26
|
Basura GJ, Zhou SY, Walker PD, Goshgarian HG. Distribution of Serotonin 2A and 2C Receptor mRNA Expression in the Cervical Ventral Horn and Phrenic Motoneurons Following Spinal Cord Hemisection. Exp Neurol 2001; 169:255-63. [PMID: 11358440 DOI: 10.1006/exnr.2001.7682] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cervical spinal cord injury leads to a disruption of bulbospinal innervation from medullary respiratory centers to phrenic motoneurons. Animal models utilizing cervical hemisection result in inhibition of ipsilateral phrenic nerve activity, leading to paralysis of the hemidiaphragm. We have previously demonstrated a role for serotonin (5-HT) as one potential modulator of respiratory recovery following cervical hemisection, a mechanism that likely occurs via 5-HT2A and/or 5-HT2C receptors. The present study was designed to specifically examine if 5-HT2A and/or 5-HT2C receptors are colocalized with phrenic motoneurons in both intact and spinal-hemisected rats. Adult female rats (250-350 g; n = 6 per group) received a left cervical (C2) hemisection and were injected with the fluorescent retrograde neuronal tracer Fluorogold into the left hemidiaphragm. Twenty-four hours later, animals were killed and spinal cords processed for in situ hybridization and immunohistochemistry. Using (35)S-labeled cRNA probes, cervical spinal cords were probed for 5-HT2A and 5-HT2C receptor mRNA expression and double-labeled using an antibody to Fluorogold to detect phrenic motoneurons. Expression of both 5-HT2A and 5-HT2C receptor mRNA was detected in motoneurons of the cervical ventral horn. Despite positive expression of both 5-HT2A and 5-HT2C receptor mRNA-hybridization signal over phrenic motoneurons, only 5-HT2A silver grains achieved a signal-to-noise ratio representative of colocalization. 5-HT2A mRNA levels in identified phrenic motoneurons were not significantly altered following cervical hemisection compared to sham-operated controls. Selective colocalization of 5-HT2A receptor mRNA with phrenic motoneurons may have implications for recently observed 5-HT2A receptor-mediated regulation of respiratory activity and/or recovery in both intact and injury-compromised states.
Collapse
MESH Headings
- Animals
- Anterior Horn Cells/metabolism
- Anterior Horn Cells/pathology
- Female
- Gene Expression Regulation
- Immunohistochemistry
- In Situ Hybridization
- Motor Neurons/metabolism
- Motor Neurons/pathology
- Phrenic Nerve/metabolism
- Phrenic Nerve/pathology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT2A
- Receptor, Serotonin, 5-HT2C
- Receptors, Serotonin/analysis
- Receptors, Serotonin/genetics
- Reference Values
- Spinal Cord Injuries/genetics
- Spinal Cord Injuries/metabolism
- Spinal Cord Injuries/pathology
- Transcription, Genetic
Collapse
|
|
24 |
43 |
27
|
Nantwi KD, Goshgarian HG. Theophylline-induced recovery in a hemidiaphragm paralyzed by hemisection in rats: contribution of adenosine receptors. Neuropharmacology 1998; 37:113-21. [PMID: 9680264 DOI: 10.1016/s0028-3908(97)00190-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Previously, we demonstrated that a single intravenous injection of theophylline can induce recovery in a hemidiaphragm paralyzed by cervical (C2) spinal cord hemisection for up to 3 h. The present study contrasts the actions of enprofylline and theophylline on inducing hemidiaphragmatic recovery after cervical spinal cord hemisection. Both drugs are methylxanthines; however, theophylline is an adenosine receptor antagonist while enprofylline is not. To further test the involvement of adenosine receptors, N6 (L-2-phenylisopropyl) adenosine (L-PIA), an analogue of adenosine was used in conjunction with theophylline. Following a left C2 spinal cord hemisection, animals were injected with either enprofylline (2.5-20 mg/kg) or theophylline (15 mg/kg) alone or in combination. Theophylline-injected animals demonstrated robust respiratory-related activity in the previously quiescent left phrenic nerve and hemidiaphragm. No recovery was observed in any of the enprofylline-injected rats. When enprofylline injection was followed later with theophylline, recovery occurred. Prior L-PIA administration blocked theophylline-induced recovery. When given after theophylline, L-PIA attenuated and then blocked the induced activity in both the nerve and hemidiaphragm ipsilateral to spinal cord hemisection. We conclude that adenosine receptor antagonism is implicated in hemidiaphragmatic recovery after hemisection and theophylline may be useful in the treatment of spinal cord injured patients with respiratory deficits.
