26
|
Pujana MA, Maxwell CA. Abstract 2608: Interplay between BRCA1 and RHAMM regulates epithelial apicobasal polarization and may influence risk of breast cancer. Cancer Res 2012. [DOI: 10.1158/1538-7445.am2012-2608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Differentiated mammary epithelium shows apicobasal polarity, and loss of tissue organization is an early hallmark of breast carcinogenesis. In BRCA1 mutation carriers, accumulation of stem and progenitor cells in normal breast tissue and increased risk of developing tumors of basal-like type suggest that BRCA1 regulates stem/progenitor cell proliferation and differentiation. However, the function of BRCA1 in this process and its link to carcinogenesis remain unknown. Here we depict a molecular mechanism involving BRCA1 and RHAMM that regulates apicobasal polarity and, when perturbed, may increase risk of breast cancer. Starting from complementary genetic analyses across families and populations, we identified common genetic variation at the low-penetrance susceptibility HMMR locus (encoding for RHAMM) that modifies breast cancer risk among BRCA1, but probably not BRCA2, mutation carriers: n = 7,584, weighted hazard ratio (wHR) = 1.09 (95% CI 1.02-1.16), ptrend = 0.017; and n = 3,965, wHR = 1.04 (95% CI 0.94-1.16), ptrend = 0.43; respectively. Subsequently, studies of MCF10A apicobasal polarization revealed a central role for BRCA1 and RHAMM, together with AURKA and TPX2, in essential reorganization of microtubules. Mechanistically, reorganization is facilitated by BRCA1 and impaired by AURKA, which is regulated by negative feedback involving RHAMM and TPX2. Taken together, our data provide fundamental insight into apicobasal polarization through BRCA1 function, which may explain the expanded cell subsets and characteristic tumor type accompanying BRCA1 mutation, while also linking this process to sporadic breast cancer through perturbation of HMMR/RHAMM.
Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 2608. doi:1538-7445.AM2012-2608
Collapse
|
27
|
Maxwell CA, Benítez J, Gómez-Baldó L, Osorio A, Bonifaci N, Fernández-Ramires R, Costes SV, Guinó E, Chen H, Evans GJR, Mohan P, Català I, Petit A, Aguilar H, Villanueva A, Aytes A, Serra-Musach J, Rennert G, Lejbkowicz F, Peterlongo P, Manoukian S, Peissel B, Ripamonti CB, Bonanni B, Viel A, Allavena A, Bernard L, Radice P, Friedman E, Kaufman B, Laitman Y, Dubrovsky M, Milgrom R, Jakubowska A, Cybulski C, Gorski B, Jaworska K, Durda K, Sukiennicki G, Lubiński J, Shugart YY, Domchek SM, Letrero R, Weber BL, Hogervorst FBL, Rookus MA, Collee JM, Devilee P, Ligtenberg MJ, van der Luijt RB, Aalfs CM, Waisfisz Q, Wijnen J, van Roozendaal CEP, Easton DF, Peock S, Cook M, Oliver C, Frost D, Harrington P, Evans DG, Lalloo F, Eeles R, Izatt L, Chu C, Eccles D, Douglas F, Brewer C, Nevanlinna H, Heikkinen T, Couch FJ, Lindor NM, Wang X, Godwin AK, Caligo MA, Lombardi G, Loman N, Karlsson P, Ehrencrona H, von Wachenfeldt A, Bjork Barkardottir R, Hamann U, Rashid MU, Lasa A, Caldés T, Andrés R, Schmitt M, Assmann V, Stevens K, Offit K, Curado J, Tilgner H, Guigó R, Aiza G, Brunet J, Castellsagué J, Martrat G, Urruticoechea A, Blanco I, Tihomirova L, Goldgar DE, Buys S, John EM, Miron A, Southey M, Daly MB, Schmutzler RK, Wappenschmidt B, Meindl A, Arnold N, Deissler H, Varon-Mateeva R, Sutter C, Niederacher D, Imyamitov E, Sinilnikova OM, Stoppa-Lyonne D, Mazoyer S, Verny-Pierre C, Castera L, de Pauw A, Bignon YJ, Uhrhammer N, Peyrat JP, Vennin P, Fert Ferrer S, Collonge-Rame MA, Mortemousque I, Spurdle AB, Beesley J, Chen X, Healey S, Barcellos-Hoff MH, Vidal M, Gruber SB, Lázaro C, Capellá G, McGuffog L, Nathanson KL, Antoniou AC, Chenevix-Trench G, Fleisch MC, Moreno V, Pujana MA. Interplay between BRCA1 and RHAMM regulates epithelial apicobasal polarization and may influence risk of breast cancer. PLoS Biol 2011; 9:e1001199. [PMID: 22110403 PMCID: PMC3217025 DOI: 10.1371/journal.pbio.1001199] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/10/2011] [Indexed: 12/24/2022] Open
Abstract
Differentiated mammary epithelium shows apicobasal polarity, and loss of tissue organization is an early hallmark of breast carcinogenesis. In BRCA1 mutation carriers, accumulation of stem and progenitor cells in normal breast tissue and increased risk of developing tumors of basal-like type suggest that BRCA1 regulates stem/progenitor cell proliferation and differentiation. However, the function of BRCA1 in this process and its link to carcinogenesis remain unknown. Here we depict a molecular mechanism involving BRCA1 and RHAMM that regulates apicobasal polarity and, when perturbed, may increase risk of breast cancer. Starting from complementary genetic analyses across families and populations, we identified common genetic variation at the low-penetrance susceptibility HMMR locus (encoding for RHAMM) that modifies breast cancer risk among BRCA1, but probably not BRCA2, mutation carriers: n = 7,584, weighted hazard ratio ((w)HR) = 1.09 (95% CI 1.02-1.16), p(trend) = 0.017; and n = 3,965, (w)HR = 1.04 (95% CI 0.94-1.16), p(trend) = 0.43; respectively. Subsequently, studies of MCF10A apicobasal polarization revealed a central role for BRCA1 and RHAMM, together with AURKA and TPX2, in essential reorganization of microtubules. Mechanistically, reorganization is facilitated by BRCA1 and impaired by AURKA, which is regulated by negative feedback involving RHAMM and TPX2. Taken together, our data provide fundamental insight into apicobasal polarization through BRCA1 function, which may explain the expanded cell subsets and characteristic tumor type accompanying BRCA1 mutation, while also linking this process to sporadic breast cancer through perturbation of HMMR/RHAMM.
