26
|
Nantwi KD, Goshgarian HG. Adenosinergic mechanisms underlying recovery of diaphragm motor function following upper cervical spinal cord injury: potential therapeutic implications. Neurol Res 2005; 27:195-205. [PMID: 15829183 DOI: 10.1179/016164105x21977] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES In adult rats, a latent respiratory motor pathway can be pharmacologically activated with 1,3-dimethylxanthine (theophylline) to restore respiratory-related activity to a hemidiaphragm paralysed by an ipsilateral upper cervical (C2) spinal cord hemisection. The purpose of this review is to describe mechanisms that underlie theophylline-induced recovery of respiratory-related function following C2 hemisection and to underscore the therapeutic potential of theophylline therapy in spinal cord injured patients with respiratory deficits. METHODS Theophylline mediates recovery of respiratory-related activity via antagonism of central adenosine A(1) receptors. When administered chronically, the drug restores and maintains recovered function. Since theophylline is an adenosine receptor antagonist with affinity for both the adenosine A(1) and A(2) receptors, we assessed the relative contributions of each receptor to functional recovery. While A(1) receptor antagonism plays a predominant role, activation of the A(2) receptors by specific agonists subserves the A(1) receptor-mediated actions. That is, when an adenosine A(2) receptor agonist is administered first, it primes the system such that subsequent administration of the A(1) antagonist induces a greater degree of recovered respiratory activity than when the antagonist alone is administered. RESULTS Chronic oral administration of theophylline in C2 hemisected animals demonstrates that even when animals have been weaned from the drug, theophylline-induced recovered respiratory actions persist. This suggests that in clinical application, it may not be necessary to maintain patients on long-term theophylline. We have shown that recovery of respiratory-related activity in the ipsilateral phrenic nerve can occur spontaneously 3-4 months after C2 hemisection. Theophylline administration after this post-injury period obliterates/negates the recovery function. This indicates strongly that there is therapeutic window (more acutely after injury) for the initiation of theophylline therapy. We have also demonstrated that peripheral (carotid bodies) adenosine A(1) receptors can be selectively activated to modulate theophylline-induced CNS actions. Blocking central adenosine receptors while simultaneously activating peripheral adenosine receptors minimizes the potential of respiratory muscle fatigue with theophylline. DISCUSSION The significance of the current findings lies in the potential clinical application of theophylline therapy in spinal cord injured patients with respiratory deficits. The ultimate goal of theophylline therapy is to wean ventilator-dependent patients off ventilatory support. Thus far, our animal studies suggest that the onset of theophylline therapy must be soon after injury.
Collapse
|
27
|
Bascom AT, Lattin CD, Aboussouan LS, Goshgarian HG. Effect of acute aminophylline administration on diaphragm function in high cervical tetraplegia: a case report. Chest 2005; 127:658-61. [PMID: 15706011 DOI: 10.1378/chest.127.2.658] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Theophylline has been shown to have beneficial effects on phrenic nerve and diaphragm activation. This case report involves a C5-C6 chronic tetraplegic patient with acute respiratory failure and ventilator dependence. IV aminophylline was administered in increasing doses (2 mg/kg, 4 mg/kg, and 6 mg/kg) over the course of 1 day. Diaphragm surface electromyography (sEMG), measures of respiration (tidal volume, minute ventilation, and frequency), and serum theophylline levels were captured. Diaphragm sEMG activity increased by a maximum of 50% at therapeutic levels. The rapid shallow breathing index dropped from 112 to 86. The subject was successfully weaned from ventilatory support. We conclude that administration of aminophylline facilitated weaning from ventilatory support in this tetraplegic patient.
Collapse
|
28
|
Bae H, Nantwi KD, Goshgarian HG. Recovery of respiratory function following C2 hemi and carotid body denervation in adult rats: influence of peripheral adenosine receptors. Exp Neurol 2005; 191:94-103. [PMID: 15589516 DOI: 10.1016/j.expneurol.2004.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 09/02/2004] [Accepted: 09/20/2004] [Indexed: 11/26/2022]
Abstract
The efficacy of the methylxanthine, theophylline, as a respiratory stimulant has been demonstrated previously in an animal model of spinal cord injury. In this model, an upper cervical (C2) spinal cord hemi paralyzes the ipsilateral hemidiaphragm. Theophylline restores respiratory-related activity in the paralyzed hemidiaphragm via activation of a latent respiratory motor pathway. Antagonism of central adenosine A1 receptors mediates this action. Theophylline also enhances respiratory frequency, f, defined as breaths per minute. Thus, long-term use may result in respiratory muscle or motoneuron fatigue particularly after spinal cord injury. We assessed the effects of an adenosine A1 receptor agonist, N6-p-sulfophenyladenosine (p-SPA) on theophylline's action in our model under standardized recording conditions. Four groups of rats, classified as hemisected/nonhemisected with the carotid bodies denervated (H-CBD or NH-CBD), and hemisected/nonhemisected with the carotid bodies intact (H-CBI or NH-CBI ) were used in the study. Eight days after recovery from carotid denervation, a left C2 hemi was performed in H-CBD rats. C2 hemi was also performed in H-CBI animals, and 24 h later, electrophysiologic experiments on respiratory activity were conducted in both groups of animals. Two groups using nonhemisected controls were also employed as described above. In H-CBD rats, theophylline significantly (P < 0.05) enhanced f and induced respiratory-related activity in the previously quiescent left phrenic nerve. In NH-CBD rats, theophylline significantly enhanced f. In both H-CBD and NH-CBD rats, p-SPA (0.25 mg/kg) did not significantly change theophylline-induced effects. In H-CBI rats, theophylline significantly (P < 0.05) enhanced f and induced activity in the previously quiescent left phrenic nerve. In H-CBI rats, p-SPA reduced the values to pre-theophylline discharge levels. Recovered activity was not obliterated with the agonist. In NH-CBI rats, p-SPA reduced theophylline-induced effects to pre-drug discharge levels. Adenosine A1 and A2A receptor immunoreactivity was detected in the carotid bodies. The significance of our findings is that theophylline-induced effects can be normalized to pre-drug levels by the selective activation of peripheral adenosine A1 receptors. The therapeutic benefits of theophylline, i.e., recovered respiratory function after paralysis, however, persists. The potential therapeutic impact is that respiratory muscle fatigue associated with long-term theophylline use may be minimized by a novel therapeutic approach.
