise as a result of variation in spatial nonuniformity, shape, overlapping compartments and scale (size). A new technique and methodology has been developed and tested for delineating subcellular morphology and partitioning overlapping compartments at multiple scales. This system is packaged as an integrated software platform for quantifying images that are obtained through fluorescence microscopy. Proposed methods are model based, leveraging geometric shape properties of subcellular compartments and corresponding protein localization. From the morphological perspective, convexity constraint is imposed to delineate and partition nuclear compartments. From the protein localization perspective, radial symmetry is imposed to localize punctate protein events at submicron resolution. Convexity constraint is imposed against boundary information, which are extracted through a combination of zero-crossing and gradient operator. If the convexity constraint fails for the boundary then positive curvature maxima are localized along the contour and the entire blob is partitioned into disjointed convex objects representing individual nuclear compartment, by enforcing geometric constraints. Nuclear compartments provide the context for protein localization, which may be diffuse or punctate. Punctate signal are localized through iterative voting and radial symmetries for improved reliability and robustness. The technique has been tested against 196 images that were generated to study centrosome abnormalities. Corresponding computed representations are compared against manual counts for validation.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
33 |
32
|
Gómez-Baldó L, Schmidt S, Maxwell CA, Bonifaci N, Gabaldón T, Vidalain PO, Senapedis W, Kletke A, Rosing M, Barnekow A, Rottapel R, Capellá G, Vidal M, Astrinidis A, Piekorz RP, Pujana MA. TACC3-TSC2 maintains nuclear envelope structure and controls cell division. Cell Cycle 2010; 9:1143-55. [PMID: 20237422 DOI: 10.4161/cc.9.6.11018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Studies of the role of tuberous sclerosis complex (TSC) proteins (TSC1/TSC2) in pathology have focused mainly on their capacity to regulate translation and cell growth, but their relationship with alterations of cellular structures and the cell cycle is not yet fully understood. The transforming acidic coiled-coil (TACC) domain-containing proteins are central players in structures and processes connected to the centrosome. Here, TACC3 interactome mapping identified TSC2 and 15 other physical interactors, including the evolutionary conserved interactions with ch-TOG/CKAP5 and FAM161B. TACC3 and TSC2 co-localize and co-purify with components of the nuclear envelope, and their deficiency causes morphological alterations of this structure. During cell division, TACC3 is necessary for the proper localization of phospho-Ser939 TSC2 at spindle poles and cytokinetic bridges. Accordingly, abscission alterations and increased frequency of binucleated cells were observed in Tacc3- and Tsc2-deficient cells relative to controls. In regulating cell division, TSC2 acts epistatically to TACC3 and, in addition to canonical TSC/mTOR signaling and cytokinetic associations, converges to the early mitotic checkpoint mediated by CHFR, consistently with nuclear envelope associations. Our findings link TACC3 to novel structural and cell division functions of TSC2, which may provide additional explanations for the clinical and pathological manifestations of lymphangioleiomyomatosis (LAM) disease and TSC syndrome, including the greater clinical severity of TSC2 mutations compared to TSC1 mutations.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
32 |
33
|