Collapse
|
Comparative Study |
27 |
43 |
28
|
Alilain WJ, Goshgarian HG. Glutamate receptor plasticity and activity-regulated cytoskeletal associated protein regulation in the phrenic motor nucleus may mediate spontaneous recovery of the hemidiaphragm following chronic cervical spinal cord injury. Exp Neurol 2008; 212:348-57. [PMID: 18534577 DOI: 10.1016/j.expneurol.2008.04.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 04/09/2008] [Indexed: 10/22/2022]
Abstract
High cervical spinal cord hemisection results in paralysis of the ipsilateral hemidiaphragm; however, functional recovery of the paralyzed hemidiaphragm can occur spontaneously. The mechanisms mediating this recovery are unknown. In chronic, experimental contusive spinal cord injury, an upregulation of the NMDA receptor 2A subunit and a downregulation of the AMPA receptor GluR2 subunit have been correlated with improved hind limb motor recovery. Therefore, we hypothesized that NR2A is upregulated, whereas GluR2 is down-regulated following chronic C2 hemisection to initiate synaptic strengthening in respiratory motor pathways. Since NMDA receptor activation can lead to the delivery of AMPA receptor subunits to the post-synaptic membrane, we also hypothesized that there would be an upregulation of the GluR1 AMPA receptor subunit and that activity-regulated cytoskeletal associated protein may mediate the post-synaptic membrane delivery. Female rats were hemisected at C2 and allowed to recover for different time points following hemisection. At these time points, protein levels of NR2A, GluR1, and GluR2 subunits were assessed via Western blot analysis. Western blot analysis revealed that there were increases in NR2A subunit at six and twelve weeks post C2 hemisection. At six, twelve, and sixteen weeks post hemisection, the GluR1 subunit was increased over controls, whereas the GluR2 subunit decreased sixteen weeks post hemisection. Immunocytochemical data qualitatively supported these findings. Results also indicated that activity-regulated cytoskeletal associated protein may be associated with the above changes. These findings suggest a role of NR2A, GluR1, and GluR2 in mediating chronic spontaneous functional recovery of the paralyzed hemidiaphragm following cervical spinal cord hemisection.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
43 |
29
|
Nantwi KD, Goshgarian HG. Actions of specific adenosine receptor A1 and A2 agonists and antagonists in recovery of phrenic motor output following upper cervical spinal cord injury in adult rats. Clin Exp Pharmacol Physiol 2002; 29:915-23. [PMID: 12207572 DOI: 10.1046/j.1440-1681.2002.03750.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Previous studies from our laboratory have established that a latent respiratory motor pathway can be activated to restore function to a hemidiaphragm paralysed by upper cervical (C2) spinal cord hemisection during a reflex known as the 'crossed phrenic phenomenon'. In addition, theophylline, a general adenosine A1 and A2 receptor antagonist, can activate the latent pathway by acting centrally through antagonism at adenosine receptors. 2. The present study was designed to assess the relative contributions of adenosine A1 and A2 receptors in inducing functional recovery in our model of spinal cord injury. Specific adenosine A1 and A2 agonists and antagonists were used in an electrophysiological study. 3. Our results demonstrate that, in hemisected rats, systemic administration of the adenosine A1 receptor-specific antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) restores, in a dose-dependent manner, phrenic nerve respiratory related output that is lost following hemisection. Furthermore, DPCPX augments respiratory activity in non-injured animals. The A2 receptor agonist CGS-21680 mediates its effects by predominantly acting on peripheral rather than central nervous system (CNS) receptors. CGS-21680 modulates respiratory related phrenic nerve activity in non-injured animals by enhancing tonic activity, but does not induce recovery of phrenic nerve activity in hemisected animals in the majority of cases. When CGS-21680 was administered prior to DPCPX in hemisected rats, the magnitude of recovery of respiratory function was significantly greater than that elicited by DPCPX alone. However, when the A2 receptor agonist was administered after DPCPX, the magnitude of recovery was virtually unchanged, whereas activity in the right phrenic nerve was significantly enhanced. The A1 receptor agonist N6-cyclohexyladenosine depressed respiratory activity in non-injured, as well as hemisected, rats. The A2 receptor antagonist 3,7-dimethyl-1-propargylxanthine did not affect respiratory activity. 4. We conclude that while antagonism at central adenosine A1 receptors mediates functional restitution in hemisected animals, activation of A2 receptors located outside of the CNS subserves the A1 receptor-mediated respiratory recovery.
Collapse
|
|
23 |
42 |
30
|
Hadley SD, Walker PD, Goshgarian HG. Effects of the serotonin synthesis inhibitor p-CPA on the expression of the crossed phrenic phenomenon 4 h following C2 spinal cord hemisection. Exp Neurol 1999; 160:479-88. [PMID: 10619565 DOI: 10.1006/exnr.1999.7240] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study assesses the effects of para-chlorophenylalanine (p-CPA), a serotonin-depleting drug, on the recovery of respiratory-related activity in the phrenic nerve induced by asphyxia 4 h following ipsilateral C2 hemisection in young adult rats. HPLC analysis was used to quantify levels of serotonin (5-HT), dopamine (DA), norepinephrine, and the 5-HT metabolite, 5-hydroxyindoleacetic acid, in the C4 segment of the spinal cord, all of which were significantly lower in p-CPA-treated hemisected rats compared to hemisected controls receiving saline. Hemisection alone was found to significantly increase 5-HT levels and significantly decrease DA levels compared to normal controls. Eight of eight saline-injected rats expressed recovery of respiratory-related activity in the ipsilateral phrenic nerve during asphyxia 4 h following hemisection, while only 4/8 rats in the p-CPA-treated group expressed recovery in the ipsilateral nerve. Quantification of integrated phrenic nerve wave-forms indicated that the mean amplitude of respiratory-related activity in the ipsilateral phrenic nerve was significantly lower in p-CPA-treated rats than in saline controls. In addition, saline controls demonstrated significant increases in mean respiratory frequency and mean amplitude of contralateral phrenic nerve activity during asphyxia, compared to normocapnia. However, p-CPA-treated rats did not express significant differences in either mean respiratory frequency or mean amplitude of integrated respiratory wave-forms during asphyxia, compared to normocapnia. The results suggest that p-CPA treatment attenuates the recovery of respiratory-related activity in the phrenic nerve 4 h following ipsilateral C2 hemisection and attenuates asphyxia-induced increases in respiratory frequency and respiratory burst amplitude recorded from the contralateral phrenic nerve.