Collapse
|
29
|
Nantwi KD, Basura GJ, Goshgarian HG. Adenosine A1 receptor mRNA expression and the effects of systemic theophylline administration on respiratory function 4 months after C2 hemisection. J Spinal Cord Med 2004; 26:364-71. [PMID: 14992338 DOI: 10.1080/10790268.2003.11753707] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Previous studies from our laboratory have demonstrated that in an animal model of acute cervical spinal cord injury (SCI), respiratory function can be restored by theophylline. We also have shown that respiratory recovery occurs spontaneously after prolonged postinjury survival periods when a hemidiaphragm is paralyzed by an ipsilateral upper cervical (C2) spinal cord hemisection. Theophylline mediates functional recovery by central nervous system adenosine A1 receptor antagonism; however, it is unclear whether adenosine receptors are altered after prolonged postinjury periods and whether theophylline can further enhance restored respiratory function that occurs spontaneously. OBJECTIVE To assess putative effects of systemic theophylline administration on further enhancing spontaneous respiratory muscle recovery 4 months after C2 hemisection in rats and to determine whether adenosine A1 receptor mRNA expression is altered in these animals. METHODS Electrophysiologic assessment of respiratory activity in the phrenic nerves was conducted in C2 hemisected rats 4 months after hemisection under standardized conditions. Immediately thereafter, rats were killed and the cervical spinal cords were prepared for adenosine A1 receptor mRNA expression by in situ hybridization. RESULTS Spontaneous recovery of respiratory activity in the ipsilateral phrenic nerve was detected in a majority (15/20) of C2 hemisected animals and amounted to 44.06% +/- 2.38% when expressed as a percentage of activity in the homolateral phrenic nerve in noninjured animals. At the optimal dosage used in the acute studies, theophylline (15 mg/kg) did not enhance, but rather unexpectedly blocked, recovered respiratory activity in 4 out of 5 animals tested. At dosages of 5 mg/kg and 2.5 mg/kg, the drug blocked recovered respiratory activity in 3 out of 4 and 3 out of 5 animals tested, respectively. Quantitative analysis of adenosine A1 receptor mRNA expression did not reveal a significant difference between experimental animals and sham-operated animals. CONCLUSION The blockade or attenuation of spontaneously recovered respiratory activity following theophylline administration cannot be attributed to changes in adenosine A1 receptors because there were no significant differences in adenosine A1 mRNA expression with sham-operated animals. Lack of alteration in A1 mRNA expression 4 months after cervical SCI suggests that A1 receptor plasticity is not activated by chronic injury. Obliteration of spontaneous recovery with theophylline most likely involves a separate unknown mechanism. These findings suggest that there may be a limited therapeutic window for the clinical application of theophylline in SCI patients with respiratory deficits. Theophylline may be more effective clinically in the acute phase of injury rather than in the chronic phase.
Collapse
|
30
|
Nantwi KD, Basura GJ, Goshgarian HG. Effects of long-term theophylline exposure on recovery of respiratory function and expression of adenosine A1 mRNA in cervical spinal cord hemisected adult rats. Exp Neurol 2003; 182:232-9. [PMID: 12821393 DOI: 10.1016/s0014-4886(03)00109-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Our lab has previously shown that when administered acutely, the methylxanthine theophylline can activate a latent respiratory motor pathway to restore function to the hemidiaphragm paralyzed by an ipsilateral C2 spinal cord hemisection. The recovery is mediated by the antagonism of CNS adenosine A1 receptors. The objective of the present study was to assess quantitatively recovery after chronic theophylline administration, the effects of weaning from the drug, and the effects of the drug on adenosine A1 receptor mRNA expression in adult rats subjected to a C2 hemisection. Rats subjected to a left C2 hemisection received theophylline orally for 3, 7, 12, or 30 days and were classified as 3D, 7D, 12D, or 30D respectively. Separate groups of 3D animals were weaned from drug administration for 7, 12, and 30 days before assessment of respiratory recovery. Additional groups of 7D and 12D animals were also weaned from drug administration for 7 and 12 days prior to assessment. Sham-operated controls received theophylline vehicle for similar periods. Quantitative assessment of recovered respiratory activity was conducted under standardized electrophysiologic recording conditions approximately 18 h after each drug application period. Serum theophylline analysis was conducted at the end of electrophysiologic recordings. Adenosine A1 receptor mRNA expression in the phrenic nucleus was assessed with in situ hybridization and immunohistochemistry. Chronic theophylline induced a dose-dependent effect on respiratory recovery over a serum theophylline range of 1.2-1.9 microg/ml. Recovery was characterized as respiratory-related activity in the left phrenic nerve and expressed as a percentage of activity in the homolateral nerve in noninjured animals under similar recording conditions. Recovered activity was 34.13 +/- 2.07, 55.89 +/- 2.96, 74.78 +/- 1.93, and 79.12 +/- 1.75% respectively in the 3D, 7D, 12D, and 30D groups. Theophylline-induced recovered activity persisted for as long as 30 days when drug administration was stopped and serum levels of the drug were virtually undetected. Furthermore, recovered activity in 3D and 7D animals increased significantly as a function of duration of weaning. Adenosine A1 receptor mRNA expression was not significantly changed by theophylline administration. It is concluded that recovery of respiratory function in C2-hemisected rats induced by chronic theophylline is unrelated to adenosine A1 receptor mRNA expression. Recovered activity persists even when drug administration has been stopped. The significance of our results is that in the clinical application of theophylline to improve respiratory impairment, intermittent drug administration may be sufficient to engender and maintain the therapeutic benefits of the drug.