Chen H, Mohan P, Jiang J, Nemirovsky O, He D, Fleisch MC, Niederacher D, Pilarski LM, Lim CJ, Maxwell CA. Spatial regulation of Aurora A activity during mitotic spindle assembly requires RHAMM to correctly localize TPX2. Cell Cycle 2014; 13:2248-61. [PMID: 24875404 DOI: 10.4161/cc.29270] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Construction of a mitotic spindle requires biochemical pathways to assemble spindle microtubules and structural proteins to organize these microtubules into a bipolar array. Through a complex with dynein, the receptor for hyaluronan-mediated motility (RHAMM) cross-links mitotic microtubules to provide structural support, maintain spindle integrity, and correctly orient the mitotic spindle. Here, we locate RHAMM to sites of microtubule assembly at centrosomes and non-centrosome sites near kinetochores and demonstrate that RHAMM is required for the activation of Aurora kinase A. Silencing of RHAMM delays the kinetics of spindle assembly, mislocalizes targeting protein for XKlp2 (TPX2), and attenuates the localized activation of Aurora kinase A with a consequent reduction in mitotic spindle length. The RHAMM-TPX2 complex requires a C-terminal basic leucine zipper in RHAMM and a domain that includes the nuclear localization signal in TPX2. Together, our findings identify RHAMM as a critical regulator for Aurora kinase A signaling and suggest that RHAMM ensures bipolar spindle assembly and mitotic progression through the integration of biochemical and structural pathways.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
32 |
34
|
Blanco I, Kuchenbaecker K, Cuadras D, Wang X, Barrowdale D, de Garibay GR, Librado P, Sánchez-Gracia A, Rozas J, Bonifaci N, McGuffog L, Pankratz VS, Islam A, Mateo F, Berenguer A, Petit A, Català I, Brunet J, Feliubadaló L, Tornero E, Benítez J, Osorio A, Cajal TRY, Nevanlinna H, Aittomäki K, Arun BK, Toland AE, Karlan BY, Walsh C, Lester J, Greene MH, Mai PL, Nussbaum RL, Andrulis IL, Domchek SM, Nathanson KL, Rebbeck TR, Barkardottir RB, Jakubowska A, Lubinski J, Durda K, Jaworska-Bieniek K, Claes K, Van Maerken T, Díez O, Hansen TV, Jønson L, Gerdes AM, Ejlertsen B, de la Hoya M, Caldés T, Dunning AM, Oliver C, Fineberg E, Cook M, Peock S, McCann E, Murray A, Jacobs C, Pichert G, Lalloo F, Chu C, Dorkins H, Paterson J, Ong KR, Teixeira MR, Hogervorst FBL, van der Hout AH, Seynaeve C, van der Luijt RB, Ligtenberg MJL, Devilee P, Wijnen JT, Rookus MA, Meijers-Heijboer HEJ, Blok MJ, van den Ouweland AMW, Aalfs CM, Rodriguez GC, Phillips KAA, Piedmonte M, Nerenstone SR, Bae-Jump VL, O'Malley DM, Ratner ES, Schmutzler RK, Wappenschmidt B, Rhiem K, Engel C, Meindl A, Ditsch N, Arnold N, Plendl HJ, Niederacher D, Sutter C, Wang-Gohrke S, Steinemann D, Preisler-Adams S, Kast K, Varon-Mateeva R, Gehrig A, Bojesen A, Pedersen IS, Sunde L, Jensen UB, Thomassen M, Kruse TA, Foretova L, Peterlongo P, Bernard L, Peissel B, Scuvera G, Manoukian S, Radice P, Ottini L, Montagna M, Agata S, Maugard C, Simard J, Soucy P, Berger A, Fink-Retter A, Singer CF, Rappaport C, Geschwantler-Kaulich D, Tea MK, Pfeiler G, John EM, Miron A, Neuhausen SL, Terry MB, Chung WK, Daly MB, Goldgar DE, Janavicius R, Dorfling CM, van Rensburg EJ, Fostira F, Konstantopoulou I, Garber J, Godwin AK, Olah E, Narod SA, Rennert G, Paluch SS, Laitman Y, Friedman E, Liljegren A, Rantala J, Stenmark-Askmalm M, Loman N, Imyanitov EN, Hamann U, Spurdle AB, Healey S, Weitzel JN, Herzog J, Margileth D, Gorrini C, Esteller M, Gómez A, Sayols S, Vidal E, Heyn H, Stoppa-Lyonnet D, Léoné M, Barjhoux L, Fassy-Colcombet M, de Pauw A, Lasset C, Ferrer SF, Castera L, Berthet P, Cornelis F, Bignon YJ, Damiola F, Mazoyer S, Sinilnikova OM, Maxwell CA, Vijai J, Robson M, Kauff N, Corines MJ, Villano D, Cunningham J, Lee A, Lindor N, Lázaro C, Easton DF, Offit K, Chenevix-Trench G, Couch FJ, Antoniou AC, Pujana MA. Assessing associations between the AURKA-HMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers. PLoS One 2015; 10:e0120020. [PMID: 25830658 PMCID: PMC4382299 DOI: 10.1371/journal.pone.0120020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 01/22/2015] [Indexed: 12/30/2022] Open
Abstract