Collapse
|
28
|
Fleisch MC, Sadat F, Brandi L, Pujana MA, Maxwell CA, Niederacher D, Janni W. BRCA-1 Mutationen blockieren die zelluläre Differenzierung über die Dysregulation mikrotubulus-assoziierter Proteine. Geburtshilfe Frauenheilkd 2011. [DOI: 10.1055/s-0031-1286443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
29
|
Jiang J, Casalegno-Garduno R, Chen H, Schmitt A, Schmitt M, Maxwell CA. Multifunctional proteins bridge mitosis with motility and cancer with inflammation and arthritis. ScientificWorldJournal 2010; 10:1244-57. [PMID: 20602082 PMCID: PMC5763930 DOI: 10.1100/tsw.2010.141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
While most secreted proteins contain defined signal peptides that direct their extracellular transport through the ER-Golgi pathway, nonclassical transport of leaderless peptides/proteins was first described 20 years ago and the mechanisms responsible for unconventional export of such proteins have been thoroughly reviewed. In addition to directed nonclassical secretion, a number of leaderless secreted proteins have been classified as damage-associated molecular-pattern (DAMP) molecules, which are nuclear or cytoplasmic proteins that, under necrotic or apoptotic conditions, are released outside the cell and function as proinflammatory signals. A strong association between persistent release of DAMPs, chronic inflammation, and the hypoxic tumor microenvironment has been proposed. Thus, protein localization and function can change fundamentally from intracellular to extracellular compartments, often under conditions of inflammation, cancer, and arthritis. If we are truly to understand, model, and treat such biological states, it will be important to investigate these multifunctional proteins and their contribution to degenerative diseases. Here, we will focus our discussion on intracellular proteins, both cytoplasmic and nuclear, that play critical extracellular roles. In particular, the multifunctional nature of HMMR/RHAMM and survivin will be highlighted and compared, as these molecules are the subject of extensive biological and therapeutic investigations within hematology and oncology fields. For these and other genes/proteins, we will highlight points of structural and functional intersection during cellular division and differentiation, as well as states associated with cancer, such as tumor-initiation and epithelial-to-mesenchymal transition (EMT). Finally, we will discuss the potential targeting of these proteins for improved therapeutic outcomes within these degenerative disorders. Our goal is to highlight a number of commonalities among these multifunctional proteins for better understanding of their putative roles in tumor initiation, inflammation, arthritis, and cancer.
Collapse
|
30
|
Gómez-Baldó L, Schmidt S, Maxwell CA, Bonifaci N, Gabaldón T, Vidalain PO, Senapedis W, Kletke A, Rosing M, Barnekow A, Rottapel R, Capellá G, Vidal M, Astrinidis A, Piekorz RP, Pujana MA. TACC3-TSC2 maintains nuclear envelope structure and controls cell division. Cell Cycle 2010; 9:1143-55. [PMID: 20237422 DOI: 10.4161/cc.9.6.11018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Studies of the role of tuberous sclerosis complex (TSC) proteins (TSC1/TSC2) in pathology have focused mainly on their capacity to regulate translation and cell growth, but their relationship with alterations of cellular structures and the cell cycle is not yet fully understood. The transforming acidic coiled-coil (TACC) domain-containing proteins are central players in structures and processes connected to the centrosome. Here, TACC3 interactome mapping identified TSC2 and 15 other physical interactors, including the evolutionary conserved interactions with ch-TOG/CKAP5 and FAM161B. TACC3 and TSC2 co-localize and co-purify with components of the nuclear envelope, and their deficiency causes morphological alterations of this structure. During cell division, TACC3 is necessary for the proper localization of phospho-Ser939 TSC2 at spindle poles and cytokinetic bridges. Accordingly, abscission alterations and increased frequency of binucleated cells were observed in Tacc3- and Tsc2-deficient cells relative to controls. In regulating cell division, TSC2 acts epistatically to TACC3 and, in addition to canonical TSC/mTOR signaling and cytokinetic associations, converges to the early mitotic checkpoint mediated by CHFR, consistently with nuclear envelope associations. Our findings link TACC3 to novel structural and cell division functions of TSC2, which may provide additional explanations for the clinical and pathological manifestations of lymphangioleiomyomatosis (LAM) disease and TSC syndrome, including the greater clinical severity of TSC2 mutations compared to TSC1 mutations.