Collapse
|
31
|
Goshgarian HG. The crossed phrenic phenomenon: a model for plasticity in the respiratory pathways following spinal cord injury. J Appl Physiol (1985) 2003; 94:795-810. [PMID: 12531916 DOI: 10.1152/japplphysiol.00847.2002] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hemisection of the cervical spinal cord rostral to the level of the phrenic nucleus interrupts descending bulbospinal respiratory pathways, which results in a paralysis of the ipsilateral hemidiaphragm. In several mammalian species, functional recovery of the paretic hemidiaphragm can be achieved by transecting the contralateral phrenic nerve. The recovery of the paralyzed hemidiaphragm has been termed the "crossed phrenic phenomenon." The physiological basis for the crossed phrenic phenomenon is as follows: asphyxia induced by spinal hemisection and contralateral phrenicotomy increases central respiratory drive, which activates a latent crossed respiratory pathway. The uninjured, initially latent pathway mediates the hemidiaphragm recovery by descending into the spinal cord contralateral to the hemisection and then crossing the midline of the spinal cord before terminating on phrenic motoneurons ipsilateral and caudal to the hemisection. The purpose of this study is to review work conducted on the crossed phrenic phenomenon and to review closely related studies focusing particularly on the plasticity associated with the response. Because the review deals with recovery of respiratory muscles paralyzed by spinal cord injury, the clinical relevance of the reviewed studies is highlighted.
Collapse
|
32
|
Basura GJ, Nantwi KD, Goshgarian HG. Theophylline-induced respiratory recovery following cervical spinal cord hemisection is augmented by serotonin 2 receptor stimulation. Brain Res 2002; 956:1-13. [PMID: 12426040 DOI: 10.1016/s0006-8993(02)03097-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cervical spinal cord hemisection leads to a disruption of bulbospinal innervation of phrenic motoneurons resulting in paralysis of the ipsilateral hemidiaphragm. We have previously demonstrated separate therapeutic roles for theophylline, and more recently serotonin (5-HT) as modulators to phrenic nerve motor recovery; mechanisms that likely occur via adenosine A1 and 5-HT2 receptors, respectively. The present study was designed to specifically determine if concurrent stimulation of 5-HT2 receptors may enhance motor recovery induced by theophylline alone. Adult female rats (250-350 g; n=7 per group) received a left cervical (C2) hemisection that resulted in paralysis of the ipsilateral hemidiaphragm. Twenty-four hours later rats were given systemic theophylline (15 mg/kg, i.v.), resulting in burst recovery in the ipsilateral phrenic nerve. Theophylline-induced recovery was enhanced with the 5-HT2A/2C receptor agonist, (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI; 1.0 mg/kg). DOI-evoked augmentation of theophylline-induced recovery was attenuated following subsequent injection of the 5-HT2 receptor antagonist, ketanserin (2.0 mg/kg). In a separate group, rats were pretreated with ketanserin, which did not prevent subsequent theophylline-induced respiratory recovery. However, pretreatment with ketanserin did prevent DOI-induced augmentation of the theophylline-evoked phrenic nerve burst recovery. Lastly, using immunocytochemistry and in situ hybridization, we showed for the first time a positive co-localization of adenosine A1 receptor mRNA and immunoreactivity with phrenic motoneurons of the cervical ventral horns. Taken together, the results of the present study suggest that theophylline may induce motor recovery likely at adenosine A1 receptors located at the level of the spinal cord, and the concurrent stimulation of converging 5-HT2 receptors may augment the response.
Collapse
|
33
|
Nantwi KD, Goshgarian HG. Actions of specific adenosine receptor A1 and A2 agonists and antagonists in recovery of phrenic motor output following upper cervical spinal cord injury in adult rats. Clin Exp Pharmacol Physiol 2002; 29:915-23. [PMID: 12207572 DOI: 10.1046/j.1440-1681.2002.03750.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Previous studies from our laboratory have established that a latent respiratory motor pathway can be activated to restore function to a hemidiaphragm paralysed by upper cervical (C2) spinal cord hemisection during a reflex known as the 'crossed phrenic phenomenon'. In addition, theophylline, a general adenosine A1 and A2 receptor antagonist, can activate the latent pathway by acting centrally through antagonism at adenosine receptors. 2. The present study was designed to assess the relative contributions of adenosine A1 and A2 receptors in inducing functional recovery in our model of spinal cord injury. Specific adenosine A1 and A2 agonists and antagonists were used in an electrophysiological study. 3. Our results demonstrate that, in hemisected rats, systemic administration of the adenosine A1 receptor-specific antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) restores, in a dose-dependent manner, phrenic nerve respiratory related output that is lost following hemisection. Furthermore, DPCPX augments respiratory activity in non-injured animals. The A2 receptor agonist CGS-21680 mediates its effects by predominantly acting on peripheral rather than central nervous system (CNS) receptors. CGS-21680 modulates respiratory related phrenic nerve activity in non-injured animals by enhancing tonic activity, but does not induce recovery of phrenic nerve activity in hemisected animals in the majority of cases. When CGS-21680 was administered prior to DPCPX in hemisected rats, the magnitude of recovery of respiratory function was significantly greater than that elicited by DPCPX alone. However, when the A2 receptor agonist was administered after DPCPX, the magnitude of recovery was virtually unchanged, whereas activity in the right phrenic nerve was significantly enhanced. The A1 receptor agonist N6-cyclohexyladenosine depressed respiratory activity in non-injured, as well as hemisected, rats. The A2 receptor antagonist 3,7-dimethyl-1-propargylxanthine did not affect respiratory activity. 4. We conclude that while antagonism at central adenosine A1 receptors mediates functional restitution in hemisected animals, activation of A2 receptors located outside of the CNS subserves the A1 receptor-mediated respiratory recovery.