While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood approach. The association of HMMR rs299290 with breast cancer risk in BRCA1 mutation carriers was confirmed: per-allele hazard ratio (HR) = 1.10, 95% confidence interval (CI) 1.04-1.15, p = 1.9 x 10(-4) (false discovery rate (FDR)-adjusted p = 0.043). Variation in CSTF1, located next to AURKA, was also found to be associated with breast cancer risk in BRCA2 mutation carriers: rs2426618 per-allele HR = 1.10, 95% CI 1.03-1.16, p = 0.005 (FDR-adjusted p = 0.045). Assessment of pairwise interactions provided suggestions (FDR-adjusted pinteraction values > 0.05) for deviations from the multiplicative model for rs299290 and CSTF1 rs6064391, and rs299290 and TUBG1 rs11649877 in both BRCA1 and BRCA2 mutation carriers. Following these suggestions, the expression of HMMR and AURKA or TUBG1 in sporadic breast tumors was found to potentially interact, influencing patients' survival. Together, the results of this study support the hypothesis of a causative link between altered function of AURKA-HMMR-TPX2-TUBG1 and breast carcinogenesis in BRCA1/2 mutation carriers.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
29 |
35
|
Maxwell CA, Wakibara J, Tho S, Curtis CF. Malaria-infective biting at different hours of the night. MEDICAL AND VETERINARY ENTOMOLOGY 1998; 12:325-327. [PMID: 9737608 DOI: 10.1046/j.1365-2915.1998.00108.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
|
27 |
28 |
36
|
Stich AH, Maxwell CA, Haji AA, Haji DM, Machano AY, Mussa JK, Matteelli A, Haji H, Curtis CF. Insecticide-impregnated bed nets reduce malaria transmission in rural Zanzibar. Trans R Soc Trop Med Hyg 1994; 88:150-4. [PMID: 8036655 DOI: 10.1016/0035-9203(94)90271-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
There has been concern that impregnated bed nets are an insufficiently powerful method to control malaria in areas with very high perennial transmission, as in the humid lowland parts of tropical Africa. We carried out a 'cross-over' trial among children under 5 years of age in 2 villages in rural Zanzibar. In 1989, one village was supplied with newly permethrin-impregnated bed nets whereas the other served as unprotected control. In 1992, when those nets had lost their insecticidal activity and were badly torn, the village which had previously been the control was given newly impregnated bed nets. Each time, reinfection with Plasmodium falciparum was measured after initially clearing the parasites by administering a therapeutic dose of sulfadoxine/pyrimethamine. The introduction of bed nets led to a 74-78% reduction in the weekly rate of reinfection with malaria parasites, in all age groups. The nets apparently also affected perceived clinical symptoms, haemoglobin levels, and the mosquito sporozoite rate.
Collapse
|
|
31 |
28 |
37
|
Myamba J, Maxwell CA, Asidi A, Curtis CF. Pyrethroid resistance in tropical bedbugs, Cimex hemipterus, associated with use of treated bednets. MEDICAL AND VETERINARY ENTOMOLOGY 2002; 16:448-451. [PMID: 12510899 DOI: 10.1046/j.1365-2915.2002.00389.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
When Tanzanian villages were provided with pyrethroid-treated bednets, bedbugs (Cimicidae) disappeared; however, after about 6 years they have re-appeared in these villages. Using a newly devised test-kit, susceptibility tests of bedbugs Cimex hemipterus (Fabricius) from five of these villages showed that there is resistance to permethrin and alphacypermethrin in bedbugs from each of the villages, in contrast to those from five villages without treated nets. Circumstantial evidence indicates that bedbug resistance to pyrethroid insecticides may evolve more readily in villages with incomplete coverage rates of treated bednets, allowing bedbug infestations to become re-established. Bedbugs have not returned to a village where nearly all the beds have been provided with pyrethroid-treated bednets for 14 years.
