26
|
Török K, Trentham DR. Mechanism of 2-chloro-(epsilon-amino-Lys75)-[6-[4-(N,N- diethylamino)phenyl]-1,3,5-triazin-4-yl]calmodulin interactions with smooth muscle myosin light chain kinase and derived peptides. Biochemistry 1994; 33:12807-20. [PMID: 7947686 DOI: 10.1021/bi00209a012] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mechanism of the interactions of 2-chloro-(epsilon-amino-Lys75)-[6-[4-(N,N-diethylamino)phenyl]- 1,3,5-triazin-4-yl]calmodulin (TA-calmodulin) with smooth muscle myosin light-chain kinase (MLCK) and two 17-residue peptides, Ac-R-R-K-W-Q-K-T-G-H-A-V-R-A-I-G-R-L-CONH2 (Trp peptide) and Tyr peptide, in which W is replaced by Y, were studied by measurements of equilibrium and transient fluorescence changes in the nanomolar range. Most reactions were carried out in 100 microM CaCl2 at ionic strength 0.15 M, pH 7.0, and 21 degrees C. In each case association of MLCK or peptide to TA-calmodulin could be described by a two-step process, a bimolecular step and an isomerization. In the case of the interaction between TA-calmodulin and Tyr peptide it was shown that the isomerization involved the binary complex of TA-calmodulin and Tyr peptide as opposed to an isomerization of either TA-calmodulin or Tyr peptide in isolation. These distinctions depended in part on development for transient kinetic experiments of a general theory to quantify relative phase amplitudes in two-step mechanisms. The kinetics for all three association reactions were then interpreted in terms of a bimolecular association (rate constants k+1 and k-1) followed by an isomerization of the binary complex (rate constants k+2 and k-2). For the interaction of TA-calmodulin and Tyr peptide, values of the rate constants are k+1, 8.8 x 10(8) M-1 s-1; k-1, 5.7 s-1; k+2, 0.38 s-1; and k-2, 0.65 s-1. The fluorescence intensities (lambda ex 365 nm, lambda ex 365 nm, lambda em > 400 nm) of TA-calmodulin, the initial binary complex of TA-calmodulin and Tyr peptide, and the isomerized binary complex are in the ratio 1:2.8:1.3. Analogous mechanisms were found for TA-calmodulin binding to Trp peptide and to MLCK, but values for the rate constants and relative fluorescence intensities of the binary complexes were generally not so completely defined. Values for the Trp peptide and MLCK, respectively, are k+1, 8.8 x 10(8) M-1 s-1 and 1.1 x 10(8) M-1 s-1; (k+2 + k-2), 0.97 s-1 and 1.3 s-1; and k-1k-2/(k+2 + k-2), 0.0079 s-1 and 0.025-0.056 s-1. Equilibrium dissociation constants (Kd) for interactions of TA-calmodulin and targets determined from these data are Tyr peptide, 4.1 nM; Trp peptide, 0.011 nM; and MLCK, 0.23-0.51 nM.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
27
|
Khan S, Castellano F, Spudich JL, McCray JA, Goody RS, Reid GP, Trentham DR. Excitatory signaling in bacterial probed by caged chemoeffectors. Biophys J 1993; 65:2368-82. [PMID: 8312476 PMCID: PMC1225978 DOI: 10.1016/s0006-3495(93)81317-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Chemotactic excitation responses to caged ligand photorelease of rapidly swimming bacteria that reverse (Vibrio alginolyticus) or tumble (Escherichia coli and Salmonella typhimurium) have been measured by computer. Mutants were used to assess the effects of abnormal motility behavior upon signal processing times and test feasibility of kinetic analyses of the signaling pathway in intact bacteria. N-1-(2-Nitrophenyl)ethoxycarbonyl-L-serine and 2-hydroxyphenyl 1-(2-nitrophenyl) ethyl phosphate were synthesized. These compounds are a 'caged' serine and a 'caged' proton and on flash photolysis release serine and protons and attractant and repellent ligands, respectively, for Tsr, the serine receptor. The product quantum yield for serine was 0.65 (+/- 0.05) and the rate of serine release was proportional to [H+] near-neutrality with a rate constant of 17 s-1 at pH 7.0 and 21 degrees C. The product quantum yield for protons was calculated to be 0.095 on 308-nm irradiation but 0.29 (+/- 0.02) on 300-350-nm irradiation, with proton release occurring at > 10(5) s-1. The pH jumps produced were estimated using pH indicators, the pH-dependent decay of the chromophoric aci-nitro intermediate and bioassays. Receptor deletion mutants did not respond to photorelease of the caged ligands. Population responses occurred without measurable latency. Response times increased with decreased stimulus strength. Physiological or genetic perturbation of motor rotation bias leading to increased tumbling reduced response sensitivity but did not affect response times. Exceptions were found. A CheR-CheB mutant strain had normal motility, but reduced response. A CheZ mutant had tumbly motility, reduced sensitivity, and increased response time to attractant, but a normal repellent response. These observations are consistent with current ideas that motor interactions with a single parameter, namely phosphorylated CheY protein, dictate motor response to both attractant and repellent stimuli. Inverse motility motor mutants with extreme rotation bias exhibited the greatest reduction in response sensitivity but, nevertheless, had normal attractant response times. This implies that control of CheY phosphate concentration rather than motor reactions limits responses to attractants.