Collapse
|
31
|
Solé X, Bonifaci N, López-Bigas N, Berenguer A, Hernández P, Reina O, Maxwell CA, Aguilar H, Urruticoechea A, de Sanjosé S, Comellas F, Capellá G, Moreno V, Pujana MA. Biological convergence of cancer signatures. PLoS One 2009; 4:e4544. [PMID: 19229342 PMCID: PMC2642727 DOI: 10.1371/journal.pone.0004544] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 01/16/2009] [Indexed: 01/13/2023] Open
Abstract
Gene expression profiling has identified cancer prognostic and predictive signatures with superior performance to conventional histopathological or clinical parameters. Consequently, signatures are being incorporated into clinical practice and will soon influence everyday decisions in oncology. However, the slight overlap in the gene identity between signatures for the same cancer type or condition raises questions about their biological and clinical implications. To clarify these issues, better understanding of the molecular properties and possible interactions underlying apparently dissimilar signatures is needed. Here, we evaluated whether the signatures of 24 independent studies are related at the genome, transcriptome or proteome levels. Significant associations were consistently observed across these molecular layers, which suggest the existence of a common cancer cell phenotype. Convergence on cell proliferation and death supports the pivotal involvement of these processes in prognosis, metastasis and treatment response. In addition, functional and molecular associations were identified with the immune response in different cancer types and conditions that complement the contribution of cell proliferation and death. Examination of additional, independent, cancer datasets corroborated our observations. This study proposes a comprehensive strategy for interpreting cancer signatures that reveals common design principles and systems-level properties.
Collapse
|
32
|
Maxwell CA, Fleisch MC, Costes SV, Erickson AC, Boissière A, Gupta R, Ravani SA, Parvin B, Barcellos-Hoff MH. Targeted and nontargeted effects of ionizing radiation that impact genomic instability. Cancer Res 2008; 68:8304-11. [PMID: 18922902 DOI: 10.1158/0008-5472.can-08-1212] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiation-induced genomic instability, in which the progeny of irradiated cells display a high frequency of nonclonal genomic damage, occurs at a frequency inconsistent with mutation. We investigated the mechanism of this nontargeted effect in human mammary epithelial cells (HMEC) exposed to low doses of radiation. We identified a centrosome-associated expression signature in irradiated HMEC and show here that centrosome deregulation occurs in the first cell cycle after irradiation, is dose dependent, and that viable daughters of these cells are genomically unstable as evidenced by spontaneous DNA damage, tetraploidy, and aneuploidy. Clonal analysis of genomic instability showed a threshold of >10 cGy. Treatment with transforming growth factor beta1 (TGFbeta), which is implicated in regulation of genomic stability and is activated by radiation, reduced both the centrosome expression signature and centrosome aberrations in irradiated HMEC. Furthermore, TGFbeta inhibition significantly increased centrosome aberration frequency, tetraploidy, and aneuploidy in nonirradiated HMEC. Rather than preventing radiation-induced or spontaneous centrosome aberrations, TGFbeta selectively deleted unstable cells via p53-dependent apoptosis. Together, these studies show that radiation deregulates centrosome stability, which underlies genomic instability in normal human epithelial cells, and that this can be opposed by radiation-induced TGFbeta signaling.