Collapse
|
|
23 |
28 |
38
|
Hartwig UA, Maxwell CA, Joseph CM, Phillips DA. Interactions among Flavonoid nod Gene Inducers Released from Alfalfa Seeds and Roots. PLANT PHYSIOLOGY 1989; 91:1138-42. [PMID: 16667124 PMCID: PMC1062131 DOI: 10.1104/pp.91.3.1138] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Alfalfa (Medicago sativa L.) seeds and roots can create complex rhizosphere effects by releasing flavonoids that induce nodulation (nod) genes in Rhizobium meliloti. Previous reports identified luteolin and 4,4'-dihydroxy-2'-methoxychalcone as strong inducers that are released from seeds and roots, respectively, and 4',7-dihydroxyflavone and 4',7-dihydroxyflavanone as weaker inducers which are exuded by roots. As a first step toward identifying flavonoid interactions that may occur in the rhizosphere, combinations of these molecules were tested for transcriptional effects on a nodABC-lacZ fusion in R. meliloti. At low concentrations (e.g. 8.4 nanomolar), interactions of the three nod gene inducers from root exudate were additive. When the strong inducers 4,4'-dihydroxy-2'-methoxychalcone and luteolin were present separately at higher concentrations (e.g. 21 nanomolar), their effect could be decreased significantly by the weaker inducers 4',7-dihydroxyflavone and 4',7-dihydroxyflavanone. In contrast, when low concentrations of luteolin from seed rinses and 4,4'-dihydroxy-2'-methoxychalcone from root exudate were present together, they produced synergistic increases in nod gene transcription. Tests with mixtures of the three nod gene inducers from root exudate indicated that alfalfa seedlings might easily decrease the strong inductive effect of the chalcone by releasing modest amounts of the weaker inducers. In addition, mixtures of luteolin and the nod gene inducers in root exudate suggested that interactions between nod gene inducers from seeds and roots may create a zone highly favorable to root nodule formation near the top of the primary root.
Collapse
|
research-article |
36 |
23 |
39
|
Mutabingwa TK, Maxwell CA, Sia IG, Msuya FH, Mkongewa S, Vannithone S, Curtis J, Curtis CF. A trial of proguanil-dapsone in comparison with sulfadoxine-pyrimethamine for the clearance of Plasmodium falciparum infections in Tanzania. Trans R Soc Trop Med Hyg 2001; 95:433-8. [PMID: 11579891 DOI: 10.1016/s0035-9203(01)90207-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Considerable levels of resistance to sulfadoxine-pyrimethamine (SP) have been reported in Plasmodium falciparum in north-eastern Tanzania, and the identification of a suitable antimalarial to replace SP is now a high priority. We conducted a trial in July 2000 to determine the efficacy of proguanil (PG) plus dapsone (DS), compared with that of SP, for the treatment of asymptomatic falciparum infection. A total of 220 children with parasitaemia > or = 2000 per microL completed the study; 112 had received a single dose of SP (dosage calculated for pyrimethamine 1.25 mg/kg and sulfadoxine 25 mg/kg) and 108 had taken PG 10 mg/kg with DS 2.5 mg/kg each day for 3 days. Clearance of asexual parasites at day 7 was 14.3% with SP, but 93.5% with PG-DS. The remarkably high failure rate with SP was not associated with occurrence of leucine substitution at position 164 of the dhfr gene. Both treatment regimens were well tolerated. Compared with available data on another antifolate combination, chlorproguanil-dapsone ('Lapdap'), PG-DS was slightly but significantly inferior in achieving parasite clearance (99.5% versus 93.5%). The estimated cost of a 3-day course of PG-DS treatment for a child weighing 18 kg is US $0.15. With the rising incidence of SP-resistant P. falciparum infection, PG-DS could provide an effective, affordable and already available therapeutic alternative for malaria in East Africa at least until chlorproguanil-dapsone is registered.
Collapse
|
Clinical Trial |
24 |
23 |
40
|
Mohan P, Castellsague J, Jiang J, Allen K, Chen H, Nemirovsky O, Spyra M, Hu K, Kluwe L, Pujana MA, Villanueva A, Mautner VF, Keats JJ, Dunn SE, Lazaro C, Maxwell CA. Genomic imbalance of HMMR/RHAMM regulates the sensitivity and response of malignant peripheral nerve sheath tumour cells to aurora kinase inhibition. Oncotarget 2013; 4:80-93. [PMID: 23328114 PMCID: PMC3702209 DOI: 10.18632/oncotarget.793] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Malignant peripheral nerve sheath tumours (MPNST) are rare, hereditary cancers associated with neurofibromatosis type I. MPNSTs lack effective treatment options as they often resist chemotherapies and have high rates of disease recurrence. Aurora kinase A (AURKA) is an emerging target in cancer and an aurora kinase inhibitor (AKI), termed MLN8237, shows promise