Collapse
|
34
|
Zhou SY, Basura GJ, Goshgarian HG. Serotonin(2) receptors mediate respiratory recovery after cervical spinal cord hemisection in adult rats. J Appl Physiol (1985) 2001; 91:2665-73. [PMID: 11717232 DOI: 10.1152/jappl.2001.91.6.2665] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to specifically investigate the involvement of serotonin [5-hydroxytryptamine (5-HT(2))] receptors in 5-HT-mediated respiratory recovery after cervical hemisection. Experiments were conducted on C(2) spinal cord-hemisected, anesthetized (chloral hydrate, 400 mg/kg ip), vagotomized, pancuronium- paralyzed, and artificially ventilated female Sprague-Dawley rats in which CO(2) levels were monitored and maintained. Twenty-four hours after spinal hemisection, the ipsilateral phrenic nerve displayed no respiratory-related activity indicative of a functionally complete hemisection. Intravenous administration of the 5-HT(2A/2C)-receptor agonist (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI) induced respiratory-related activity in the phrenic nerve ipsilateral to hemisection under conditions in which CO(2) was maintained at constant levels and augmented the activity induced under conditions of hypercapnia. The effects of DOI were found to be dose dependent, and the recovery of activity could be maintained for up to 2 h after a single injection. DOI-induced recovery was attenuated by the 5-HT(2)-receptor antagonist ketanserin but not with the 5-HT(2C)-receptor antagonist RS-102221, suggesting that 5-HT(2A) and not necessarily 5-HT(2C) receptors may be involved in the induction of respiratory recovery after cervical spinal cord injury.
Collapse
|
35
|
Zhou SY, Castro-Moure F, Goshgarian HG. Activation of a latent respiratory motor pathway by stimulation of neurons in the medullary chemoreceptor area of the rat. Exp Neurol 2001; 171:176-84. [PMID: 11520132 DOI: 10.1006/exnr.2001.7740] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have demonstrated that during respiratory stress (hypercapnia and hypoxia), a latent crossed respiratory pathway can be activated to produce hemidiaphragm recovery following an ipsilateral C2 spinal cord hemisection. The present study investigates the effects of ventral medullary chemoreceptor area stimulation by microinjection of (1S,3R)-aminocyclopentanedicarboxylic acid (ACPD), a glutamate metabotropic receptor agonist, on activating the latent pathway following left C2 spinal cord hemisection in rats in which end-tidal CO2 was maintained at a constant level. Experiments were conducted on anesthetized, vagotomized, paralyzed, and artificially ventilated rats in which phrenic nerve activity was recorded bilaterally. Before drug injection, the phrenic nerve contralateral to hemisection showed vigorous respiratory-related activity, but the phrenic nerve ipsilateral to hemisection showed no discernible respiratory-related activity. ACPD (1-100 nl, 1 mM) was injected directly into the region of the retrotrapezoid nucleus (RTN), a known medullary chemoreceptor area. Microinjection of ACPD into the right RTN increased respiratory-related activity in the right phrenic nerve (contralateral to hemisection). ACPD (>5 nl, 1 mM) microinjection also significantly induced respiratory recovery in the phrenic nerve ipsilateral to hemisection in a dose-dependent manner. The present study indicates that respiratory recovery can be achieved by stimulation of respiratory circuitry without increasing CO2 levels.
Collapse
|
36
|
Basura GJ, Zhou SY, Walker PD, Goshgarian HG. Distribution of Serotonin 2A and 2C Receptor mRNA Expression in the Cervical Ventral Horn and Phrenic Motoneurons Following Spinal Cord Hemisection. Exp Neurol 2001; 169:255-63. [PMID: 11358440 DOI: 10.1006/exnr.2001.7682] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cervical spinal cord injury leads to a disruption of bulbospinal innervation from medullary respiratory centers to phrenic motoneurons. Animal models utilizing cervical hemisection result in inhibition of ipsilateral phrenic nerve activity, leading to paralysis of the hemidiaphragm. We have previously demonstrated a role for serotonin (5-HT) as one potential modulator of respiratory recovery following cervical hemisection, a mechanism that likely occurs via 5-HT2A and/or 5-HT2C receptors. The present study was designed to specifically examine if 5-HT2A and/or 5-HT2C receptors are colocalized with phrenic motoneurons in both intact and spinal-hemisected rats. Adult female rats (250-350 g; n = 6 per group) received a left cervical (C2) hemisection and were injected with the fluorescent retrograde neuronal tracer Fluorogold into the left hemidiaphragm. Twenty-four hours later, animals were killed and spinal cords processed for in situ hybridization and immunohistochemistry. Using (35)S-labeled cRNA probes, cervical spinal cords were probed for 5-HT2A and 5-HT2C receptor mRNA expression and double-labeled using an antibody to Fluorogold to detect phrenic motoneurons. Expression of both 5-HT2A and 5-HT2C receptor mRNA was detected in motoneurons of the cervical ventral horn. Despite positive expression of both 5-HT2A and 5-HT2C receptor mRNA-hybridization signal over phrenic motoneurons, only 5-HT2A silver grains achieved a signal-to-noise ratio representative of colocalization. 5-HT2A mRNA levels in identified phrenic motoneurons were not significantly altered following cervical hemisection compared to sham-operated controls. Selective colocalization of 5-HT2A receptor mRNA with phrenic motoneurons may have implications for recently observed 5-HT2A receptor-mediated regulation of respiratory activity and/or recovery in both intact and injury-compromised states.