Collapse
|
33
|
Mosha FW, Lyimo IN, Oxborough RM, Matowo J, Malima R, Feston E, Mndeme R, Tenu F, Kulkarni M, Maxwell CA, Magesa SM, Rowland MW. Comparative efficacies of permethrin-, deltamethrin- and alpha-cypermethrin-treated nets, against Anopheles arabiensis and Culex quinquefasciatus in northern Tanzania. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2008; 102:367-76. [PMID: 18510817 DOI: 10.1179/136485908x278829] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mosquito nets treated with permethrin, deltamethrin or alpha-cypermethrin at 25 mg/m(2) were evaluated in experimental huts in an area of rice irrigation near Moshi, in northern Tanzania. The nets were deliberately holed to resemble worn nets. The nets treated with permethrin offered the highest personal protection against Anopheles arabiensis (61.6% reduction in fed mosquitoes) and Culex quinquefasciatus (25.0%). Deltamethrin and alpha-cypermethrin provided lower personal protection against An. arabiensis (46.4% and 45.6%, respectively) and no such protection against Cx. quinquefasciatus. Permethrin performed poorly in terms of mosquito mortality, however, killing only 15.2% of the An. arabiensis and 9.2% of the Cx. quinquefasciatus exposed to the nets treated with this pyrethroid (after correcting for control mortality). The alpha-cypermethrin and deltamethrin performed marginally better, with respective mortalities of 32.8% and 33.0% for An. arabiensis and 19.4% and 18.9% for Cx quinquefasciatus. The poor killing effect of permethrin was confirmed in a second trial where a commercial, long-lasting insecticidal net based on this pyrethroid (Olyset) produced low mortalities in both An. arabiensis (11.8%) and Cx. quinquefasciatus (3.6%). Anopheles arabiensis survivors collected from the verandahs of the experimental huts and tested on 0.75%-permethrin and 0.05%-deltamethrin papers, in World Health Organization susceptibility kits, showed mortalities of 96% and 100%, respectively. The continued use of permethrin-treated nets is recommended for personal protection against An. arabiensis. In control programmes that aim to interrupt transmission of pathogens by mosquitoes and/or manage pyrethroid resistance in such vectors, a combination of a pyrethroid and another insecticide with greater killing effect should be considered.
Collapse
|
34
|
Fleisch MC, Maxwell CA, Costes SV, Barcellos-Hoff MH. Die genomische Intabilität bestrahlter Brust-Epithelzellen ist centrosomen-vermittelt – Implikationen für das strahlenbedingt erhöhte Mamma-Karzinomrisiko. Geburtshilfe Frauenheilkd 2008. [DOI: 10.1055/s-0028-1088993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
35
|
Evans RP, Naber C, Steffler T, Checkland T, Maxwell CA, Keats JJ, Belch AR, Pilarski LM, Lai R, Reiman T. The selective Aurora B kinase inhibitor AZD1152 is a potential new treatment for multiple myeloma. Br J Haematol 2008; 140:295-302. [DOI: 10.1111/j.1365-2141.2007.06913.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Solé X, Hernández P, de Heredia ML, Armengol L, Rodríguez-Santiago B, Gómez L, Maxwell CA, Aguiló F, Condom E, Abril J, Pérez-Jurado L, Estivill X, Nunes V, Capellá G, Gruber SB, Moreno V, Pujana MA. Genetic and genomic analysis modeling of germline c-MYC overexpression and cancer susceptibility. BMC Genomics 2008; 9:12. [PMID: 18190704 PMCID: PMC2244606 DOI: 10.1186/1471-2164-9-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 01/11/2008] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Germline genetic variation is associated with the differential expression of many human genes. The phenotypic effects of this type of variation may be important when considering susceptibility to common genetic diseases. Three regions at 8q24 have recently been identified to independently confer risk of prostate cancer. Variation at 8q24 has also recently been associated with risk of breast and colorectal cancer. However, none of the risk variants map at or relatively close to known genes, with c-MYC mapping a few hundred kilobases distally. RESULTS This study identifies cis-regulators of germline c-MYC expression in immortalized lymphocytes of HapMap individuals. Quantitative analysis of c-MYC expression in normal prostate tissues suggests an association between overexpression and variants in Region 1 of prostate cancer risk. Somatic c-MYC overexpression correlates with prostate cancer progression and more aggressive tumor forms, which was also a pathological variable associated with Region 1. Expression profiling analysis and modeling of transcriptional regulatory networks predicts a functional association between MYC and the prostate tumor suppressor KLF6. Analysis of MYC/Myc-driven cell transformation and tumorigenesis substantiates a model in which MYC overexpression promotes transformation by down-regulating KLF6. In this model, a feedback loop through E-cadherin down-regulation causes further transactivation of c-MYC. CONCLUSION This study proposes that variation at putative 8q24 cis-regulator(s) of transcription can significantly alter germline c-MYC expression levels and, thus, contribute to prostate cancer susceptibility by down-regulating the prostate tumor suppressor KLF6 gene.
Collapse
|
37
|
Raman S, Maxwell CA, Barcellos-Hoff MH, Parvin B. Geometric approach to segmentation and protein localization in cell culture assays. J Microsc 2007; 225:22-30. [PMID: 17286692 DOI: 10.1111/j.1365-2818.2007.01712.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell-based fluorescence imaging assays are heterogeneous and require the collection of a large number of images for detailed quantitative analysis. Complexities arise as a result of variation in spatial nonuniformity, shape, overlapping compartments and scale (size). A new technique and methodology has been developed and tested for delineating subcellular morphology and partitioning overlapping compartments at multiple scales. This system is packaged as an integrated software platform for quantifying images that are obtained through fluorescence microscopy. Proposed methods are model based, leveraging geometric shape properties of subcellular compartments and corresponding protein localization. From the morphological perspective, convexity constraint is imposed to delineate and partition nuclear compartments. From the protein localization perspective, radial symmetry is imposed to localize punctate protein events at submicron resolution. Convexity constraint is imposed against boundary information, which are extracted through a combination of zero-crossing and gradient operator. If the convexity constraint fails for the boundary then positive curvature maxima are localized along the contour and the entire blob is partitioned into disjointed convex objects representing individual nuclear compartment, by enforcing geometric constraints. Nuclear compartments provide the context for protein localization, which may be diffuse or punctate. Punctate signal are localized through iterative voting and radial symmetries for improved reliability and robustness. The technique has been tested against 196 images that were generated to study centrosome abnormalities. Corresponding computed representations are compared against manual counts for validation.