against MPNST cell lines in vitro and in vivo. Here, we test MLN8237 against two primary human MPNST grown in vivo as xenotransplants and find that treatment results in tumour cells exiting the cell cycle and undergoing endoreduplication, which cumulates in stabilized disease. Targeted therapies can often fail in the clinic due to insufficient knowledge about factors that determine tumour susceptibilities, so we turned to three MPNST cell-lines to further study and modulate the cellular responses to AKI. We find that the sensitivity of cell-lines with amplification of AURKA depends upon the activity of the kinase, which correlates with the expression of the regulatory gene products TPX2 and HMMR/RHAMM. Silencing of HMMR/RHAMM, but not TPX2, augments AURKA activity and sensitizes MPNST cells to AKI. Furthermore, we find that AURKA activity is critical to the propagation and self-renewal of sphere-enriched MPNST cancer stem-like cells. AKI treatment significantly reduces the formation of spheroids, attenuates the self-renewal of spheroid forming cells, and promotes their differentiation. Moreover, silencing of HMMR/RHAMM is sufficient to endow MPNST cells with an ability to form and maintain sphere culture. Collectively, our data indicate that AURKA is a rationale therapeutic target for MPNST and tumour cell responses to AKI, which include differentiation, are modulated by the abundance of HMMR/RHAMM.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
23 |
41
|
Maxwell CA, Phillips DA. Concurrent Synthesis and Release of nod-Gene-Inducing Flavonoids from Alfalfa Roots. PLANT PHYSIOLOGY 1990; 93:1552-8. [PMID: 16667655 PMCID: PMC1062710 DOI: 10.1104/pp.93.4.1552] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Flavonoid signals from alfalfa (Medicago sativa L.) induce transcription of nodulation (nod) genes in Rhizobium meliloti. Alfalfa roots release three major nod-gene inducers: 4',7-dihydroxyflavanone, 4',7-dihydroxyflavone, and 4,4'-dihydroxy-2'-methoxychalcone. The objective of the present study was to define temporal relationships between synthesis and exudation for those flavonoids. Requirements for concurrent flavonoid biosynthesis were assessed by treating roots of intact alfalfa seedlings with [U-(14)C]-l-phenylalanine in the presence or absence of the phenylalanine ammonia-lyase inhibitor l-2-aminoxy-3-phenylpropionic acid (AOPP). In the absence of AOPP, each of the three flavonoids in exudates contained (14)C. In the presence of AOPP, (14)C labeling and release of all the exuded nod-gene inducers were reduced significantly. AOPP inhibited labeling and release of the strongest nod-gene inducer, methoxychalcone, by more than 90%. Experiments with excised cotyledons, hypocotyls, and roots incubated in solution showed that the flavonoids could be synthesized in and released from each organ. However, the ratio of the three flavonoids in exudates from intact plants was most similar to the ratio recently synthesized and released from excised roots. A portion of recently synthesized flavonoid aglycones was found conjugated, presumably as glycosides, in root extracts and may have been involved in the release process. Data from root extracts showed that formononetin, an isoflavonoid which does not induce nod genes, was present in conjugated and aglycone forms but was not released by normal intact roots. In contrast, roots stressed with CuCl(2) did release the aglycone formononetin. Thus, the release process responsible for exudation of nod-gene inducers appears to be specific rather than a general phenomenon such as a sloughing off of cells during root growth. The synthesis and specific concurrent release of flavonoid nod-gene inducers in this study is consistent with the physiological requirement for nodule formation of the 3-day-old seedlings used.
Collapse
|
research-article |
35 |
23 |
42
|
Paterson AM, Maxwell CA, Foldes A. Seasonal inhibition of puberty in domestic gilts is overcome by melatonin administered orally, but not by implant. JOURNAL OF REPRODUCTION AND FERTILITY 1992; 94:97-105. [PMID: 1552496 DOI: 10.1530/jrf.0.0940097] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ability of exogenous melatonin, applied either orally or by implant, to overcome the seasonal inhibition of puberty in domestic gilts was tested in two experiments. In Expt 1, 24 gilts received two melatonin implants at 126 days of age and again at 161 days and 196 days, while 24 gilts acted as controls. All gilts were slaughtered at a mean age of 223 days. Blood samples were collected by venepuncture from eight gilts in each treatment at 126, 144 and 178 days of age and the plasma was assayed for melatonin concentration by direct radioimmunoassay. In Expt 