Collapse
|
28
|
Corrie JE, DeSantis A, Katayama Y, Khodakhah K, Messenger JB, Ogden DC, Trentham DR. Postsynaptic activation at the squid giant synapse by photolytic release of L-glutamate from a 'caged' L-glutamate. J Physiol 1993; 465:1-8. [PMID: 7901400 PMCID: PMC1175415 DOI: 10.1113/jphysiol.1993.sp019662] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. Pharmacological evidence suggests L-glutamate is a strong candidate as a transmitter at the giant synapse of the squid. Postsynaptic activation at the giant synapse cannot be effected by conventional application of putative neurotransmitters by iontophoresis or perfusion, apparently because the complex structure of the synapse prevents a sufficiently rapid change in concentration at the postsynaptic membrane. Flash photolytic release of L-glutamate from a pharmacologically inert 'caged' L-glutamate pre-equilibrated in the stellate ganglion of Alloteuthis or Loligo was used to determine whether L-glutamate can produce postsynaptic activation when released rapidly in the synaptic clefts. 2. The preparation, reaction mechanism and properties of the caged L-glutamate, N-1-(2-nitrophenyl)ethoxycarbonyl-L-glutamate, are described. The product quantum yield on photolysis was 0.65 (+/- 0.05). On flash photolysis glutamate release followed a single exponential time-course in the pH range 5.5-7.8. The rate constant was proportional to [H+] and was 93 s-1 at pH 5.5 and 16 degrees C in artificial sea water (ionic strength, I = 0.68 M). 3. At pH 7.8 flash photolysis of caged glutamate pre-equilibrated in the synapse caused only a slow depolarization. A second photolytic release of L-glutamate or transsynaptic activation produced no further depolarization, suggesting desensitization and inactivation of postsynaptic mechanisms by the initial pulse of L-glutamate. 4. Synaptic transmission in the giant synapse was normal at pH 5.5. Flash photolysis at pH 5.5 caused rapid production of L-glutamate within the synaptic cleft and a fast postsynaptic depolarization which generated postsynaptic action potentials.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
29
|
Somlyo AV, Horiuti K, Trentham DR, Kitazawa T, Somlyo AP. Kinetics of Ca2+ release and contraction induced by photolysis of caged D-myo-inositol 1,4,5-trisphosphate in smooth muscle. The effects of heparin, procaine, and adenine nucleotides. J Biol Chem 1992; 267:22316-22. [PMID: 1429583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The kinetics of Ca2+ release and contraction induced by photolytic release of inositol 1,4,5-trisphosphate (InsP3) were determined in permeabilized smooth muscle. The rate of Ca2+ release was half-maximal at 1 microM InsP3. The concentration-dependent delay of Ca2+ release at saturating InsP3 concentration was approximately 10 ms and within the uncertainty of the measurements. The relationship between the delay and InsP3 concentration showed no evidence of a high level (n = 4 or higher) of cooperativity but could not distinguish between no cooperativity (n = 1) or a low level (n = 2) of cooperativity. Submaximal [InsP3] caused only partial Ca2+ release from the InsP3-sensitive stores. InsP3-induced Ca2+ release was markedly potentiated by ATP or by adenosine 5'-(beta,gamma-methylene-triphosphate), but neither the rate nor the amplitude of release was significantly affected by procaine (2-5 mM). Heparin increased the delay between photolysis and Ca2+ release, indicating that the off rate of inert ligand(s) bound to InsP3 receptors may contribute to the physiological delay in Ca2+ release. There was a much longer (370 ms +/- 45 S.E.) delay between the rise of Ca2+ and force development, presumably reflecting events preceding and associated with myosin light chain phosphorylation.
Collapse
|
30
|
Alessi DR, Corrie JE, Fajer PG, Ferenczi MA, Thomas DD, Trayer IP, Trentham DR. Synthesis and properties of a conformationally restricted spin-labeled analog of ATP and its interaction with myosin and skeletal muscle. Biochemistry 1992; 31:8043-54. [PMID: 1324724 DOI: 10.1021/bi00149a039] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The synthesis is described of a spin-labeled analog of ATP, 2',3'-O-(1-oxy-2,2,6,6-tetramethyl-4-piperidylidene)adenosine 5'-triphosphate (SL-ATP). The spin-label moiety is attached by two bonds to the ribose ring as a spiroketal and hence has restricted conformational mobility relative to the ribose moiety of ATP. The synthesis proceeds via an acid-catalyzed addition of adenosine 5'-monophosphate to 1-acetoxy-4-methoxy-2,2,6,6-tetramethyl-1,2,5,6-tetrahydropyridine in acetonitrile. The spiroketal product is pyrophosphorylated, and alkaline hydrolysis with concomitant aerial oxidation gives the required product. The spin-labeled moiety probably takes up two rapidly interconverting conformations with respect to the ribose ring on the basis of the 1H NMR spectra of its precursors and related uridine derivatives [Alessi et al. (1991) J. Chem. Soc., Perkin Trans.1,2243-2247]. SL-ATP is a substrate for myosin and actomyosin with similar kinetic parameters to ATP during triphosphatase activity. SL-ATP supports muscle contraction and permits relaxation of permeabilized rabbit skeletal muscle fibers. SL-ADP is a substrate for yeast 3-phosphoglycerate kinase, thus permitting regeneration of SL-ATP from SL-ADP within muscle fibers. Electron paramagnetic resonance (EPR) studies of SL-ADP bound to myosin filaments and to myofibrils show a degree of nanosecond motion independent of that of the protein, which may be due to conformational flexibility of the ribose moiety of ATP bound to myosin's active site. This nanosecond motion is more restricted in myofibrils than in myosin filaments, suggesting that the binding of actin affects the ribose binding site in myosin. EPR studies on SL-ADP bound to rigor cross-bridges in muscle fiber bundles showed the nucleotide to be highly oriented with respect to the fiber axis.