Collapse
|
38
|
Fleisch MC, Maxwell CA, Kuper CK, Brown ET, Barcellos-Hoff MH, Costes SV. Intensity-based signal separation algorithm for accurate quantification of clustered centrosomes in tissue sections. Microsc Res Tech 2007; 69:964-72. [PMID: 16941664 DOI: 10.1002/jemt.20372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Centrosomes are small organelles that organize the mitotic spindle during cell division and are also involved in cell shape and polarity. Within epithelial tumors, such as breast cancer, and some hematological tumors, centrosome abnormalities (CAs) are common, occur early in disease etiology, and correlate with chromosomal instability and disease stage. In situ quantification of CA by optical microscopy is hampered by overlap and clustering of these organelles, which appear as focal structures. CA has been frequently associated with Tp53 status in premalignant lesions and tumors. Here the authors described an approach to accurately quantify centrosome frequencies in tissue sections and tumors, independently of background or noise levels. Applying simple optical rules in nondeconvolved conventional 3D images of stained tissue sections, the authors showed that they could evaluate more accurately and rapidly centrosome frequencies than with traditional investigator-based visual analysis or threshold-based techniques. The resulting population-based frequency of centrosomes per nucleus could then be used to approximate the proportion of cells with CA in that same population. This was done by taking into account baseline centrosome amplification and proliferation rates measured in the tissue. Using this technique, the authors showed that 20-30% of cells have amplified centrosomes in Tp53 null mammary tumors.
Collapse
|
39
|
Shi Y, Reiman T, Li W, Maxwell CA, Sen S, Pilarski L, Daniels TR, Penichet ML, Feldman R, Lichtenstein A. Targeting aurora kinases as therapy in multiple myeloma. Blood 2007; 109:3915-21. [PMID: 17213289 PMCID: PMC1874561 DOI: 10.1182/blood-2006-07-037671] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aurora kinases facilitate transit from G2 through cytokinesis and, thus, are targets in cancer therapy. Multiple myeloma (MM) is a malignancy characterized by genetic instability, suggesting a disruption of checkpoints that arrest cells at G2M when injury to the mitotic machinery occurs. Since deficient checkpoints would prevent cell cycle arrest and may render cells susceptible to apoptosis in mitosis and since aurora kinases are intermediaries in checkpoint pathways, we tested antimyeloma effects of 2 agents that inhibit aurora kinases. Both inhibited growth of MM lines and primary myeloma samples at nanomolar concentrations while having less of an effect on proliferating lymphocytes and hematopoietic cells. MM cells were not protected by IL-6 or activating mutations of Ras. Antimyeloma effects included induction of tetraploidy followed by apoptosis. Apoptosis correlated with inhibition of aurora activity as shown by reduction of histone 3B phosphorylation. Ectopic expression of aurora A protected MM cells against aurora inhibitors but had no effect on apoptosis induced by bortezomib. As expression of RHAMM in MM contributes to genetic instability, we tested effects of RHAMM. RHAMM overexpression enhanced sensitivity to apoptosis and RHAMM silencing decreased sensitivity. These results suggest potential for aurora kinase inhibitors in MM especially in patients in whom RHAMM is overexpressed.
Collapse
|
40
|
Fleisch MC, Maxwell CA, Kuper C, Costes SV, Barcellos-Hoff MH. TGF-β supervises centrosome amplification and tetraploidy in the mammary gland. Geburtshilfe Frauenheilkd 2006. [DOI: 10.1055/s-2006-952539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
41
|
Curtis CF, Maxwell CA, Magesa SM, Rwegoshora RT, Wilkes TJ. Insecticide-treated bed-nets for malaria mosquito control. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2006; 22:501-6. [PMID: 17067053 DOI: 10.2987/8756-971x(2006)22[501:ibfmmc]2.0.co;2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Pyrethroid-treated bed-nets act against late-night biting mosquitoes, like traps baited by the body odor of the occupant. The personal protective effect of treated nets is considerable, even if they are torn. However, some biting of the occupants does occur, as shown by matching microsatellite alleles in mosquito blood meals to those of net occupants. When whole communities were provided with treated nets, ovarian age grading showed that mosquito survival was reduced, and so was the number of sporozoite-positive mosquitoes in malarious communities. Thus, a high percentage of coverage of all members of malaria-endemic communities is considered to be the most effective way of providing protection for highly malaria-vulnerable children and pregnant women. Teams distributing nets or retreating them free of charge show high productivity, and we consider this the most cost-effective way to proceed. There is evidence for reduced anti-malaria antibody levels in children in communities where treated nets have long been used. However, overall benefits in reduced anemia and mortality are sustained. A high frequency of the kdr resistance gene has not prevented pyrethroid-treated nets from functioning, but it is important to develop alternative fabric treatments in case stronger forms of resistance emerge.