Collapse
MESH Headings
- Animals
- Anterior Horn Cells/metabolism
- Anterior Horn Cells/pathology
- Female
- Gene Expression Regulation
- Immunohistochemistry
- In Situ Hybridization
- Motor Neurons/metabolism
- Motor Neurons/pathology
- Phrenic Nerve/metabolism
- Phrenic Nerve/pathology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT2A
- Receptor, Serotonin, 5-HT2C
- Receptors, Serotonin/analysis
- Receptors, Serotonin/genetics
- Reference Values
- Spinal Cord Injuries/genetics
- Spinal Cord Injuries/metabolism
- Spinal Cord Injuries/pathology
- Transcription, Genetic
Collapse
|
37
|
Nantwi KD, Goshgarian HG. Alkylxanthine-induced recovery of respiratory function following cervical spinal cord injury in adult rats. Exp Neurol 2001; 168:123-34. [PMID: 11170727 DOI: 10.1006/exnr.2000.7581] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous investigations from our laboratory have demonstrated qualitatively that a latent respiratory pathway can be activated by systemic theophylline administration to restore function to a hemidiaphragm paralyzed by an upper (C2) cervical spinal cord hemisection in adult rats. The present study seeks to extend the previous investigations by contrasting and quantitating the actions of theophylline, 8-phenyltheophylline, enprofylline, and 8(p-Sulfophenyl)theophylline in restoring function 24 h after hemidiaphragm paralysis. The alkylxanthines were selected based on their diverse pharmacologic profiles to elucidate the mechanisms that underlie functional recovery after spinal cord injury. To quantitatively assess the magnitude of recovery, electrophysiological experiments were conducted on pancuronium-paralyzed, hemisected animals under standardized recording conditions. The total absence of respiratory-related activity in the phrenic nerve ipsilateral to the hemisection and paralyzed hemidiaphragm was used as the index of a functionally complete hemisection. Thereafter, drug-induced recovered activity in the phrenic nerve ipsilateral to hemisection was quantified and expressed either as a percentage of contralateral phrenic nerve activity in the same animal prior to drug administration or as a percentage of predrug activity in the homolateral nerve in noninjured animals. With either approach, theophylline (5-15 mg/kg) and 8-phenyltheophylline (5-10 mg/kg) dose-dependently induced respiratory-related recovered activity. Enprofylline, a potent bronchodilator, and 8(p-Sulfophenyl)theophylline, an adenosine receptor antagonist with limited access to the central nervous system, were ineffective. Maximal recovery was attained with theophylline (15 mg/kg) and 8-phenyltheophylline (10 mg/kg). At these doses, theophylline and 8-phenyltheophylline induced recovery that was 70.0 +/- 2.5 and 69.3 +/- 4.1% of predrug contralateral nerve activity respectively. When expressed as a percentage of activity in the homolateral nerve in noninjured animals, the magnitude changed to 32.9 +/- 4.9 and 35.7 +/- 6.9%, respectively. Involvement of adenosine receptors in the alkylxanthine-induced actions was confirmed in experiments with the adenosine analog, N6 (l-2-phenylisopropyl) adenosine (L-PIA). It is concluded that central adenosine receptor-mediated mechanisms are implicated in the recovery of respiratory-related activity after spinal cord injury. Furthermore, our results suggest a potential for a new therapeutic approach in the rehabilitation of spinal cord patients with respiratory deficits.
Collapse
|
38
|
Abstract
Cerebral ischemia studies demonstrating that stimulation of adenosine A1 receptors by either endogenously released adenosine or the administration of selective receptor agonists causes significant reductions in the morbidity and mortality associated with focal or global brain ischemias have triggered interest in the potential of purinergic therapies for the treatment of traumatic injuries to the brain and spinal cord. Preliminary findings indicate that activation of A1 adenosine receptors can ameliorate trauma-induced death of central neurons. Other avenues of approach include the administration of agents which elevate local concentrations of adenosine at injury sites by inhibiting its metabolism to inosine by adenosine deaminase, rephosphorylation to adenosine triphosphate by adenosine kinase; or re-uptake into adjacent cells. Amplification of the levels of endogenously released adenosine in such a 'site and event specific' fashion has the advantage of largely restricting the effect of such inhibitors to areas of injury-induced adenosine release. Another approach involving purinergic therapy has been applied to the problem of respiratory paralysis following high spinal cord injuries. In this instance, the adenosine antagonist theophylline has been used to enhance residual synaptic drive to spinal respiratory neurons by blocking adenosine A1 receptors. Theophylline induced, and maintained, hemidiaphragmatic recovery for prolonged periods after C2 spinal cord hemisection in rats and may prove to be beneficial in assisting respiration in spinal cord injury patients.
Collapse
|
39
|
Zhou SY, Goshgarian HG. 5-Hydroxytryptophan-induced respiratory recovery after cervical spinal cord hemisection in rats. J Appl Physiol (1985) 2000; 89:1528-36. [PMID: 11007592 DOI: 10.1152/jappl.2000.89.4.1528] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study investigates the role of serotonin in respiratory recovery after spinal cord injury. Experiments were conducted on C(2) spinal cord hemisected, anesthetized, vagotomized, paralyzed, and artificially ventilated rats in which end-tidal CO(2) was monitored and maintained. Before drug administration, the phrenic nerve ipsilateral to hemisection showed no respiratory-related activity due to the disruption of the descending bulbospinal respiratory pathways by spinal cord hemisection. 5-Hydroxytryptophan (5-HTP), a serotonin precursor, was administrated intravenously. 5-HTP induced time- and dose-dependent increases in respiratory recovery in the phrenic nerve ipsilateral to hemisection. Although the 5-HTP-induced recovery was initially accompanied by an increase in activity in the contralateral phrenic nerve, suggesting an increase in descending respiratory drive, the recovery persisted well after activity in the contralateral nerve returned to predrug levels. 5-HTP-induced effects were reversed by a serotonin receptor antagonist, methysergide. Because experiments were conducted on animals subjected to C(2) spinal cord hemisection, the recovery was most likely mediated by the activation of a latent respiratory pathway spared by the spinal cord injury. The results suggest that serotonin is an important neuromodulator in the unmasking of the latent respiratory pathway after spinal cord injury. In addition, the results also suggest that the maintenance of 5-HTP-induced respiratory recovery may not require a continuous enhancement of central respiratory drive.