Collapse
|
31
|
Khan S, Amoyaw K, Spudich JL, Reid GP, Trentham DR. Bacterial chemoreceptor signaling probed by flash photorelease of a caged serine. Biophys J 1992; 62:67-8. [PMID: 1600102 PMCID: PMC1260487 DOI: 10.1016/s0006-3495(92)81781-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A caged serine, a photolabile compound that liberates serine upon photolysis, has been synthesized. Smooth-swimming responses of the bacterium Escherichia coli to caged serine photorelease were videotaped. The mean latency was measured from the videorecords using computerized motion analysis. This time was approximately 0.2 s. Caged photorelease of a photolabile but nonchemotactic serine analogue had no effect on the swimming behavior of the bacteria. A tumbly mutant strain lacking tsr, the serine chemoreceptor, did not respond to caged serine photorelease.
Collapse
|
32
|
Somasundaram B, Tregear RT, Trentham DR. GTP gamma S causes contraction of skinned frog skeletal muscle via the DHP-sensitive Ca2+ channels of sealed T-tubules. Pflugers Arch 1991; 418:137-43. [PMID: 1645861 DOI: 10.1007/bf00370462] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have investigated the involvement of G-proteins in excitation-contraction coupling of fast-twitch skeletal muscle, using a fibre preparation designed to retain intact T-tubules and sarcoplasmic reticulum. The nonhydrolysable analogue of guanosine triphosphate, GTP gamma S (50-500 microM) caused a strong, transient isometric contraction in this preparation. Reduction of ethylene-bis(oxonitrilo)tetraacete (EGTA) in the sealed T-tubules from 5 mM to 0.1 mM lowered the threshold to GTP gamma S and removal of sodium reversibly raised it. The dihydropyridine (DHP) calcium channel antagonists nicardipine and nifedipine allowed a first contraction and then blocked subsequent GTP gamma S action. The phenylalkylamine methoxyverapamil (D-600) did likewise, reversibly, at 10 degrees C. The guanosine diphosphate analogue, GDP beta S, and procaine reversibly blocked the action of GTP gamma S; pertussis toxin also blocked it. Photolytic release of 40-100 microM GTP gamma S within 0.1 s from S-caged GTP gamma S caused contraction after a latent period of 0.3-20 s. We conclude that GTP gamma S can activate contraction in frog skeletal muscle via a route requiring both the integrity of the T-tubular DHP-sensitive calcium channel (DHPr) and the presence of sodium in the sealed T-tubules. We propose that in this preparation GTP gamma S activates a G-protein, which in turn activates the DHPr as a calcium channel and releases stored calcium from within the sealed T-tubule. Implications of these results for the excitation-contraction coupling mechanism in skeletal muscle are discussed.