Collapse
|
42
|
Fleisch MC, Maxwell CA, Barcellos-Hoff MH. The pleiotropic roles of transforming growth factor beta in homeostasis and carcinogenesis of endocrine organs. Endocr Relat Cancer 2006; 13:379-400. [PMID: 16728569 DOI: 10.1677/erc.1.01112] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Transforming growth factor beta (TGF-beta) is a ubiquitous cytokine that plays a critical role in numerous pathways regulating cellular and tissue homeostasis. TGF-beta is regulated by hormones and is a primary mediator of hormone response in uterus, prostate and mammary glands. This review will address the role of TGF-beta in regulating hormone-dependent proliferation and morphogenesis. The subversion of TGF-beta regulation during the processes of carcinogenesis, with particular emphasis on its effects on genetic stability and epithelial to mesenchymal transition, will also be examined. An understanding of the multiple and complex mechanisms of TGF-beta regulation of epithelial function, and the ultimate loss of TGF-beta function during carcinogenesis, will be critical in the design of novel therapeutic interventions for endocrine-related cancers.
Collapse
|
43
|
Maxwell CA, Rwegoshora RT, Magesa SM, Curtis CF. Comparison of coverage with insecticide-treated nets in a Tanzanian town and villages where nets and insecticide are either marketed or provided free of charge. Malar J 2006; 5:44. [PMID: 16712738 PMCID: PMC1489938 DOI: 10.1186/1475-2875-5-44] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 05/21/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is much emphasis on social marketing as a means of scaling up coverage with insecticide-treated nets and the question has arisen whether nets provided free-of-charge will be looked after by householders. METHODS Over several years questionnaires and surveys of usage and condition of nets were carried out throughout a town and 15 villages in north-east Tanzania, where nets and insecticide have to be purchased and in 24 other villages where over 15000 nets had been donated and annual re-treatment is provided free-of-charge. RESULTS There was very high population coverage in the town but, in the villages where nets have to be purchased, only 9.3% of people used nets which were intact and/or had been insecticide-treated and could, therefore, provide protection. However, where nets had been provided free, over 90% of the nets were still present and were brought for re-treatment several years later. CONCLUSION In this part of Tanzania, social marketing has performed well in a town but very poorly in villages. However, the study showed that people look after and bring for re-treatment nets which had been provided free-of-charge.
Collapse
|
44
|
Maxwell CA, Myamba J, Magoma J, Rwegoshora RT, Magesa SM, Curtis CF. Tests of Olyset nets by bioassay and in experimental huts. J Vector Borne Dis 2006; 43:1-6. [PMID: 16642779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Olyset nets are a type of long-lasting insecticidal net made of polyethylene fibre with permethrin incorporated into it and with a 4 mm mesh size. BIOASSAYS Olyset netting was wrapped around a wire frame and the mosquitoes were released inside for bioassays. There was significantly faster knockdown and higher percent mortality than bioassays with the netting attached to a WHO cone with a piece of cardboard on the other side of the net to prevent escapes through the large mesh. It is suggested that with the latter method some mosquitoes place their tarsae through the mesh on to the cardboard, thus avoiding insecticide contact. TRIALS IN EXPERIMENTAL HUTS Four mm mesh nets were compared with conventional 1.5 mm mesh nets treated with permethrin. In further trials in huts Olyset nets which were either unwashed or five times washed, with or without subsequent heating, and a Olyset net which had been in domestic use for four years or a new Olyset net were compared with a net treated with bifenthrin. RESULTS & CONCLUSION In all cases Anopheles biting on sleepers under the nets was reduced and Anopheles mortality was increased by the use of the insecticidal nets. No significant impact of washing or heating was detected and an Olyset net was as good as new after four years use, but did not cause as much mosquito mortality as bifenthrin treated nets.
Collapse
|
45
|
Maxwell CA, Pilarski LM. A potential role for centrosomal deregulation within IgH translocation-positive myeloma. Med Hypotheses 2005; 65:915-21. [PMID: 16023302 DOI: 10.1016/j.mehy.2005.05.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 05/16/2005] [Indexed: 01/13/2023]
Abstract
Multiple myeloma is a late stage B-cell malignancy that is characterized by recurrent translocations into the immunoglobulin heavy chain locus as well as multiple and complex chromosomal abnormalities. Multiple myeloma is not characterized by a defining IgH translocation partner locus; rather, the frequency of individual translocations ranges from 5% to 15% of the patient population. The current hypothesis that IgH translocations contribute to chromosomal instability through the augmented expression of cyclin D family members and upstream regulatory gene products has led to the development of clinical therapies targeting these potentially oncogenic gene products. Here, we postulate that IgH translocations affect both cyclin D family members and spindle assembly pathways. In forming the hypothesis, this manuscript provides a mechanistic connectivity between IgH translocations and associated chromosome 13 deletions and highlights a number of additional gene products that, along with already defined target genes, may be deregulated in myeloma and represent potential therapeutic targets.