Collapse
|
|
26 |
39 |
31
|
Minor KH, Akison LK, Goshgarian HG, Seeds NW. Spinal cord injury-induced plasticity in the mouse--the crossed phrenic phenomenon. Exp Neurol 2006; 200:486-95. [PMID: 16631169 DOI: 10.1016/j.expneurol.2006.02.125] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 01/12/2006] [Accepted: 02/03/2006] [Indexed: 10/24/2022]
Abstract
The crossed phrenic phenomenon (CPP) describes respiratory functional plasticity that arises following spinal cord injury. Cervical spinal cord hemisection rostral to the phrenic nucleus paralyzes the ipsilateral hemidiaphragm by interrupting the descending flow of respiratory impulses from the medulla to phrenic motoneurons in the spinal cord. This loss of activity converts some synapses on phrenic motoneurons from a "functionally ineffective" state pre-hemisection to a "functionally latent" state post-hemisection. If the animal is subjected to respiratory stress by transecting the contralateral phrenic nerve, this latent respiratory pathway is activated and function is restored to the paralyzed hemidiaphragm. The mechanisms underlying this plasticity are not well-defined, particularly at the molecular level. Therefore, we explored whether it was possible to demonstrate the CPP in mice, a species amenable to a molecular genetic approach. We show the CPP qualitatively in mice using electromyographic (EMG) recordings from the diaphragm. Interestingly, our data also suggest that in the mouse latent fibers in the ventral funiculus ipsilateral to an anatomically incomplete hemisection may also play a role in the CPP. In particular, we examined the inter-operative delay time between the spinal cord injury and contralateral phrenicotomy required for a response. As the inter-operative delay was reduced, the proportion of mice displaying the CPP decreased from 95% for overnight animals, 86% in 4-8 h, to 77% for 1-2 h mice, and less than 28% for animals receiving a phrenicotomy under 0.5 h post-spinal cord lesion. This is the first study to demonstrate the CPP in mice.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
39 |
32
|
Kajana S, Goshgarian HG. Administration of phosphodiesterase inhibitors and an adenosine A1 receptor antagonist induces phrenic nerve recovery in high cervical spinal cord injured rats. Exp Neurol 2008; 210:671-80. [PMID: 18289533 DOI: 10.1016/j.expneurol.2007.12.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 12/20/2007] [Accepted: 12/21/2007] [Indexed: 02/01/2023]
Abstract
High cervical spinal cord hemisection interrupts the descending respiratory drive from the medulla to the ipsilateral phrenic motoneurons, consequently leading to the paralysis of the ipsilateral hemidiaphragm. Previous studies have shown that chronic oral administration of theophylline, a phosphodiesterase inhibitor and an adenosine receptor antagonist, can restore function to the quiescent phrenic nerve and hemidiaphragm ipsilateral to hemisection. Both of these actions of theophylline result in an increase in 3'-5'-cyclic adenosine monophosphate (cAMP). Furthermore, the chronic theophylline-mediated respiratory recovery persists long after the animals have been weaned from the drug. To date, the precise cellular mechanisms underlying the recovery induced by theophylline are still not known. Since theophylline has two modes of action, in the present study we tested whether chronic administration of pentoxifylline, a non-selective phosphodiesterase inhibitor, rolipram, a phosphodiesterase-4 specific inhibitor, and 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), an adenosine A1 receptor antagonist, would induce recovery similar to that induced by theophylline in male Sprague-Dawley rats following a left C2 spinal cord lesion. Recovery of left phrenic nerve activity was assessed at 5 or 10 days after the last drug administrations to assess the persistent nature of the recovery. Pentoxifylline, rolipram and DPCPX, all capable of modulating 3',5'-cyclic monophosphate (cAMP) levels, brought about long-term respiratory recovery in the phrenic nerve ipsilateral to the left C2 lesion at 5 and 10 days after the last drug administration. Therefore, these results suggest that compounds capable of regulating cAMP levels may be therapeutically useful in promoting functional recovery following spinal cord injury.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
38 |
33
|
Hadley SD, Walker PD, Goshgarian HG. Effects of serotonin inhibition on neuronal and astrocyte plasticity in the phrenic nucleus 4 h following C2 spinal cord hemisection. Exp Neurol 1999; 160:433-45. [PMID: 10619560 DOI: 10.1006/exnr.1999.7238] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
C2 spinal cord hemisection results in synaptic and astroglial changes in the phrenic nucleus which have been associated with the recovery of the ipsilateral hemidiaphragm during expression of the crossed phrenic phenomenon. As part of our ongoing analysis of the neurotransmitters involved, the present study investigated the effects of systemic administration of para-chlorophenylalanine (p-CPA), a serotonin (5-HT) synthesis inhibitor, on plasticity in the rat phrenic nucleus 4 h following C2 hemisection. Hemisected control rats demonstrated typical morphological changes in the ipsilateral phrenic nucleus including: (1) an increased number and length of synaptic active zones and (2) an increased number and length of dendrodendritic membrane appositions. p-CPA treatment 3 days prior to hemisection reduced 5-HT levels and resulted in an attenuation of these changes in the ipsilateral phrenic nucleus 4 h following hemisection compared to hemisected controls. In addition, p-CPA treatment attenuated injury-induced alterations in immunohistochemical staining of glial fibrillary acidic protein (GFAP), although Western blot analysis demonstrated that overall levels of GFAP did not differ significantly between groups. The results suggest that inhibition of 5-HT synthesis by p-CPA attenuates hemisection-induced plasticity in the phrenic nucleus 4 h following an ipsilateral C2 hemisection.