Collapse
|
33
|
Dantzig JA, Hibberd MG, Trentham DR, Goldman YE. Cross-bridge kinetics in the presence of MgADP investigated by photolysis of caged ATP in rabbit psoas muscle fibres. J Physiol 1991; 432:639-80. [PMID: 1886072 PMCID: PMC1181346 DOI: 10.1113/jphysiol.1991.sp018405] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
1. The interaction between MgADP and rigor cross-bridges in glycerol-extracted single fibres from rabbit psoas muscle has been investigated using laser pulse photolysis of caged ATP (P3-1(2-nitrophenyl)ethyladenosine 5'-triphosphate) in the presence of MgADP and following small length changes applied to the rigor fibre. 2. Addition of 465 microM-MgADP to a rigor fibre caused rigor tension to decrease by 15.3 +/- 0.7% (S.E.M., n = 24 trials in thirteen fibres). The half-saturation value for this tension reduction was 18 +/- 4 microM (n = 23, thirteen fibres). 3. Relaxation from rigor by photolysis of caged ATP in the absence of Ca2+ was markedly slowed by inclusion of 20 microM-2 mM-MgADP in the photolysis medium. 4. Four phases of tension relaxation occurred with MgADP in the medium: at, a quick partial relaxation (in pre-stretch fibres); bt, a slowing of relaxation or a rise in tension for 50-100 ms; ct, a sudden acceleration of relaxation; and dt, a final, nearly exponential relaxation. 5. Experiments at varied MgATP and MgADP concentrations suggested that phase at is due to MgATP binding to nucleotide-free cross-bridges. 6. Phase bt was abbreviated by including 1-20 mM-orthophosphate (Pi) in the photolysis medium, or by applying quick stretches before photolysis or during phase bt. These results suggest that phases bt and ct are complex processes involving ADP dissociation, cross-bridge reattachment and co-operative detachment involving filament sliding and the Ca(2+)-regulatory system. 7. Stretching relaxed muscle fibres to 3.2-3.4 microns striation spacing followed by ATP removal and release of the rigor fibre until tension fell below the relaxed level allowed investigation of the strain dependence of relaxation in the regions of negative cross-bridge strain. In the presence of 50 microM-2 mM-MgADP and either 10 mM-Pi or 20 mM-2,3-butanedione monoxime, relaxation following photolysis of caged ATP was 6- to 8-fold faster for negatively strained cross-bridges than for positively strained ones. This marked strain dependence of cross-bridge detachment is predicted from the model of A. F. Huxley (1957). 8. In the presence of Ca2+, activation of contraction following photolysis of caged ATP was slowed by inclusion of 20-500 microM-MgADP in the medium. An initial decrease in tension related to cross-bridge detachment by MgATP was markedly suppressed in the presence of MgADP. 9. Ten millimolar Pi partly suppressed active tension generation in the presence of MgADP.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
34
|
Blatt MR, Thiel G, Trentham DR. Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5-trisphosphate. Nature 1990; 346:766-9. [PMID: 2388696 DOI: 10.1038/346766a0] [Citation(s) in RCA: 159] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RECENT investigations suggest that cytoplasmic D-myo-inositol 1,4,5-trisphosphate (InsP3) functions as a second messenger in plants, as in animals, coupling environmental and other stimuli to intracellular Ca2+ release. Cytoplasmic levels of InsP3 and the turnover of several probable precursors in plants are affected by physiological stimuli--including light, osmotic stress and the phytohormone indoleacetic acid--and InsP3 activates Ca2+ channels and Ca2+ flux across plant vacuolar and microsomal membranes. Complementary data also link changes in cytoplasmic free Ca2+ to several physiological responses, notably in guard cells which regulate gas exchange through the stomatal pores of higher plant leaves. Recent evidence indicates that guard cell K+ channels and, hence, K+ flux for stomatal movements may be controlled by cytoplasmic Ca2+. So far, however, direct evidence of a role for InsP3 in signalling in plants has remained elusive. Here we report that InsP3 released from an inactive, photolabile precursor, the P5-1-(2-nitrophenyl)ethyl ester of InsP3 (caged InsP3) reversibly inactivates K+ channels thought to mediate K+ uptake by guard cells from Vicia faba L. while simultaneously activating an apparently time-independent, inward current to depolarize the membrane potential and promote K+ efflux through a second class of K+ channels. The data are consistent with a transient rise in cytoplasmic free Ca2+ and demonstrate that intact guard cells are competent to use InsP3 in signal cascades controlling ion flux through K+ channels.
Collapse
|
35
|
Meldrum RA, Shall S, Trentham DR, Wharton CW. Kinetics and mechanism of DNA repair. Preparation, purification and some properties of caged dideoxynucleoside triphosphates. Biochem J 1990; 266:885-90. [PMID: 2327972 PMCID: PMC1131221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Caged dideoxyribosylthymine triphosphate, dideoxyadenosine triphosphate and arabinosylcytosine triphosphate were prepared in high yield by reaction with 1-(2-nitrophenyl)diazoethane at pH 4 and room temperature for 24 h. Synthesis of caged alpha-32P-labelled dideoxyadenosine triphosphate (approx. 5000 Ci/mmol) in 85% yield was achieved by a modification of the method used for the synthesis of the unlabelled compounds. ATP was shown to be an excellent buffer in the synthesis of alpha-32P-labelled material, and in caged form to be an effective carrier in h.p.l.c. purification. Preparative h.p.l.c. was used to achieve purification of unlabelled caged compounds to greater than 98% purity and 32P-labelled material to 97% purity. Photolysis of unlabelled and 32P-labelled caged compounds by using XeF-excimer laser irradiation at 351 nm was characterized by using difference spectrophotometry and h.p.l.c. analysis. The stability of caged dideoxyadenosine [a-32P]triphosphate in the presence of cultured mammalian cells was evaluated; the adenosine derivative is essentially stable for 1 h.