Collapse
|
46
|
Adamia S, Maxwell CA, Pilarski LM. Hyaluronan and hyaluronan synthases: potential therapeutic targets in cancer. ACTA ACUST UNITED AC 2005; 5:3-14. [PMID: 15720220 DOI: 10.2174/1568006053005056] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Current models of oncogenesis describe cancer as a progression of genetic mutations in a tumor cell mass. However, tumors are more than a clonal expansion of malignant cells. Tumors are heterogeneous, with a complex 3D structure, analogous to organs comprised of different tissues. In a tumor mass, the component cell types interact with each other and with their microenvironment by exchanging information through cell-cell interactions and/or through interactions with the extracellular matrix (ECM). These synergetic interactions facilitate tumor progression. Furthermore, tumor invasion and metastatic development are accomplished through the breakdown of ECM. Disruption of ECM promotes abnormal inter- and/or intra- cellular signaling, leading to dysregulation of cell proliferation, growth and cytoskeleton reorganization. The disruption of the ECM in turn promotes the overproduction of growth factors, which induce elevated epithelial cell proliferation and other abnormalities including carcinogenesis. In this review we will demonstrate that hyaluronan (HA), a core component of ECM, contributes to certain types of cancer development. Additional to extracellular HA, intracellular and nuclear forms of HA have been detected. Intracellular HA is involved in cell signaling, whereas nuclear HA could promote chromatin condensation and thus facilitate mitosis. HA molecules are synthesized by hyaluronan synthases (HASs)-HAS1, HAS2 and HAS3 enzymes. Dysregulation of HAS genes results in abnormal production of HA and promotion of abnormal biological processes such as transformation and metastasis. The function of HASs appears to be cell and tissue specific. HAS1 maintains a low, basal level of HA. HAS2 is involved in embryonic and cardiac cushion morphogenesis and subsequent development through cell migration and invasion. HAS2 stimulates cell proliferation and angiogenesis. HAS3 appears to favor the malignant phenotype in many types of malignancies. However, the exact function of HAS isoenzymes and their role in cell signaling remains to be elucidated. A better understanding of HA and HASs may facilitate the design of novel therapeutic strategies to counter presumptive cancer-promoting effects of microenvironmental components.
Collapse
|
47
|
Maxwell CA, Keats JJ, Belch AR, Pilarski LM, Reiman T. Receptor for hyaluronan-mediated motility correlates with centrosome abnormalities in multiple myeloma and maintains mitotic integrity. Cancer Res 2005; 65:850-60. [PMID: 15705883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Elevated expression of receptor for hyaluronan-mediated motility (RHAMM) within ex vivo diagnostic multiple myeloma plasma cells predicts for aggressive disease and patient survival. Here, we investigate the relationship between RHAMM and centrosomal abnormalities within multiple myeloma patient samples. We report that myeloma patient samples contain pervasive structural and numerical centrosomal abnormalities. Structural, but not numerical, centrosomal abnormalities strongly correlate with elevated RHAMM expression. As others have shown that excess pericentriolar material strongly associates with abnormal mitoses, we modeled centrosomal abnormalities with exogenous RHAMM overexpression. RHAMM overexpression in vitro resulted in centrosomal and mitotic defects. To elucidate a mechanism for RHAMM-mediated spindle defects, we further investigated RHAMM mitotic function. RHAMM mitotic localization mirrors that of targeting protein for Xklp2 (TPX2), and RHAMM interacts with the spindle assembly factors dynein and TPX2. Like TPX2, RHAMM expression is up-regulated during mitosis. Moreover, inhibition of function experiments reveals that RHAMM and TPX2 functions converge to maintain spindle integrity after spindle assembly. We postulate that augmentation of RHAMM expression within human cancers, including myeloma, can directly affect centrosomal structure and spindle integrity and potentially modulate apoptotic and cell cycle progression pathways.
Collapse
|
48
|
Maxwell CA, Keats JJ, Belch AR, Pilarski LM, Reiman T. Receptor for Hyaluronan-Mediated Motility Correlates with Centrosome Abnormalities in Multiple Myeloma and Maintains Mitotic Integrity. Cancer Res 2005. [DOI: 10.1158/0008-5472.850.65.3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Elevated expression of receptor for hyaluronan-mediated motility (RHAMM) within ex vivo diagnostic multiple myeloma plasma cells predicts for aggressive disease and patient survival. Here, we investigate the relationship between RHAMM and centrosomal abnormalities within multiple myeloma patient samples. We report that myeloma patient samples contain pervasive structural and numerical centrosomal abnormalities. Structural, but not numerical, centrosomal abnormalities strongly correlate with elevated RHAMM expression. As others have shown that excess pericentriolar material strongly associates with abnormal mitoses, we modeled centrosomal abnormalities with exogenous RHAMM overexpression. RHAMM overexpression in vitro resulted in centrosomal and mitotic defects. To elucidate a mechanism for RHAMM-mediated spindle defects, we further investigated RHAMM mitotic function. RHAMM mitotic localization mirrors that of targeting protein for Xklp2 (TPX2), and RHAMM interacts with the spindle assembly factors dynein and TPX2. Like TPX2, RHAMM expression is up-regulated during mitosis. Moreover, inhibition of function experiments reveals that RHAMM and TPX2 functions converge to maintain spindle integrity after spindle assembly. We postulate that augmentation of RHAMM expression within human cancers, including myeloma, can directly affect centrosomal structure and spindle integrity and potentially modulate apoptotic and cell cycle progression pathways.