Collapse
|
|
26 |
38 |
34
|
Goshgarian HG. A rapid silver impregnation for central and peripheral nerve fibers in paraffin and frozen sections. Exp Neurol 1977; 57:296-301. [PMID: 408168 DOI: 10.1016/0014-4886(77)90065-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
|
48 |
38 |
35
|
Tai Q, Palazzolo KL, Goshgarian HG. Synaptic plasticity of 5-hydroxytryptamine-immunoreactive terminals in the phrenic nucleus following spinal cord injury: A quantitative electron microscopic analysis. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19971006)386:4<613::aid-cne7>3.0.co;2-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
|
28 |
37 |
36
|
Rafols JA, Goshgarian HG. Spinal tanycytes in the adult rat: a correlative Golgi gold-toning study. Anat Rec (Hoboken) 1985; 211:75-86. [PMID: 3985381 DOI: 10.1002/ar.1092110112] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In Golgi impregnated transverse sections through the cervical spinal cord of the 7-12-week-old adult rat, numerous tanycytes were observed radiating from the ependyma into the gray matter that surrounds the central canal. The tail processes of these tanycytes terminated as foot processes in association with blood vessels. Spinal tanycytes were classified into ependymal (E) and subependymal (S) types on the basis of the shape and position of the soma. The soma of the E tanycyte was shaped as a column and was entirely located within the ependyma. In contrast, the soma of the S tanycyte was flask shaped, with the widest portion of the flask located subependymally and the elongated portion extending through the ependyma ultimately reaching the luminal surface. Selected Golgi impregnated sections were gold toned and deimpregnated for direct correlative analysis at the ultrastructural level. Gold-toned tanycytes contained the fine clusters of gold particles underlying the plasma membrane of the cell body and coarse clusters of gold particles throughout the tail and foot processes. The apical surface of tanycytes was characterized by numerous microvilli and large cytoplasmic protrusions that evaginated from the apical surface into the lumen of the central canal. At the luminal surface, adjacent tanycytes were joined laterally by junctional complexes with punctate tight junctions and zonulae adhaerentes associated with fibrils and microtubules. In contrast, gap junctions, hemidesmosomes, and puncta adhaerentia were found between adjacent tail processes of tanycytes. The foot processes interdigitated with one another and abutted the basal lamina around the perivascular space of blood vessels. The basal lamina was continuous around the lateral walls of foot processes and filled the spaces between membranous infoldings of the lateral walls. These basal membrane labyrinths were continuous with the basal lamina of the blood vessel and may provide an extensive surface relation between the perivascular space and the neighboring extracellular compartment. The findings of the present study support the contention that tanycytes may modify the composition of substances moving between the perivascular and extracellular spaces.
Collapse
|
|
40 |
37 |
37
|
Castro-Moure F, Goshgarian HG. Morphological plasticity induced in the phrenic nucleus following cervical cold block of descending respiratory drive. Exp Neurol 1997; 147:299-310. [PMID: 9344555 DOI: 10.1006/exnr.1997.6615] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Morphological plasticity occurs in the phrenic nucleus within hours following an ipsilateral C2 spinal cord hemisection. The plasticity has been associated with the unmasking of a latent respiratory pathway (the crossed phrenic pathway) which allows recovery of the hemidiaphragm paralyzed by the hemisection during a reflex known as the crossed phrenic phenomenon. This study tests if the plasticity is induced by the generalized effects of spinal cord trauma or the more specific effect of interrupting the main descending respiratory drive to phrenic motoneurons. Electron microscopic quantitative morphometric analysis of the phrenic nucleus neuropil was carried out on four Sprague-Dawley rats (200-250 g) sacrificed 4 h following unilateral reversible cold block of the descending bulbospinal respiratory drive at the second cervical segment of the spinal cord (C2). The data from four sham-operated control animals were compared with those of the experimental group. The following morphological alterations were documented in cold block animals compared to controls: (1) a significant increase in the number of multiple synapses (i.e., terminals with synaptic active zones contacting two or more postsynaptic profiles in the same plane of section), (2) a significant increase in the number of dendrodendritic appositions, and (3) a significant increase in the length of symmetric and asymmetric synaptic active zones. The above changes are similar to the changes induced in the phrenic nucleus following C2 hemisection. We conclude therefore, that injury to the spinal cord is not a requirement for this type of morphological plasticity in the phrenic nucleus, but rather the induced changes are activity-dependent and are likely caused by the interruption of the descending bulbospinal respiratory drive to the phrenic nucleus.