Collapse
|
36
|
Ogden DC, Capiod T, Walker JW, Trentham DR. Kinetics of the conductance evoked by noradrenaline, inositol trisphosphate or Ca2+ in guinea-pig isolated hepatocytes. J Physiol 1990; 422:585-602. [PMID: 2161925 PMCID: PMC1190150 DOI: 10.1113/jphysiol.1990.sp018002] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1. Guinea-pig hepatocytes respond to noradrenaline (NA, 5-10 microM) with a large membrane conductance increase to K+ and Cl-. The response has a long initial delay (range 2-30 s). Following the delay, the K+ conductance (studied in Cl(-)-free solutions) rises quickly to a peak in 1-2 s and is maintained in the continued presence of NA, though often with superimposed oscillations of conductance. The roles of intracellular Ca2+ and D-myo-inositol 1,4,5-trisphosphate (InsP3) in this complex response have been investigated by rapid photolytic release of intracellular Ca2+ (from Nitr5-Ca2+ buffers) or InsP3 from 'caged' InsP3. 2. A rapid increase of intracellular [Ca2+] produced an immediate membrane conductance increase which rose approximately exponentially to a new steady level, consistent with a direct activation of Ca2(+)-dependent ion channels. 3. Following a pulse of InsP3, conductance rose after a brief delay (range 70-1500 ms) which was shortest at high [InsP3] or if the initial cytosolic [Ca2+] had been raised above normal levels. The maximum conductance produced by InsP3 was similar in each cell to the peak recorded with NA and could be evoked by InsP3 concentrations of 0.5-1 microM. 4. The rates of rise of conductance increased with InsP3 concentration in the range 0.25-12.5 microM (range 10-90%, rise times 90-1000 ms), indicating that InsP3-evoked Ca2(+)-efflux from stores increases with InsP3 concentration in this range. 5. Photochemically released InsP3 and Ca2+ activate at physiological concentrations the same membrane conductances as NA. The results indicate that the long initial delay in NA action occurs prior to or during generation of InsP3. The mechanism of the delay and the subsequent apparently all-or-none conductance increase during NA action are discussed in terms of the high co-operativity in InsP3 and Ca2+ actions and an additional positive feedback step. 6. Evidence was found of a negative interaction between [Ca2+] and InsP3-evoked Ca2+ release. The time course of the recovery of InsP3-evoked Ca2+ release following a rise of cytosolic [Ca2+] suggests that this interaction may be important in regulating oscillatory responses of [Ca2+] during hormonal stimulation of guinea-pig hepatocytes.
Collapse
|
37
|
McCray JA, Trentham DR. Properties and uses of photoreactive caged compounds. ANNUAL REVIEW OF BIOPHYSICS AND BIOPHYSICAL CHEMISTRY 1989; 18:239-70. [PMID: 2660825 DOI: 10.1146/annurev.bb.18.060189.001323] [Citation(s) in RCA: 327] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
38
|
Walker JW, Feeney J, Trentham DR. Photolabile precursors of inositol phosphates. Preparation and properties of 1-(2-nitrophenyl)ethyl esters of myo-inositol 1,4,5-trisphosphate. Biochemistry 1989; 28:3272-80. [PMID: 2787165 DOI: 10.1021/bi00434a023] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1-(2-Nitrophenyl)ethyl esters of D-myo-inositol 1,4,5-trisphosphate (InsP3) have been synthesized and shown to have suitable properties for use as photolabile precursors of InsP3. Synthesis was accomplished by treatment of InsP3 with 1-(2-nitrophenyl)diazoethane in a CHCl3/water mixture. This resulted in esterification of each of the three phosphate residues in InsP3, the 1-phosphate being more reactive than the 4- or 5-phosphate. Singly esterified P-1, P-4, and P-5 esters, termed P-1, P-4, and P-5 caged InsP3, were isolated from the reaction mixture by anion-exchange HPLC and characterized by 500-MHz 1H NMR spectroscopy. Each of these caged InsP3 esters exists as a pair of diastereoisomers and was identified by examining the effects of pH and nitrophenyl ring current shielding on the chemical shifts of nonexchangeable inositol protons. 1H NMR spectra of InsP3 were analyzed for comparison. On photolysis the compounds released InsP3 with rate constants of 175 (P-1), 225 (P-4), and 280 s-1 (P-5) as determined by monitoring the aci-nitro decay reaction at pH 7.1, 0.2 M ionic strength, 21 degrees C. Quantum yields determined by steady-state near-UV photolysis were 0.65 +/- 0.08 for each compound. P-4 and P-5 caged InsP3 were the most promising biologically inactive InsP3 precursors since at concentrations up to 50 microM they did not release Ca2+ from smooth muscle sarcoplasmic reticulum (SR) and were not metabolized by vascular smooth muscle InsP3 5-phosphatase or bovine brain InsP3 3-kinase.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
39
|
|
40
|
Dantzig JA, Walker JW, Trentham DR, Goldman YE. Relaxation of muscle fibers with adenosine 5'-[gamma-thio]triphosphate (ATP[gamma S]) and by laser photolysis of caged ATP[gamma S]: evidence for Ca2+-dependent affinity of rapidly detaching zero-force cross-bridges. Proc Natl Acad Sci U S A 1988; 85:6716-20. [PMID: 3413119 PMCID: PMC282048 DOI: 10.1073/pnas.85.18.6716] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The relationship between the mechanical and biochemical states of the muscle cross-bridge cycle and the control of contraction were investigated by using the nucleotide analogs adenosine 5'-[gamma-thio]triphosphate (ATP[gamma S]) and caged ATP[gamma S] [the O-1(2-nitrophenyl)ethyl P3-ester of ATP[gamma S]]. ATP[gamma S] interacts with actomyosin in a manner similar to ATP but is hydrolyzed (by a factor of 500) more slowly. Generation of ATP[gamma S] by photolysis of caged ATP[gamma S] within a permeabilized fiber in rigor in the absence of Ca2+ relaxed tension and stiffness as occurs with ATP. The transient rise in tension prior to final relaxation observed with photolysis of caged ATP was absent with caged ATP[gamma S]. This result suggests that following detachment of a cross-bridge, ATP is normally hydrolyzed before force generation. In the presence of Ca2+, photolysis of caged ATP[gamma S] within rigor fibers caused tension to relax fully but significant stiffness remained. Stiffness also developed without concomitant tension when Ca2+ concentration was raised from less than 1 nM to 30 microM in the presence of ATP[gamma S]. The amplitude of the tension response to ramp stretches in the presence of Ca2+ and ATP[gamma S] increased with ramp stretch velocity, suggesting that the cross-bridges have detachment rate constants extending into the 10(3) s-1 range. The results provide evidence that the Ca2+-regulatory system can directly control attachment of cross-bridges into states before the power stroke.