Collapse
|
49
|
Keats JJ, Maxwell CA, Taylor BJ, Hendzel MJ, Chesi M, Bergsagel PL, Larratt LM, Mant MJ, Reiman T, Belch AR, Pilarski LM. Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16;q32)-positive multiple myeloma patients. Blood 2005; 105:4060-9. [PMID: 15677557 PMCID: PMC1895072 DOI: 10.1182/blood-2004-09-3704] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Multiple myeloma (MM) is a B-lineage malignancy characterized by diverse genetic subtypes and clinical outcomes. The recurrent immunoglobulin heavy chain (IgH) switch translocation, t(4;14)(p16;q32), is associated with poor outcome, though the mechanism is unclear. Quantitative reverse-transcription-polymerase chain reaction (RT-PCR) for proposed target genes on a panel of myeloma cell lines and purified plasma cells showed that only transcripts originating from the WHSC1/MMSET/NSD2 gene are uniformly dysregulated in all t(4;14)POS patients. The different transcripts detected, multiple myeloma SET domain containing protein (MMSET I), MMSET II, Exon 4a/MMSET III, and response element II binding protein (RE-IIBP), are produced by alternative splicing and alternative transcription initiation events. Translation of the various transcripts, including those from major breakpoint region 4-2 (MB4-2) and MB4-3 breakpoint variants, was confirmed by transient transfection and immunoblotting. Green fluorescent protein (GFP)-tagged MMSET I and II, corresponding to proteins expressed in MB4-1 patients, localized to the nucleus but not nucleoli, whereas the MB4-2 and MB4-3 proteins concentrate in nucleoli. Cloning and localization of the Exon 4a/MMSET III splice variant, which contains the protein segment lost in the MB4-2 variant, identified a novel protein domain that prevents nucleolar localization. Kinetic studies using photobleaching suggest that the breakpoint variants are functionally distinct from wild-type proteins. In contrast, RE-IIBP is universally dysregulated and also potentially functional in all t(4;14)POS patients irrespective of fibroblast growth factor receptor 3 (FGFR3) expression or breakpoint type.
Collapse
|
50
|
Maxwell CA, Rasmussen E, Zhan F, Keats JJ, Adamia S, Strachan E, Crainie M, Walker R, Belch AR, Pilarski LM, Barlogie B, Shaughnessy J, Reiman T. RHAMM expression and isoform balance predict aggressive disease and poor survival in multiple myeloma. Blood 2004; 104:1151-8. [PMID: 15105292 DOI: 10.1182/blood-2003-11-4079] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple myeloma (MM) plasma cells (PCs) express receptor for hyaluronan-mediated motility (RHAMM), a hyaluronan-binding, cytoskeleton and centrosome protein. The most abundant RHAMM isoforms in MM are full-length RHAMM (RHAMMFL) and the splice variant RHAMM-exon4. We separately examined the significance of RHAMM expression, and isoform balance, in 2 groups of MM patients. In oligonucleotide microarray experiments (n=210, Arkansas), increasing RHAMM mRNA expression in MM PCs is strongly associated with osteolytic bone lesions (P <.001), and event-free (P =.05) and overall (P =.04) survival. Semiquantitative determination of RHAMM isoform expression (Alberta, Canada) used capillary electrophoretic detection and measurement of RHAMM-exon4/RHAMMFL reverse-transcriptase-polymerase chain reaction (RT-PCR) products. RHAMM isoforms are rarely expressed concurrently in single MM PCs; the pattern of isoform expression, at the single-cell level, is approximated in larger numbers of cells by the RHAMM-exon4/RHAMMFL ratio. Absolute RHAMM expression and the RHAMM-exon4/RHAMMFL ratio are only partially correlated in MM PCs; in cell lines, absolute RHAMM expression is elevated in mitosis, while RHAMM ratios remain stable. Temporal examination of MM patients' peripheral blood reveals that the RHAMM-exon4/RHAMMFL ratio increases with disease burden. The RHAMM-exon4/RHAMMFL ratio in diagnostic bone marrow samples (n=101, Alberta) is an independent prognostic factor. Thus, expression and splicing of RHAMM are important molecular determinants of disease severity in MM.
Collapse
|