Collapse
|
|
28 |
35 |
38
|
Zimmer MB, Goshgarian HG. Spinal activation of serotonin 1A receptors enhances latent respiratory activity after spinal cord injury. J Spinal Cord Med 2006; 29:147-55. [PMID: 16739558 PMCID: PMC1864797 DOI: 10.1080/10790268.2006.11753868] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 10/25/2005] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND/OBJECTIVE Hemisection of the cervical spinal cord results in paralysis of the ipsilateral hemidiaphragm. Removal of sensory feedback through cervical dorsal rhizotomy activates latent respiratory motor pathways and restores hemidiaphragm function. Because systemic administration of serotonin 1A receptor (5HT1A) agonists reversed the altered breathing patterns after spinal cord injury (SCI), we predicted that 5HT1A receptor activation after SCI (C2) would activate latent crossed motor pathways. Furthermore, because 5HT1 A receptors are heavily localized to dorsal horn neurons, we predicted that spinal administration of 5HT1A agonists should also activate latent motor pathways. METHODS Hemisection of the C2 spinal cord was performed 24 to 48 hours, 1 week, or 16 weeks before experimentation. Bilateral phrenic nerve activity was recorded in anesthetized, vagotomized, paralyzed Sprague-Dawley rats, and 8-OH-DPAT (5HT1A agonist) was applied to the dorsal aspect of the cervical spinal cord (C3-C7) or injected systemically. RESULTS Systemic administration of 8-OH-DPAT led to a significant increase in phrenic frequency and amplitude, whereas direct application to the spinal cord increased phrenic amplitude alone. Both systemic and spinal administration of 8-OH-DPAT consistently activated latent crossed phrenic activity. 8-OH-DPAT induced a greater respiratory response in spinal injured rats compared with controls. CONCLUSION The increase in crossed phrenic output after application of 8-OH-DPAT to the spinal cord suggests that dorsal horn inputs, respiratory and/or nonrespiratory, may inhibit phrenic motor output, especially after SCI. These findings support the idea that the administration of 5HT1A agonists may be a beneficial therapy in enhancing respiratory neural output in patients with SCI.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
35 |
39
|
Nantwi KD, Basura GJ, Goshgarian HG. Effects of long-term theophylline exposure on recovery of respiratory function and expression of adenosine A1 mRNA in cervical spinal cord hemisected adult rats. Exp Neurol 2003; 182:232-9. [PMID: 12821393 DOI: 10.1016/s0014-4886(03)00109-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Our lab has previously shown that when administered acutely, the methylxanthine theophylline can activate a latent respiratory motor pathway to restore function to the hemidiaphragm paralyzed by an ipsilateral C2 spinal cord hemisection. The recovery is mediated by the antagonism of CNS adenosine A1 receptors. The objective of the present study was to assess quantitatively recovery after chronic theophylline administration, the effects of weaning from the drug, and the effects of the drug on adenosine A1 receptor mRNA expression in adult rats subjected to a C2 hemisection. Rats subjected to a left C2 hemisection received theophylline orally for 3, 7, 12, or 30 days and were classified as 3D, 7D, 12D, or 30D respectively. Separate groups of 3D animals were weaned from drug administration for 7, 12, and 30 days before assessment of respiratory recovery. Additional groups of 7D and 12D animals were also weaned from drug administration for 7 and 12 days prior to assessment. Sham-operated controls received theophylline vehicle for similar periods. Quantitative assessment of recovered respiratory activity was conducted under standardized electrophysiologic recording conditions approximately 18 h after each drug application period. Serum theophylline analysis was conducted at the end of electrophysiologic recordings. Adenosine A1 receptor mRNA expression in the phrenic nucleus was assessed with in situ hybridization and immunohistochemistry. Chronic theophylline induced a dose-dependent effect on respiratory recovery over a serum theophylline range of 1.2-1.9 microg/ml. Recovery was characterized as respiratory-related activity in the left phrenic nerve and expressed as a percentage of activity in the homolateral nerve in noninjured animals under similar recording conditions. Recovered activity was 34.13 +/- 2.07, 55.89 +/- 2.96, 74.78 +/- 1.93, and 79.12 +/- 1.75% respectively in the 3D, 7D, 12D, and 30D groups. Theophylline-induced recovered activity persisted for as long as 30 days when drug administration was stopped and serum levels of the drug were virtually undetected. Furthermore, recovered activity in 3D and 7D animals increased significantly as a function of duration of weaning. Adenosine A1 receptor mRNA expression was not significantly changed by theophylline administration. It is concluded that recovery of respiratory function in C2-hemisected rats induced by chronic theophylline is unrelated to adenosine A1 receptor mRNA expression. Recovered activity persists even when drug administration has been stopped. The significance of our results is that in the clinical application of theophylline to improve respiratory impairment, intermittent drug administration may be sufficient to engender and maintain the therapeutic benefits of the drug.
Collapse
|
|
22 |
33 |
40
|
Goshgarian HG, Roubal PJ. Origin and distribution of phrenic primary afferent nerve fibers in the spinal cord of the adult rat. Exp Neurol 1986; 92:624-38. [PMID: 3709737 DOI: 10.1016/0014-4886(86)90304-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Previous studies from this laboratory have localized and morphologically characterized phrenic motor neurons in the rat spinal cord at light and electron microscopic levels. The present investigation used a modification of the TMB method for the retrograde transport of horseradish peroxidase (HRP) to describe at light microscope levels the origin and distribution of phrenic primary afferent axons in the adult rat spinal cord. Dry HRP crystals were applied to the central stump of the transected phrenic nerve in the neck to label spinal ganglion cell bodies and thus determine the levels of origin of afferent axons in the phrenic nerve. Camera lucida drawings were then made from serial sections through the appropriate spinal cord levels to determine the specific distribution of transganglionically labeled phrenic central axonal processes within the spinal cord. HRP-labeled phrenic primary neurons were observed in the C3 to C7 spinal ganglia. The camera lucida studies indicated that the transganglionically labeled central processes of phrenic primary afferent axons distributed into the dorsal horn at the C4 and C5 levels of the spinal cord. Furthermore, central processes distributing to C5 were more numerous than those that distributed to C4. Afferent axons were never seen in the dorsal horn at C3, C6, or C7. As spinal ganglion cells were labeled at C3 above and C6 and C7 below, it follows that central processes of phrenic afferent fibers descend and ascend in the dorsal columns of the spinal cord before distributing into the dorsal horn. Specifically, the labeled primary afferent axons and their collateral branches were found in the fasciculus cuneatus, and in laminae I, II, III, and IV of the dorsomedial aspect of the dorsal horn. The function of these central axonal processes is unknown, but based on a comparison of our morphologic data with previous physiological and anatomical studies, we suggest that phrenic afferent fibers may arise from proprioceptors (muscle spindles and Golgi tendon organs), nociceptors, or rapidly adapting mechanoreceptors (Pacinian corpuscles) within the diaphragm.