2A, four gilts (125 days of age) were fed either 0, 1, 2 or 4 mg of melatonin at 14:00 h on each of four consecutive days. Blood samples for melatonin assay were collected via indwelling jugular catheters every 30 or 60 min from 12:00 to 22:00 h. In Expt 2B, 27 gilts were fed 1 mg of melatonin at 15:00 h each day from 129 days of age until slaughter at 221 days, while 25 gilts acted as controls. In both experiments, the presence of morphologically normal corpora lutea at slaughter was the criterion for puberty. In Expt 1, constant-release melatonin implants had no effect on the percentage of gilts which reached puberty. Among the 24 control gilts, two (8.3%) reached puberty compared with one of the 24 (4.2%) gilts with implants. In all the samples from control gilts, and in the samples taken from treated gilts prior to implantation at 126 days of age, mean plasma melatonin concentration was below the sensitivity of the assay (3.6 pg/ml).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
Comparative Study |
33 |
22 |
43
|
Solé X, Hernández P, de Heredia ML, Armengol L, Rodríguez-Santiago B, Gómez L, Maxwell CA, Aguiló F, Condom E, Abril J, Pérez-Jurado L, Estivill X, Nunes V, Capellá G, Gruber SB, Moreno V, Pujana MA. Genetic and genomic analysis modeling of germline c-MYC overexpression and cancer susceptibility. BMC Genomics 2008; 9:12. [PMID: 18190704 PMCID: PMC2244606 DOI: 10.1186/1471-2164-9-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 01/11/2008] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Germline genetic variation is associated with the differential expression of many human genes. The phenotypic effects of this type of variation may be important when considering susceptibility to common genetic diseases. Three regions at 8q24 have recently been identified to independently confer risk of prostate cancer. Variation at 8q24 has also recently been associated with risk of breast and colorectal cancer. However, none of the risk variants map at or relatively close to known genes, with c-MYC mapping a few hundred kilobases distally. RESULTS This study identifies cis-regulators of germline c-MYC expression in immortalized lymphocytes of HapMap individuals. Quantitative analysis of c-MYC expression in normal prostate tissues suggests an association between overexpression and variants in Region 1 of prostate cancer risk. Somatic c-MYC overexpression correlates with prostate cancer progression and more aggressive tumor forms, which was also a pathological variable associated with Region 1. Expression profiling analysis and modeling of transcriptional regulatory networks predicts a functional association between MYC and the prostate tumor suppressor KLF6. Analysis of MYC/Myc-driven cell transformation and tumorigenesis substantiates a model in which MYC overexpression promotes transformation by down-regulating KLF6. In this model, a feedback loop through E-cadherin down-regulation causes further transactivation of c-MYC. CONCLUSION This study proposes that variation at putative 8q24 cis-regulator(s) of transcription can significantly alter germline c-MYC expression levels and, thus, contribute to prostate cancer susceptibility by down-regulating the prostate tumor suppressor KLF6 gene.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
21 |
44
|
Curtis J, Maxwell CA, Msuya FHM, Mkongewa S, Alloueche A, Warhurst DC. Mutations in dhfr in Plasmodium falciparum infections selected by chlorproguanil-dapsone treatment. J Infect Dis 2002; 186:1861-4. [PMID: 12447777 DOI: 10.1086/345765] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2002] [Revised: 08/29/2002] [Indexed: 11/03/2022] Open
Abstract
Treatment with the novel antifolate drug combination chlorproguanil-dapsone effectively cleared asymptomatic Plasmodium falciparum infections in 246 (93.5%) of 263 children in the Usambara Mountains of Tanzania during the course of a 2-week follow-up. Samples from 71 recurrent infections, collected over a 9-week follow-up, showed selection for parasites with the triple mutant Ile(51)-Arg(59)-Asn(108) in dihydrofolate reductase. There was no selection for mutations in dihydropteroate synthetase, the target enzyme of dapsone. Search for complete identity in the highly polymorphic genes coding for merozoite surface proteins 1 and 2 in parasite samples collected before and after treatment indicated that the majority of recurrent parasitemias were new infections. These observations on selection in Tanzania and the lack of selection reported from a less endemic area suggest that the active metabolite of chlorproguanil, which has a short half-life in the blood, may persist in the liver, where it exerts selective pressure on growing preerythrocytic stages.