Collapse
|
40
|
Hadley SD, Walker PD, Goshgarian HG. Effects of the serotonin synthesis inhibitor p-CPA on the expression of the crossed phrenic phenomenon 4 h following C2 spinal cord hemisection. Exp Neurol 1999; 160:479-88. [PMID: 10619565 DOI: 10.1006/exnr.1999.7240] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study assesses the effects of para-chlorophenylalanine (p-CPA), a serotonin-depleting drug, on the recovery of respiratory-related activity in the phrenic nerve induced by asphyxia 4 h following ipsilateral C2 hemisection in young adult rats. HPLC analysis was used to quantify levels of serotonin (5-HT), dopamine (DA), norepinephrine, and the 5-HT metabolite, 5-hydroxyindoleacetic acid, in the C4 segment of the spinal cord, all of which were significantly lower in p-CPA-treated hemisected rats compared to hemisected controls receiving saline. Hemisection alone was found to significantly increase 5-HT levels and significantly decrease DA levels compared to normal controls. Eight of eight saline-injected rats expressed recovery of respiratory-related activity in the ipsilateral phrenic nerve during asphyxia 4 h following hemisection, while only 4/8 rats in the p-CPA-treated group expressed recovery in the ipsilateral nerve. Quantification of integrated phrenic nerve wave-forms indicated that the mean amplitude of respiratory-related activity in the ipsilateral phrenic nerve was significantly lower in p-CPA-treated rats than in saline controls. In addition, saline controls demonstrated significant increases in mean respiratory frequency and mean amplitude of contralateral phrenic nerve activity during asphyxia, compared to normocapnia. However, p-CPA-treated rats did not express significant differences in either mean respiratory frequency or mean amplitude of integrated respiratory wave-forms during asphyxia, compared to normocapnia. The results suggest that p-CPA treatment attenuates the recovery of respiratory-related activity in the phrenic nerve 4 h following ipsilateral C2 hemisection and attenuates asphyxia-induced increases in respiratory frequency and respiratory burst amplitude recorded from the contralateral phrenic nerve.
Collapse
|
41
|
Hadley SD, Walker PD, Goshgarian HG. Effects of serotonin inhibition on neuronal and astrocyte plasticity in the phrenic nucleus 4 h following C2 spinal cord hemisection. Exp Neurol 1999; 160:433-45. [PMID: 10619560 DOI: 10.1006/exnr.1999.7238] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
C2 spinal cord hemisection results in synaptic and astroglial changes in the phrenic nucleus which have been associated with the recovery of the ipsilateral hemidiaphragm during expression of the crossed phrenic phenomenon. As part of our ongoing analysis of the neurotransmitters involved, the present study investigated the effects of systemic administration of para-chlorophenylalanine (p-CPA), a serotonin (5-HT) synthesis inhibitor, on plasticity in the rat phrenic nucleus 4 h following C2 hemisection. Hemisected control rats demonstrated typical morphological changes in the ipsilateral phrenic nucleus including: (1) an increased number and length of synaptic active zones and (2) an increased number and length of dendrodendritic membrane appositions. p-CPA treatment 3 days prior to hemisection reduced 5-HT levels and resulted in an attenuation of these changes in the ipsilateral phrenic nucleus 4 h following hemisection compared to hemisected controls. In addition, p-CPA treatment attenuated injury-induced alterations in immunohistochemical staining of glial fibrillary acidic protein (GFAP), although Western blot analysis demonstrated that overall levels of GFAP did not differ significantly between groups. The results suggest that inhibition of 5-HT synthesis by p-CPA attenuates hemisection-induced plasticity in the phrenic nucleus 4 h following an ipsilateral C2 hemisection.
Collapse
|
42
|
Zhou SY, Goshgarian HG. Effects of serotonin on crossed phrenic nerve activity in cervical spinal cord hemisected rats. Exp Neurol 1999; 160:446-53. [PMID: 10619561 DOI: 10.1006/exnr.1999.7213] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigates the effect of 5-hydroxytryptophan (5-HTP), a serotonin precursor, on crossed phrenic nerve activity (CPNA) in rats subjected to a left C2 spinal cord hemisection. Electrophysiological experiments were conducted on anesthetized, vagotomized, paralyzed, and artificially ventilated rats to assess phrenic nerve activity. The left phrenic nerve lost rhythmic activity due to the disruption of the bulbospinal respiratory pathways following spinal cord hemisection. Activity was induced in the left phrenic nerve (CPNA) by temporary asphyxia. 5-HTP administration increased CPNA during asphyxia in the left phrenic nerve in a dose-dependent fashion. Specifically, in a group of eight animals, application of 5-HTP at 0.5, 1.0, and 2.0 mg/kg significantly increased CPNA by 102.2+/-18.5%, 200.8+/-58.1%, and 615.0+/-356.9% compared with predrug control values, respectively. 5-HTP-induced increases in CPNA were reversed by methysergide (2-6 mg/kg, i.v.), a serotonin receptor antagonist. The results suggest that serotonin is involved in the modulation of crossed phrenic nerve activity following spinal cord injury.
Collapse
|
43
|
Gould DJ, Goshgarian HG. The effects of mitotic inhibition on the spinal cord response to the superimposed injuries of spinal cord hemisection and peripheral axotomy. Exp Neurol 1999; 158:394-402. [PMID: 10415145 DOI: 10.1006/exnr.1999.7136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study was carried out to test the hypothesis that dividing microglia are responsible for the depression of crossed phrenic nerve activity documented at 2 weeks postphrenicotomy in an injury model which superimposes the effects of spinal cord injury on peripheral axotomy. Crossed phenic nerve activity is defined as the respiratory activity recorded from the phrenic nerve during the crossed phrenic phenomenon (CPP) which is a respiratory reflex induced by respiratory stress following an ispsilateral spinal cord hemisection. Young adult female Sprague-Dawley rats were subjected to left intrathoracic phrenicotomies. Cytarabine (Cyt-A, a powerful antimitotic drug) or saline-filled miniosmotic pumps were then implanted into the cisterna magna and 2 weeks were allowed to pass at which time the CPP was induced by a left C2 spinal cord hemisection and transection of the contralateral phrenic nerve. Control studies including bromodeoxyuridine labeling of mitotic cells and a triple immunofluorescent protocol were carried out to verify that microglial cells were the primary cell type undergoing mitosis in the current injury model and that Cyt-A completely inhibited cellular proliferation. Quantitative electrophysiological analysis of crossed phrenic nerve activity showed that there is a statistically significant depression of activity at 2 weeks postphrenicotomy when animals were infused with saline compared to controls. Crossed phrenic nerve activity levels were not significantly different, however, from control levels when 2-week postphrenicotomized rats were infused with Cyt-A. Immunofluorescent studies showed that the majority of cells dividing in response to phrenicotomy were microglia. Furthermore, there were no astrocytes seen dividing at any time. From the results, we conclude that activated microglial cells may be responsible for the depression in crossed phrenic activity normally seen 2 weeks postphrenicotomy. Further, the activation of microglia may be related to the astrocytic response to injury. The activated microglial cell may be acting as a coordinator of various aspects of the injury response. Alternatively, the activation of microglia may be a necessary step in the cascade of multiple events that take place in the spinal cord after injury.