Collapse
|
|
39 |
32 |
41
|
Nantwi KD, Goshgarian HG. Alkylxanthine-induced recovery of respiratory function following cervical spinal cord injury in adult rats. Exp Neurol 2001; 168:123-34. [PMID: 11170727 DOI: 10.1006/exnr.2000.7581] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous investigations from our laboratory have demonstrated qualitatively that a latent respiratory pathway can be activated by systemic theophylline administration to restore function to a hemidiaphragm paralyzed by an upper (C2) cervical spinal cord hemisection in adult rats. The present study seeks to extend the previous investigations by contrasting and quantitating the actions of theophylline, 8-phenyltheophylline, enprofylline, and 8(p-Sulfophenyl)theophylline in restoring function 24 h after hemidiaphragm paralysis. The alkylxanthines were selected based on their diverse pharmacologic profiles to elucidate the mechanisms that underlie functional recovery after spinal cord injury. To quantitatively assess the magnitude of recovery, electrophysiological experiments were conducted on pancuronium-paralyzed, hemisected animals under standardized recording conditions. The total absence of respiratory-related activity in the phrenic nerve ipsilateral to the hemisection and paralyzed hemidiaphragm was used as the index of a functionally complete hemisection. Thereafter, drug-induced recovered activity in the phrenic nerve ipsilateral to hemisection was quantified and expressed either as a percentage of contralateral phrenic nerve activity in the same animal prior to drug administration or as a percentage of predrug activity in the homolateral nerve in noninjured animals. With either approach, theophylline (5-15 mg/kg) and 8-phenyltheophylline (5-10 mg/kg) dose-dependently induced respiratory-related recovered activity. Enprofylline, a potent bronchodilator, and 8(p-Sulfophenyl)theophylline, an adenosine receptor antagonist with limited access to the central nervous system, were ineffective. Maximal recovery was attained with theophylline (15 mg/kg) and 8-phenyltheophylline (10 mg/kg). At these doses, theophylline and 8-phenyltheophylline induced recovery that was 70.0 +/- 2.5 and 69.3 +/- 4.1% of predrug contralateral nerve activity respectively. When expressed as a percentage of activity in the homolateral nerve in noninjured animals, the magnitude changed to 32.9 +/- 4.9 and 35.7 +/- 6.9%, respectively. Involvement of adenosine receptors in the alkylxanthine-induced actions was confirmed in experiments with the adenosine analog, N6 (l-2-phenylisopropyl) adenosine (L-PIA). It is concluded that central adenosine receptor-mediated mechanisms are implicated in the recovery of respiratory-related activity after spinal cord injury. Furthermore, our results suggest a potential for a new therapeutic approach in the rehabilitation of spinal cord patients with respiratory deficits.
Collapse
|
|
24 |
31 |
42
|
Zhou SY, Goshgarian HG. Effects of serotonin on crossed phrenic nerve activity in cervical spinal cord hemisected rats. Exp Neurol 1999; 160:446-53. [PMID: 10619561 DOI: 10.1006/exnr.1999.7213] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigates the effect of 5-hydroxytryptophan (5-HTP), a serotonin precursor, on crossed phrenic nerve activity (CPNA) in rats subjected to a left C2 spinal cord hemisection. Electrophysiological experiments were conducted on anesthetized, vagotomized, paralyzed, and artificially ventilated rats to assess phrenic nerve activity. The left phrenic nerve lost rhythmic activity due to the disruption of the bulbospinal respiratory pathways following spinal cord hemisection. Activity was induced in the left phrenic nerve (CPNA) by temporary asphyxia. 5-HTP administration increased CPNA during asphyxia in the left phrenic nerve in a dose-dependent fashion. Specifically, in a group of eight animals, application of 5-HTP at 0.5, 1.0, and 2.0 mg/kg significantly increased CPNA by 102.2+/-18.5%, 200.8+/-58.1%, and 615.0+/-356.9% compared with predrug control values, respectively. 5-HTP-induced increases in CPNA were reversed by methysergide (2-6 mg/kg, i.v.), a serotonin receptor antagonist. The results suggest that serotonin is involved in the modulation of crossed phrenic nerve activity following spinal cord injury.
Collapse
|
|
26 |
30 |
43
|
Alilain WJ, Goshgarian HG. MK-801 upregulates NR2A protein levels and induces functional recovery of the ipsilateral hemidiaphragm following acute C2 hemisection in adult rats. J Spinal Cord Med 2007; 30:346-54. [PMID: 17853656 PMCID: PMC2031932 DOI: 10.1080/10790268.2007.11753950] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND C2 hemisection results in paralysis of the ipsilateral hemidiaphragm. Recent data indicate that an upregulation of the N-methyl-D-aspartate (NMDA) receptor 2A subunit following chronic C2 hemisection is associated with spontaneous hemidiaphragmatic recovery following injury. MK-801, an antagonist of the NMDA receptor, upregulates the NR2A subunit in neonatal rats. HYPOTHESIS We hypothesized that administration of MK-801 to adult, acute C2-hemisected rats would result in an increase of NR2A in the spinal cord. Furthermore, we hypothesized that upregulation of NR2A would be associated with recovery of the ipsilateral hemidiaphragm as in the chronic studies. DESIGN To develop a dose-response curve, adult rats were treated with varying doses of MK-801 and their spinal cords harvested and assessed for NR2A as well as AMPA GluR1 and GluR2 subunit protein levels. In the second part of this study, C2-hemisected animals received MK-801. Following treatment, the animals were assessed for recovery of the hemidiaphragm through electromyographic recordings and their spinal cords assessed for NR2A, GluR1, and GluR2. RESULTS Treatment with MK-801 leads to an increase of the NR2A subunit in the spinal cords of adult noninjured rats. There were no changes in the expression of GluR1 and GluR2 in these animals. Administration of MK-801 to C2-hemisected rats resulted in recovery of the ipsilateral hemidiaphragm, an increase of NR2A, and a decrease of GluR2. CONCLUSION Our findings strengthen the evidence that the NR2A subunit plays a substantial role in mediating recovery of the paralyzed hemidiaphragm following C2 spinal cord hemisection.