Collapse
|
Clinical Trial |
23 |
20 |
45
|
Fulcher LJ, He Z, Mei L, Macartney TJ, Wood NT, Prescott AR, Whigham AJ, Varghese J, Gourlay R, Ball G, Clarke R, Campbell DG, Maxwell CA, Sapkota GP. FAM83D directs protein kinase CK1α to the mitotic spindle for proper spindle positioning. EMBO Rep 2019; 20:e47495. [PMID: 31338967 PMCID: PMC6726907 DOI: 10.15252/embr.201847495] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/13/2019] [Accepted: 06/26/2019] [Indexed: 12/26/2022] Open
Abstract
The concerted action of many protein kinases helps orchestrate the error-free progression through mitosis of mammalian cells. The roles and regulation of some prominent mitotic kinases, such as cyclin-dependent kinases, are well established. However, these and other known mitotic kinases alone cannot account for the extent of protein phosphorylation that has been reported during mammalian mitosis. Here we demonstrate that CK1α, of the casein kinase 1 family of protein kinases, localises to the spindle and is required for proper spindle positioning and timely cell division. CK1α is recruited to the spindle by FAM83D, and cells devoid of FAM83D, or those harbouring CK1α-binding-deficient FAM83DF283A/F283A knockin mutations, display pronounced spindle positioning defects, and a prolonged mitosis. Restoring FAM83D at the endogenous locus in FAM83D-/- cells, or artificially delivering CK1α to the spindle in FAM83DF283A/F283A cells, rescues these defects. These findings implicate CK1α as new mitotic kinase that orchestrates the kinetics and orientation of cell division.
Collapse
|
research-article |
6 |
20 |
46
|
Chu TL, Connell M, Zhou L, He Z, Won J, Chen H, Rahavi SM, Mohan P, Nemirovsky O, Fotovati A, Pujana MA, Reid GS, Nielsen TO, Pante N, Maxwell CA. Cell Cycle–Dependent Tumor Engraftment and Migration Are Enabled by Aurora-A. Mol Cancer Res 2017; 16:16-31. [DOI: 10.1158/1541-7786.mcr-17-0417] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/27/2017] [Accepted: 10/04/2017] [Indexed: 11/16/2022]
|
|
8 |
19 |
47
|
Solé X, Bonifaci N, López-Bigas N, Berenguer A, Hernández P, Reina O, Maxwell CA, Aguilar H, Urruticoechea A, de Sanjosé S, Comellas F, Capellá G, Moreno V, Pujana MA. Biological convergence of cancer signatures. PLoS One 2009; 4:e4544. [PMID: 19229342 PMCID: PMC2642727 DOI: 10.1371/journal.pone.0004544] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 01/16/2009] [Indexed: 01/13/2023] Open
Abstract
Gene expression profiling has identified cancer prognostic and predictive signatures with superior performance to conventional histopathological or clinical parameters. Consequently, signatures are being incorporated into clinical practice and will soon influence everyday decisions in oncology. However, the slight overlap in the gene identity between signatures for the same cancer type or condition raises questions about their biological and clinical implications. To clarify these issues, better understanding of the molecular properties and possible interactions underlying apparently dissimilar signatures is needed. Here, we evaluated whether the signatures of 24 independent studies are related at the genome, transcriptome or proteome levels. Significant associations were consistently observed across these molecular layers, which suggest the existence of a common cancer cell phenotype. Convergence on cell proliferation and death supports the pivotal involvement of these processes in prognosis, metastasis and treatment response. In addition, functional and molecular associations were identified with the immune response in different cancer types and conditions that complement the contribution of cell proliferation and death. Examination of additional, independent, cancer datasets corroborated our observations. This study proposes a comprehensive strategy for interpreting cancer signatures that reveals common design principles and systems-level properties.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
19 |
48
|
Jiang J, Casalegno-Garduno R, Chen H, Schmitt A, Schmitt M, Maxwell CA. Multifunctional proteins bridge mitosis with motility and cancer with inflammation and arthritis. ScientificWorldJournal 2010; 10:1244-57. [PMID: 20602082 PMCID: PMC5763930 DOI: 10.1100/tsw.2010.141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
While most secreted proteins contain defined signal peptides that direct their extracellular transport through the ER-Golgi pathway, nonclassical transport of leaderless peptides/proteins was first described 20 years ago and the mechanisms responsible for unconventional export of such proteins have been thoroughly reviewed. In addition to directed nonclassical secretion, a number of leaderless secreted proteins have been classified as damage-associated molecular-pattern (DAMP) molecules, which are nuclear or cytoplasmic proteins that, under necrotic or apoptotic conditions, are released outside the cell and function as proinflammatory signals. A strong association between persistent release of DAMPs, chronic inflammation, and the hypoxic tumor microenvironment has been proposed. Thus, protein localization and function can change fundamentally from intracellular to extracellular compartments, often under conditions of inflammation, cancer, and arthritis. If we are truly to understand, model, and treat such biological states, it will be important to investigate these multifunctional proteins and their contribution to degenerative diseases. Here, we will focus our discussion on intracellular proteins, both cytoplasmic and nuclear, that play critical extracellular roles. In particular, the multifunctional nature of HMMR/RHAMM and survivin will be highlighted and compared, as these molecules are the subject of extensive biological and therapeutic investigations within hematology and oncology fields. For these and other genes/proteins, we will highlight points of structural and functional intersection during cellular division and differentiation, as well as states associated with cancer, such as tumor-initiation and epithelial-to-mesenchymal transition (EMT). Finally, we will discuss the potential targeting of these proteins for improved therapeutic outcomes within these degenerative disorders. Our goal is to highlight a number of commonalities among these multifunctional proteins for better understanding of their putative roles in tumor initiation, inflammation, arthritis, and cancer.