Collapse
|
44
|
El-Bohy AA, Goshgarian HG. The use of single phrenic axon recordings to assess diaphragm recovery after cervical spinal cord injury. Exp Neurol 1999; 156:172-9. [PMID: 10192788 DOI: 10.1006/exnr.1999.7013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electrophysiological recordings taken from the whole phrenic nerve have been utilized previously to describe the gradual increase in functional recovery of a hemidiaphragm paralyzed by ipsilateral C2 hemisection during the crossed phrenic phenomenon (CPP). Although the increase in activity has been temporally correlated with hemisection-induced morphological alterations of the phrenic nucleus, suggesting an association of the increased activity with the morphological alterations, whole phrenic nerve recordings during the CPP can provide only limited information. The purpose of the present study, therefore, was to use phrenic single-axon recording techniques to better understand the mechanisms underlying the recovery of respiratory activity during the expression of the CPP. Recordings from the whole phrenic nerve on the right side and from small fascicles of the phrenic nerve that show only the activity of single phrenic axons (units) on the left side were made in the neck before left spinal hemisection and during the CPP. The results indicated that there were two types of units firing before and during the CPP: an early- and a late-firing unit based on the time of their firing onset in relation to whole phrenic nerve activity. Ten early units and 25 late units were identified according to the shape of their spikes before hemisection as well as during the CPP. In addition to these units, 20 new units were recruited during CPP activity. These new units were mainly of the late-onset type. The results also indicated that there was a significant increase in the frequency of firing of both early and late units. The results specifically indicate therefore that the increase in respiratory activity recorded previously in the whole phrenic nerve during the CPP is most likely due to: (i) an increase in firing frequency for both early- and late-firing units and (ii) a recruitment of predominantly late-firing units into the CPP response. These results are important in understanding more completely the mechanisms that can facilitate recovery of the diaphragm after spinal cord injury.
Collapse
|
45
|
Nantwi KD, Goshgarian HG. Theophylline-induced recovery in a hemidiaphragm paralyzed by hemisection in rats: contribution of adenosine receptors. Neuropharmacology 1998; 37:113-21. [PMID: 9680264 DOI: 10.1016/s0028-3908(97)00190-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Previously, we demonstrated that a single intravenous injection of theophylline can induce recovery in a hemidiaphragm paralyzed by cervical (C2) spinal cord hemisection for up to 3 h. The present study contrasts the actions of enprofylline and theophylline on inducing hemidiaphragmatic recovery after cervical spinal cord hemisection. Both drugs are methylxanthines; however, theophylline is an adenosine receptor antagonist while enprofylline is not. To further test the involvement of adenosine receptors, N6 (L-2-phenylisopropyl) adenosine (L-PIA), an analogue of adenosine was used in conjunction with theophylline. Following a left C2 spinal cord hemisection, animals were injected with either enprofylline (2.5-20 mg/kg) or theophylline (15 mg/kg) alone or in combination. Theophylline-injected animals demonstrated robust respiratory-related activity in the previously quiescent left phrenic nerve and hemidiaphragm. No recovery was observed in any of the enprofylline-injected rats. When enprofylline injection was followed later with theophylline, recovery occurred. Prior L-PIA administration blocked theophylline-induced recovery. When given after theophylline, L-PIA attenuated and then blocked the induced activity in both the nerve and hemidiaphragm ipsilateral to spinal cord hemisection. We conclude that adenosine receptor antagonism is implicated in hemidiaphragmatic recovery after hemisection and theophylline may be useful in the treatment of spinal cord injured patients with respiratory deficits.
Collapse
|
46
|
Nantwi KD, Goshgarian HG. Effects of chronic systemic theophylline injections on recovery of hemidiaphragmatic function after cervical spinal cord injury in adult rats. Brain Res 1998; 789:126-9. [PMID: 9602093 DOI: 10.1016/s0006-8993(98)00024-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Based on a previous demonstration that acutely administered theophylline induces respiratory-related recovery in an animal model of spinal cord injury, the influence of chronically administered theophylline on maintaining recovery was assessed. The absence of respiratory-related activity in the left phrenic nerve and hemidiaphragm of rats subjected to an ipsilateral C2 spinal cord hemisection was confirmed electrophysiologically 24 h after injury. Theophylline was then injected i.p. for 3-30 consecutive days. Recovery of respiratory-related activity was observed in the majority (29 out of 32) of the experimental animals. We conclude that theophylline not only induces, but also maintains recovery for prolonged periods after cervical spinal cord injury.