Collapse
|
research-article |
18 |
29 |
44
|
Zimmer MB, Nantwi K, Goshgarian HG. Effect of spinal cord injury on the neural regulation of respiratory function. Exp Neurol 2008; 209:399-406. [PMID: 17603041 DOI: 10.1016/j.expneurol.2007.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 05/21/2007] [Accepted: 05/22/2007] [Indexed: 01/05/2023]
Abstract
Injury at any level of the spinal cord can impair respiratory motor function. Indeed, complications associated with respiratory function are the number one cause of mortality in humans following spinal cord injury (SCI) at any level of the cord. This review is aimed at describing the effect of SCI on respiratory function while highlighting the recent advances made by basic science research regarding the neural regulation of respiratory function following injury. Models of SCI that include upper cervical hemisection and contusion injury have been utilized to examine the underlying neural mechanisms of respiratory control following injury. The approaches used to induce motor recovery in the respiratory system are similar to other studies that examine recovery of locomotor function after SCI. These include strategies to initiate regeneration of damaged axons, to reinnervate paralyzed muscles with peripheral nerve grafts, to use spared neural pathways to induce motor function, and finally, to initiate mechanisms of neural plasticity within the spinal cord to increase motoneuron firing. The ultimate goals of this research are to restore motor function to previously paralyzed respiratory muscles and improve ventilation in patients with SCI.
Collapse
|
|
17 |
28 |
45
|
Abstract
Cerebral ischemia studies demonstrating that stimulation of adenosine A1 receptors by either endogenously released adenosine or the administration of selective receptor agonists causes significant reductions in the morbidity and mortality associated with focal or global brain ischemias have triggered interest in the potential of purinergic therapies for the treatment of traumatic injuries to the brain and spinal cord. Preliminary findings indicate that activation of A1 adenosine receptors can ameliorate trauma-induced death of central neurons. Other avenues of approach include the administration of agents which elevate local concentrations of adenosine at injury sites by inhibiting its metabolism to inosine by adenosine deaminase, rephosphorylation to adenosine triphosphate by adenosine kinase; or re-uptake into adjacent cells. Amplification of the levels of endogenously released adenosine in such a 'site and event specific' fashion has the advantage of largely restricting the effect of such inhibitors to areas of injury-induced adenosine release. Another approach involving purinergic therapy has been applied to the problem of respiratory paralysis following high spinal cord injuries. In this instance, the adenosine antagonist theophylline has been used to enhance residual synaptic drive to spinal respiratory neurons by blocking adenosine A1 receptors. Theophylline induced, and maintained, hemidiaphragmatic recovery for prolonged periods after C2 spinal cord hemisection in rats and may prove to be beneficial in assisting respiration in spinal cord injury patients.
Collapse
|
Review |
24 |
27 |
46
|
Zimmer MB, Goshgarian HG. Spinal cord injury in neonates alters respiratory motor output via supraspinal mechanisms. Exp Neurol 2007; 206:137-45. [PMID: 17559837 DOI: 10.1016/j.expneurol.2007.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/27/2007] [Accepted: 05/02/2007] [Indexed: 02/03/2023]
Abstract
Upper cervical spinal cord injury (SCI) alters respiratory output and results in a blunted respiratory response to pH/CO2. Many SCI studies have concentrated on respiratory changes in neural function caudal to injury; however few have examined whether neural plasticity occurs rostral to SCI. Golder et al. (2001a) showed that supraspinal changes occur to alter respiratory output after SCI. Furthermore, Brown et al. (2004) showed that neural receptors change rostral to a thoracic SCI. We hypothesized that SCI in neonates will alter supraspinal output, show a blunted response to pH and alter receptor protein levels in the medulla. On postnatal day 0/1, a C2 SCI surgery was performed. Two days later, neonates were anesthetized and brainstem-spinal cords removed. Respiratory-related activity was recorded using the in vitro brainstem-spinal cord preparation and the superfusate pH was changed (pH 7.2, 7.4 and 7.8). The respiratory-like frequency was significantly reduced in SCI rats indicating supraspinal plasticity. Increasing the pH decreased respiratory-like frequency and peak amplitude in injured and sham controls. Increasing the pH increased burst duration and area in sham controls, whereas in injured rats, the burst duration and area decreased. Western blot analysis demonstrated significant changes in glutamate receptor subunits (NR1, NR2B and GluR2), adenosine receptors (A1, A2A), glutamic acid decarboxylase (65) and neurokinin-1 receptors in medullary tissue ipsilateral and contralateral to injury. These data show that supraspinal plasticity in the respiratory system occurs after SCI in neonate rats. The mechanisms remain unknown, but may involve alterations in receptor proteins involved in neurotransmission.