Collapse
|
41
|
Somlyo AP, Walker JW, Goldman YE, Trentham DR, Kobayashi S, Kitazawa T, Somlyo AV. Inositol trisphosphate, calcium and muscle contraction. Philos Trans R Soc Lond B Biol Sci 1988; 320:399-414. [PMID: 2906146 DOI: 10.1098/rstb.1988.0084] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The identity of organelles storing intracellular calcium and the role of Ins(1,4,5)P3 in muscle have been explored with, respectively, electron probe X-ray microanalysis (EPMA) and laser photolysis of 'caged' compounds. The participation of G-protein(s) in the release of intracellular Ca2+ was determined in saponin-permeabilized smooth muscle. The sarcoplasmic reticulum (SR) is identified as the major source of activator Ca2+ in both smooth and striated muscle; similar (EPMA) studies suggest that the endoplasmic reticulum is the major Ca2+ storage site in non-muscle cells. In none of the cell types did mitochondria play a significant, physiological role in the regulation of cytoplasmic Ca2+. The latency of guinea pig portal vein smooth muscle contraction following photolytic release of phenylephrine, an alpha 1-agonist, is 1.5 +/- 0.26 s at 20 degrees C and 0.6 +/- 0.18 s at 30 degrees C; the latency of contraction after photolytic release of Ins(1,4,5)P3 from caged Ins(1,4,5)P3 is 0.5 +/- 0.12 s at 20 degrees C. The long latency of alpha 1-adrenergic Ca2+ release and its temperature dependence are consistent with a process mediated by G-protein-coupled activation of phosphatidylinositol 4,5 bisphosphate (PtdIns(4,5)P2) hydrolysis. GTP gamma S, a non-hydrolysable analogue of GTP, causes Ca2+ release and contraction in permeabilized smooth muscle. Ins(1,4,5)P3 has an additive effect during the late, but not the early, phase of GTP gamma S action, and GTP gamma S can cause Ca2+ release and contraction of permeabilized smooth muscles refractory to Ins(1,4,5)P3. These results suggest that activation of G protein(s) can release Ca2+ by, at least, two G-protein-regulated mechanisms: one mediated by Ins(1,4,5)P3 and the other Ins(1,4,5)P3-independent. The low Ins(1,4,5)P3 5-phosphatase activity and the slow time-course (seconds) of the contractile response to Ins(1,4,5)P3 released with laser flash photolysis from caged Ins(1,4,5)P3 in frog skeletal muscle suggest that Ins(1,4,5)P3 is unlikely to be the physiological messenger of excitation-contraction coupling of striated muscle. In contrast, in smooth muscle the high Ins(1,4,5)P3-5-phosphatase activity and the rate of force development after photolytic release of Ins(1,4,5)P3 are compatible with a physiological role of Ins(1,4,5)P3 as a messenger of pharmacomechanical coupling.