Collapse
|
47
|
el-Bohy AA, Schrimsher GW, Reier PJ, Goshgarian HG. Quantitative assessment of respiratory function following contusion injury of the cervical spinal cord. Exp Neurol 1998; 150:143-52. [PMID: 9514833 DOI: 10.1006/exnr.1997.6757] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we describe a new method for quantitative assessment of phrenic inspiratory motor activity in two models of cervical spinal cord contusion injury. Anesthetized rats received contusion injury either to the descending bulbospinal respiratory pathway on one side of the spinal cord alone (C2 lateralized contusion) or to both the descending pathway, as well as the phrenic motoneuron pool bilaterally (C4/C5 midline contusion). Following injury, respiratory-associated phrenic nerve motor activity was recorded under standardized and then asphyxic conditions. Phrenic nerve efferent activity was rectified, integrated, and quantitated by determining the mean area under the integrated neurograms. The mean integrated area of the four inspiratory bursts recorded just before turning off the ventilator (to induce asphyxia) was determined and divided by the integrated area under the single largest respiratory burst recorded during asphyxia. This latter value was taken as the maximal inspiratory motor response that the rat was capable of generating during respiratory stress. Thus, a percentage of the maximal inspiratory motor drive was established for breathing in control and injured rats under standardized conditions. The results indicate that noninjured rats use 52 +/- 1.8% of maximal inspiratory motor drive under standardized conditions. In C2-contused rats, the results showed that while the percentage of maximal inspiratory motor drive on the noncontused side was similar to the control (55 +/- 4.1%), it was increased on the contused side (78 +/- 2.6%). In C4/5 lesions, the results indicate that this percentage was increased on both sides (77 +/- 4.4%). The results show the feasibility for performing quantitative evaluation of respiratory dysfunction in an animal model of cervical contusion injury. These findings lend to further development of this model for investigations of neuroplasticity and/or therapeutic interventions directed at ameliorating respiratory compromise following cervical spinal cord trauma.
Collapse
|
48
|
Gould DJ, Goshgarian HG. Glial changes in the phrenic nucleus following superimposed cervical spinal cord hemisection and peripheral chronic phrenicotomy injuries in adult rats. Exp Neurol 1997; 148:1-9. [PMID: 9398444 DOI: 10.1006/exnr.1997.6556] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The objective of the present study was to characterize the microglial and astroglial reaction in the phrenic nucleus following either an ipsilateral C2 spinal cord hemisection, a peripheral phrenicotomy, or a combination of the two injuries in the same adult rat. The present study used three different fluorescent markers and a confocal laser image analysis system to study glial cells and phrenic motoneurons at the light microscopic level. Young adult female rats were divided into one combined injury group (left phrenicotomy and left C2 spinal hemisection with periods of 1 to 4 weeks between injuries, N = 12) and three other groups consisting of noninjured animals (N = 3), animals that received C2 hemisection only (N = 3), and animals with phrenicotomy only (survival periods of 2 (N = 3) and 4 (N = 3) weeks after phrenicotomy). Fluorogold was injected into the diaphragm to label phrenic motoneurons in all animals. Microglia and astrocytes were labeled with Texas red and fluorescein, respectively, and were visualized simultaneously along with phrenic motoneurons. The results suggest that the microglial and astrocytic response in the superimposed injury model are similar to the glial reactions characteristically seen in a peripheral axotomy alone model. These reactions include proliferation and migration of microglial cells along the perineuronal surface (peaking at 2 weeks) and the hypertrophy of astrocytes (peaking at 4 weeks). In addition, the increase in astrocytic tissue, which is characteristically seen in response to axotomy alone, is significantly enhanced in the superimposed injury model. Also, there is a large and rapid increase in GFAP-positive astrocytes within 24 hours after hemisection alone. The information gained from the present study will aid in determining, predicting, and eventually manipulating central nervous system responses to multiple injuries with the objective of reestablishing function in the damaged CNS.
Collapse
|
49
|
Castro-Moure F, Goshgarian HG. Chronic hypoxia does not induce synaptic plasticity in the phrenic nucleus. Exp Neurol 1997; 148:293-8. [PMID: 9398472 DOI: 10.1006/exnr.1997.6649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Interruption of the main descending respiratory drive to phrenic motoneurons by cold block or spinal cord hemisection results in morphological modifications of the ipsilateral phrenic nucleus in the rat. The modifications consist of an increase in the number of multiple synapses and dendrodendritic appositions and elongation of the asymmetric and symmetric synaptic active zones. Hemisection and hemispinalization by cold block cause not only "functional deafferentation" of the ipsilateral phrenic neurons (i.e., a loss of ipsilateral descending respiratory drive), but also an increase in the remaining contralateral descending respiratory drive. The contralateral respiratory pathways connect with phrenic motoneurons ipsilateral to cold block or hemisection by decussating collateral axons which cross the spinal cord midline below the hemisection/cold block site. Thus, the phrenic nucleus synaptic plasticity could possibly be induced by functional deafferentation or by an increase of the descending respiratory drive. To differentiate between these two possible inducers of the plasticity, we assessed the synaptic morphology of the phrenic nucleus of nonoperated rats exposed to 48 h of hypoxia in an atmosphere chamber. The hypoxia exposure produces an increased descending respiratory drive without functional deafferentation. The quantitative data extracted from electron micrographs of the phrenic nucleus from four experimental rats were compared with the data from four normal breathing animals. Phrenic nucleus morphometric analysis showed that there was no significant difference in the mean number of single synapses between the samples from control animals (141 +/- 12.12) and the experimental animals (156 +/- 26.73). Similarly, no significant difference was detected in the total number of synaptic active zones of control animals (178.25 +/- 11.13) and experimental animals (195.05 +/- 5.35). Furthermore, the length of synaptic active zones of asymmetrical synapses (0.21 +/- 0.024 micron) or symmetrical synapses (0.22 +/- 0.022 micron) did not change significantly compared to the synaptic active zone length in control animals (0.21 +/- 0.018 micron for asymmetrical and 0.21 +/- 0.010 micron for symmetrical). We conclude that no synaptic plasticity occurs in the phrenic nucleus without functional deafferentation in spite of an increase in descending respiratory drive. Therefore functional deafferentation may be the primary inducer of phrenic nucleus synaptic plasticity occurring after hemisection or cold block.
Collapse
|
50
|
Tai Q, Palazzolo KL, Goshgarian HG. Synaptic plasticity of 5-hydroxytryptamine-immunoreactive terminals in the phrenic nucleus following spinal cord injury: A quantitative electron microscopic analysis. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19971006)386:4<613::aid-cne7>3.0.co;2-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|