Collapse
|
|
18 |
26 |
47
|
Liou WW, Goshgarian HG. Quantitative assessment of the effect of chronic phrenicotomy on the induction of the crossed phrenic phenomenon. Exp Neurol 1994; 127:145-53. [PMID: 8200432 DOI: 10.1006/exnr.1994.1088] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The present study was carried out to determine if chronic peripheral phrenicotomy has a functional influence on the plasticity that is normally demonstrated by phrenic motoneurons in the spinal cord following spinal cord injury. Young adult female Sprague-Dawley rats were divided into an experimental and a control group. Left intrathoracic phrenicotomies were carried out at 1, 2, 3, and 4 weeks prior to induction of the crossed phrenic phenomenon and crossed phrenic nerve activity recording in the experimental group. Control animals were not subjected to chronic phrenicotomy. In each animal the crossed phrenic phenomenon was induced by left C2 spinal cord hemisection and turning off the ventilator. The reflex-induced activity in the phrenic nerve ipsilateral to hemisection is defined as "crossed phrenic nerve activity." All animals were subjected to spinal cord hemisection 24 h before crossed phrenic nerve activity recording. The results showed that there is a transient but statistically significant depression of crossed phrenic nerve activity at 2 weeks postphrenicotomy and a recovery to the normal activity level at 4 weeks postphrenicotomy. One control experiment was carried out to assess the effects of phrenicotomy on respiratory activity that is normally present in the phrenic nerve (i.e., not reflex-induced). This "primary respiratory nerve activity" is different from crossed phrenic nerve activity in that the phrenic motoneurons are driven by different bulbospinal respiratory pathways. The results indicated a marked decrease in primary respiratory nerve activity at 1 week after phrenicotomy with no significant recovery by the 4th week after phrenicotomy.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
Comparative Study |
31 |
26 |
48
|
DeVries KL, Goshgarian HG. Spinal cord localization and characterization of the neurons which give rise to the accessory phrenic nerve in the adult rat. Exp Neurol 1989; 104:88-90. [PMID: 2924875 DOI: 10.1016/0014-4886(89)90013-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study describes the spinal cord location and morphology of the neurons which give rise to the accessory phrenic nerve in the rat. The results indicate that the cell bodies of the accessory phrenic nerve are a caudal extension of the phrenic nucleus. These cell bodies are located from cervical spinal cord levels C5 to upper C6 and comprise approximately 11% of the total phrenic motoneuron pool. The substantial phrenic contribution indicates the importance of the accessory phrenic nerve in both experimental and clinical manipulations of diaphragm innervation.
Collapse
|
|
36 |
25 |
49
|
Bascom AT, Sankari A, Goshgarian HG, Badr MS. Sleep onset hypoventilation in chronic spinal cord injury. Physiol Rep 2015; 3:3/8/e12490. [PMID: 26290534 PMCID: PMC4562576 DOI: 10.14814/phy2.12490] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A high prevalence of sleep-disordered breathing (SDB) after spinal cord injury (SCI) has been reported in the literature; however, the underlying mechanisms are not well understood. We sought to determine the effect of the withdrawal of the wakefulness drive to breathe on the degree of hypoventilation in SCI patients and able-bodied controls. We studied 18 subjects with chronic cervical and thoracic SCI (10 cervical, 8 thoracic SCI; 11 males; age 42.4 ± 17.1 years; body mass index 26.3 ± 4.8 kg/m2) and 17 matched able-bodied subjects. Subjects underwent polysomnography, which included quantitative measurement of ventilation, timing, and upper airway resistance (RUA) on a breath-by-breath basis during transitions from wake to stage N1 sleep. Compared to able-bodied controls, SCI subjects had a significantly greater reduction in tidal volume during the transition from wake to N1 sleep (from 0.51 ± 0.21 to 0.32 ± 0.10 L vs. 0.47 ± 0.13 to 0.43 ± 0.12 L; respectively, P < 0.05). Moreover, end-tidal CO2 and end-tidal O2 were significantly altered from wake to sleep in SCI (38.9 ± 2.7 mmHg vs. 40.6 ± 3.4 mmHg; 94.1 ± 7.1 mmHg vs. 91.2 ± 8.3 mmHg; respectively, P < 0.05), but not in able-bodied controls (39.5 ± 3.2 mmHg vs. 39.9 ± 3.2 mmHg; 99.4 ± 5.4 mmHg vs. 98.9 ± 6.1 mmHg; respectively, P = ns). RUA was not significantly altered in either group. In conclusion, individuals with SCI experience hypoventilation at sleep onset, which cannot be explained by upper airway mechanics. Sleep onset hypoventilation may contribute to the development SDB in the SCI population.
Collapse
|
Journal Article |
10 |
24 |
50
|
Cass SP, Goshgarian HG. Vestibular compensation after labyrinthectomy and vestibular neurectomy in cats. Otolaryngol Head Neck Surg 1991; 104:14-9. [PMID: 1900617 DOI: 10.1177/019459989110400104] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Labyrinthectomy and vestibular neurectomy are two ablative procedures used for definitive control of disabling vertigo. It is not known if vestibular compensation after labyrinthectomy and vestibular neurectomy differs. We have addressed this question by examining the pattern of recovery of the vestibular ocular reflex in cats after either labyrinthectomy or vestibular neurectomy. Temporal bone histologic examination confirmed the surgical lesion. Our results demonstrate a reduction of the long time constant of the vestibular ocular reflex in both groups of animals. Although gain of the vestibular ocular reflex recovered substantially, it never returned to control levels in either group. In general, animals that had undergone vestibular neurectomy demonstrated greater vestibular ocular reflex asymmetries than did labyrinthectomized animals. The recovery pattern of the vestibular ocular reflex indicates vestibular compensation is more rapid after labyrinthectomy than after vestibular neurectomy. We believe this result is related to survival of the vestibular nerve after labyrinthectomy, but not after vestibular neurectomy, suggesting that the vestibular nerve can contribute to the adaptive response after labyrinthectomy.
Collapse
|
|
34 |
23 |