Collapse
|
42
|
Dolphin AC, Wootton JF, Scott RH, Trentham DR. Photoactivation of intracellular guanosine triphosphate analogues reduces the amplitude and slows the kinetics of voltage-activated calcium channel currents in sensory neurones. Pflugers Arch 1988; 411:628-36. [PMID: 2457868 DOI: 10.1007/bf00580858] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The influence of guanine nucleotide analogues on calcium channel currents in cultured rat dorsal root ganglion neurones has been studied using a technique in which the rate of diffusion of the analogues to their site of action is by-passed by photochemical release of the analogues within the neurones. The 1(2-nitrophenyl)ethyl P3-ester derivatives of guanosine 5'-0(3-thio)triphosphate (caged GTP-gamma-S) and 5'-guanylylimidodiphosphate (caged GMP-PNP) were synthesised and found to be completely photolysable by light, yielding free GTP-gamma-S and GMP-PNP. Calcium channel currents were recorded using the whole cell patch technique and either caged GTP-gamma-S or caged GMP-PNP (2 mM) were included in the patch pipette. Stable currents were recorded for 5-10 min, and a single pulse of 300-350 nm irradiation was directed using a liquid light guide onto the recording dish. Calcium channel currents were then recorded every 30-120 s following photochemical release of approximately 20 microM GTP-gamma-S. The peak calcium channel current was reduced by about 70% with a slow time course [t1/2 1.5 +/- 0.2 min (mean +/- SEM); n = 5]. The transient component of the peak current was usually completely abolished, whereas the sustained current measured at the end of the 100 ms depolarising pulse was less affected. Qualitatively similar effects were observed on photolysis of caged GMP-PNP.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
43
|
Somlyo AV, Goldman YE, Fujimori T, Bond M, Trentham DR, Somlyo AP. Cross-bridge kinetics, cooperativity, and negatively strained cross-bridges in vertebrate smooth muscle. A laser-flash photolysis study. J Gen Physiol 1988; 91:165-92. [PMID: 3373178 PMCID: PMC2216129 DOI: 10.1085/jgp.91.2.165] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The effects of laser-flash photolytic release of ATP from caged ATP [P3-1(2-nitrophenyl)ethyladenosine-5'-triphosphate] on stiffness and tension transients were studied in permeabilized guinea pig protal vein smooth muscle. During rigor, induced by removing ATP from the relaxed or contracting muscles, stiffness was greater than in relaxed muscle, and electron microscopy showed cross-bridges attached to actin filaments at an approximately 45 degree angle. In the absence of Ca2+, liberation of ATP (0.1-1 mM) into muscles in rigor caused relaxation, with kinetics indicating cooperative reattachment of some cross-bridges. Inorganic phosphate (Pi; 20 mM) accelerated relaxation. A rapid phase of force development, accompanied by a decline in stiffness and unaffected by 20 mM Pi, was observed upon liberation of ATP in muscles that were released by 0.5-1.0% just before the laser pulse. This force increment observed upon detachment suggests that the cross-bridges can bear a negative tension. The second-order rate constant for detachment of rigor cross-bridges by ATP, in the absence of Ca2+, was estimated to be 0.1-2.5 X 10(5) M-1s-1, which indicates that this reaction is too fast to limit the rate of ATP hydrolysis during physiological contractions. In the presence of Ca2+, force development occurred at a rate (0.4 s-1) similar to that of intact, electrically stimulated tissue. The rate of force development was an order of magnitude faster in muscles that had been thiophosphorylated with ATP gamma S before the photochemical liberation of ATP, which indicates that under physiological conditions, in non-thiophosphorylated muscles, light-chain phosphorylation, rather than intrinsic properties of the actomyosin cross-bridges, limits the rate of force development. The release of micromolar ATP or CTP from caged ATP or caged CTP caused force development of up to 40% of maximal active tension in the absence of Ca2+, consistent with cooperative attachment of cross-bridges. Cooperative reattachment of dephosphorylated cross-bridges may contribute to force maintenance at low energy cost and low cross-bridge cycling rates in smooth muscle.
Collapse
|
44
|
Trentham DR. Book review. J Muscle Res Cell Motil 1987. [DOI: 10.1007/bf01567914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Walker JW, Somlyo AV, Goldman YE, Somlyo AP, Trentham DR. Kinetics of smooth and skeletal muscle activation by laser pulse photolysis of caged inositol 1,4,5-trisphosphate. Nature 1987; 327:249-52. [PMID: 3494954 DOI: 10.1038/327249a0] [Citation(s) in RCA: 237] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inositol 1,4,5-trisphosphate (InsP3) can stimulate skinned smooth and skeletal muscle to contract by initiating Ca2+ release from the sarcoplasmic reticulum. Whether this process is an integral component of the in vivo muscle activation mechanism was tested by releasing InsP3 rapidly within skinned muscle fibers of rabbit main pulmonary artery and frog semitendinosus. InsP3 was liberated on laser pulse photolysis of a photolabile but biologically inactive precursor of InsP3 termed caged InsP3. Caged InsP3 is a mixture of compounds in which InsP3 is esterified with 1(2-nitrophenyl)diazoethane (probably at the P4- or P5-position). Photochemical release of InsP3 induced a full contraction in both muscles at physiological free Mg2+ concentrations, but only in the smooth muscle were the InsP3 concentration (0.5 microM) and the activation rate compatible with the in vivo physiological response. Endogenous InsP3-specific phosphatase activity was present in smooth muscle and had about 35-fold greater activity than that in the skeletal-muscle preparation. Caged InsP3 was not susceptible to phosphatases in either preparation.