Collapse
|
Review |
15 |
18 |
49
|
Jiang J, Mohan P, Maxwell CA. The cytoskeletal protein RHAMM and ERK1/2 activity maintain the pluripotency of murine embryonic stem cells. PLoS One 2013; 8:e73548. [PMID: 24019927 PMCID: PMC3760809 DOI: 10.1371/journal.pone.0073548] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/19/2013] [Indexed: 11/18/2022] Open
Abstract
Receptor for hyaluronan mediated motility (RHAMM, encoded by HMMR) may be a cell-surface receptor for hyaluronan that regulates embryonic stem cell pluripotency and differentiation, however, a precise mechanism for its action is not known. We examined murine embryonic stem cells with and without hemizygous genomic mutation of Hmmr/RHAMM, but we were not able to find RHAMM on the cell-surface. Rather, RHAMM localized to the microtubule cytoskeleton and along mitotic spindles. Genomic loss of Hmmr/RHAMM did not alter cell cycle progression but augmented differentiation and attenuated pluripotency in murine embryonic stem cells. Through a candidate screen of small-molecule kinase inhibitors, we identified ERK1/2 and aurora kinase A as barrier kinases whose inhibition was sufficient to rescue pluripotency in RHAMM(+/-) murine embryonic stem cells. Thus, RHAMM is not found on the cell-surface of embryonic stem cells, but it is required to maintain pluripotency and its dominant mechanism of action is through the modulation of signal transduction pathways at microtubules.
Collapse
|
research-article |
12 |
18 |
50
|
Chen H, Connell M, Mei L, Reid GSD, Maxwell CA. The nonmotor adaptor HMMR dampens Eg5-mediated forces to preserve the kinetics and integrity of chromosome segregation. Mol Biol Cell 2018; 29:786-796. [PMID: 29386294 PMCID: PMC5905292 DOI: 10.1091/mbc.e17-08-0531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The nonmotor adaptor protein HMMR maintains the kinetics and integrity of chromosome segregation by promoting TPX2-Eg5 complexes that dampen Eg5-mediated forces and support K-fiber stability, kinetochore–microtubule attachments, and inter-kinetochore tension. HMMR is needed to prevent the generation of aneuploid progeny cells. Mitotic spindle assembly and organization require forces generated by motor proteins. The activity of these motors is regulated by nonmotor adaptor proteins. However, there are limited studies reporting the functional importance of adaptors on the balance of motor forces and the promotion of faithful and timely cell division. Here we show that genomic deletion or small interfering RNA silencing of the nonmotor adaptor Hmmr/HMMR disturbs spindle microtubule organization and bipolar chromosome–kinetochore attachments with a consequent elevated occurrence of aneuploidy. Rescue experiments show a conserved motif in HMMR is required to generate interkinetochore tension and promote anaphase entry. This motif bears high homology with the kinesin Kif15 and is known to interact with TPX2, a spindle assembly factor. We find that HMMR is required to dampen kinesin Eg5-mediated forces through localizing TPX2 and promoting the formation of inhibitory TPX2-Eg5 complexes. In HMMR-silenced cells, K-fiber stability is reduced while the frequency of unattached chromosomes and the time needed for chromosome segregation are both increased. These defects can be alleviated in HMMR-silenced cells with chemical inhibition of Eg5 but not through the silencing of Kif15. Together, our findings indicate that HMMR balances Eg5-mediated forces to preserve the kinetics and integrity of chromosome segregation.
Collapse
|
Journal Article |
7 |
17 |