Collapse
|
46
|
Webb MR, Hibberd MG, Goldman YE, Trentham DR. Oxygen exchange between Pi in the medium and water during ATP hydrolysis mediated by skinned fibers from rabbit skeletal muscle. Evidence for Pi binding to a force-generating state. J Biol Chem 1986; 261:15557-64. [PMID: 2946675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oxygen exchange between (18O4)Pi in the medium and water accompanies ATP hydrolysis catalyzed by the calcium-regulated MgATPase of vertebrate skeletal muscle. Exchange was observed in chemically skinned fibers from rabbit psoas muscle held isometrically and activated by 30 microM free Ca2+. The rate of exchange was approximately proportional to Pi concentration (up to 10 mM) and was characterized by an apparent second order rate constant greater than or equal to 475 M-1 S-1 (pH 7.1, ionic strength 0.2 M, 22 degrees C). Much less exchange occurred in the absence of Ca2+ or when ATP was replaced by ADP. It has been inferred from mechanical experiments that Pi can bind to a force-generating ADP-bound state of actomyosin with resultant suppression of force (Hibberd, M. G., Dantzig, J. A., Trentham, D. R., and Goldman, Y. E. (1985) Science 228, 1317-1319). The oxygen exchange results support this inference by providing direct evidence that Pi in the medium binds at the ATPase catalytic site in activated isometric fibers. The inter-relationship of these two effects involving Pi on mechanochemical coupling in muscle is discussed.
Collapse
|
47
|
Webb MR, Hibberd MG, Goldman YE, Trentham DR. Oxygen exchange between Pi in the medium and water during ATP hydrolysis mediated by skinned fibers from rabbit skeletal muscle. Evidence for Pi binding to a force-generating state. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)66750-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
48
|
Hibberd MG, Trentham DR. Relationships between chemical and mechanical events during muscular contraction. ANNUAL REVIEW OF BIOPHYSICS AND BIOPHYSICAL CHEMISTRY 1986; 15:119-61. [PMID: 2941026 DOI: 10.1146/annurev.bb.15.060186.001003] [Citation(s) in RCA: 225] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this review we have attempted a synthesis of ideas from cross-bridge theories of muscle contraction with biochemical mechanisms of the actomyosin ATPase. This synthesis of ideas has been based on experimental approaches that permit mechanical and biochemical investigations on the same system. We have formulated an example of how biochemical processes may be influenced by strain in the cross-bridge and have highlighted how much has yet to be learned about the biochemistry (and protein structure) of the working stroke of the cross-bridge. Processes that do not appear to be related to the working stroke such as ATP-induced dissociation of actomyosin or protein-bound ATP hydrolysis appear to be similar kinetically in fibers and isolated actomyosin. But, as might be expected, this is not the case in those processes that involve force production and the performance of mechanical work. There appears to be a sound base from which the mechanochemistry of individual processes within the cross-bridge cycle can be analyzed in detail. There is a need for the development of spectroscopic techniques, particularly those that might detect the rate of Pi and ADP dissociation from cross-bridges into the medium. The combination of pulse photolysis of caged ATP and time-resolved structure analysis by use of synchrotron radiation (53) should lead to better understanding of the structure of cross-bridge states in relation to the chemistry and mechanics of transient intermediates.
Collapse
|
49
|
White DC, Zimmerman RW, Trentham DR. The ATPase kinetics of insect fibrillar flight muscle myosin subfragment-1. J Muscle Res Cell Motil 1986; 7:179-92. [PMID: 2940261 DOI: 10.1007/bf01753419] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Myosin subfragment-1 (S1) has been prepared from the fibrillar flight muscles of the giant water bug Lethocerus by chymotryptic digestion of myofibrillar suspensions in the absence of magnesium ions. The S1 obtained has a single light chain and a heavy chain with molecular weights of about 18 kDa and 90 kDa respectively. The kinetics of the elementary steps of the magnesium-dependent ATPase of insect S1 and rabbit S1 are similar, both with ATP and with ATP analogues as substrates. However, the presence of variable amounts of inactive protein within our preparation means that several rate constants cannot be obtained with as much precision in the case of insect S1. The most striking differences between the rabbit and insect S1 are values for the Vmax and the Km of actin during actin-activation of the MgATPase activity, which are up to an order of magnitude lower and greater in the insect than in the rabbit, respectively. The mechanical properties of strain activation and of capacity to do extended oscillatory work are unique to insect fibrillar flight muscle and distinguish it from vertebrate striated muscle. It is likely that these properties reflect differences in the organization of actin and myosin within the respective filament lattices rather than intrinsic differences in the ATPase mechanisms of the isolated myosin molecules from the two types of muscle.
Collapse
|
50
|
Hibberd MG, Dantzig JA, Trentham DR, Goldman YE. Phosphate release and force generation in skeletal muscle fibers. Science 1985; 228:1317-9. [PMID: 3159090 DOI: 10.1126/science.3159090] [Citation(s) in RCA: 280] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Rapid laser pulse-induced photolysis of an adenosine triphosphate precursor in muscle fibers abruptly initiated cycling of the cross-bridges. The accompanying changes in tension and stiffness were related to elementary mechanochemical events of the energy-transducing mechanism. When inorganic phosphate was present at millimolar concentrations during liberation of adenosine triphosphate in the absence of calcium, relaxation was accelerated. Steady active tension in the presence of calcium was decreased but the approach to final tension was more rapid. These results suggest that, during energy transduction, formation of the dominant force-generating cross-bridge state is coupled to release of inorganic phosphate in a reaction that is readily reversible.
Collapse
|