26
|
Almeida MV, Dietz S, Redl S, Karaulanov E, Hildebrandt A, Renz C, Ulrich HD, König J, Butter F, Ketting RF. GTSF-1 is required for formation of a functional RNA-dependent RNA Polymerase complex in Caenorhabditis elegans. EMBO J 2018; 37:embj.201899325. [PMID: 29769402 DOI: 10.15252/embj.201899325] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 11/09/2022] Open
Abstract
Argonaute proteins and their associated small RNAs (sRNAs) are evolutionarily conserved regulators of gene expression. Gametocyte-specific factor 1 (Gtsf1) proteins, characterized by two tandem CHHC zinc fingers and an unstructured C-terminal tail, are conserved in animals and have been shown to interact with Piwi clade Argonautes, thereby assisting their activity. We identified the Caenorhabditis elegans Gtsf1 homolog, named it gtsf-1 and characterized it in the context of the sRNA pathways of C. elegans We report that GTSF-1 is not required for Piwi-mediated gene silencing. Instead, gtsf-1 mutants show a striking depletion of 26G-RNAs, a class of endogenous sRNAs, fully phenocopying rrf-3 mutants. We show, both in vivo and in vitro, that GTSF-1 interacts with RRF-3 via its CHHC zinc fingers. Furthermore, we demonstrate that GTSF-1 is required for the assembly of a larger RRF-3 and DCR-1-containing complex (ERIC), thereby allowing for 26G-RNA generation. We propose that GTSF-1 homologs may act to drive the assembly of larger complexes that act in sRNA production and/or in imposing sRNA-mediated silencing activities.
Collapse
|
27
|
García-Rodríguez N, Morawska M, Wong RP, Daigaku Y, Ulrich HD. Spatial separation between replisome- and template-induced replication stress signaling. EMBO J 2018; 37:embj.201798369. [PMID: 29581097 PMCID: PMC5920239 DOI: 10.15252/embj.201798369] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/29/2018] [Accepted: 02/26/2018] [Indexed: 11/09/2022] Open
Abstract
Polymerase‐blocking DNA lesions are thought to elicit a checkpoint response via accumulation of single‐stranded DNA at stalled replication forks. However, as an alternative to persistent fork stalling, re‐priming downstream of lesions can give rise to daughter‐strand gaps behind replication forks. We show here that the processing of such structures by an exonuclease, Exo1, is required for timely checkpoint activation, which in turn prevents further gap erosion in S phase. This Rad9‐dependent mechanism of damage signaling is distinct from the Mrc1‐dependent, fork‐associated response to replication stress induced by conditions such as nucleotide depletion or replisome‐inherent problems, but reminiscent of replication‐independent checkpoint activation by single‐stranded DNA. Our results indicate that while replisome stalling triggers a checkpoint response directly at the stalled replication fork, the response to replication stress elicited by polymerase‐blocking lesions mainly emanates from Exo1‐processed, postreplicative daughter‐strand gaps, thus offering a mechanistic explanation for the dichotomy between replisome‐ versus template‐induced checkpoint signaling.
Collapse
|
28
|
Zilio N, Eifler-Olivi K, Ulrich HD. Functions of SUMO in the Maintenance of Genome Stability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:51-87. [PMID: 28197906 DOI: 10.1007/978-3-319-50044-7_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Like in most other areas of cellular metabolism, the functions of the ubiquitin-like modifier SUMO in the maintenance of genome stability are manifold and varied. Perturbations of global sumoylation causes a wide spectrum of phenotypes associated with defects in DNA maintenance, such as hypersensitivity to DNA-damaging agents, gross chromosomal rearrangements and loss of entire chromosomes. Consistent with these observations, many key factors involved in various DNA repair pathways have been identified as SUMO substrates. However, establishing a functional connection between a given SUMO target, the cognate SUMO ligase and a relevant phenotype has remained a challenge, mainly because of the difficulties involved in identifying important modification sites and downstream effectors that specifically recognize the target in its sumoylated state. This review will give an overview over the major pathways of DNA repair and genome maintenance influenced by the SUMO system and discuss selected examples of SUMO's actions in these pathways where the biological consequences of the modification have been elucidated.
Collapse
|
29
|
Kanu N, Zhang T, Burrell RA, Chakraborty A, Cronshaw J, Da Costa C, Grönroos E, Pemberton HN, Anderton E, Gonzalez L, Sabbioneda S, Ulrich HD, Swanton C, Behrens A. RAD18, WRNIP1 and ATMIN promote ATM signalling in response to replication stress. Oncogene 2016; 35:4009-19. [PMID: 26549024 PMCID: PMC4842010 DOI: 10.1038/onc.2015.427] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 01/22/2023]
Abstract
The DNA replication machinery invariably encounters obstacles that slow replication fork progression, and threaten to prevent complete replication and faithful segregation of sister chromatids. The resulting replication stress activates ATR, the major kinase involved in resolving impaired DNA replication. In addition, replication stress also activates the related kinase ATM, which is required to prevent mitotic segregation errors. However, the molecular mechanism of ATM activation by replication stress is not defined. Here, we show that monoubiquitinated Proliferating Cell Nuclear Antigen (PCNA), a marker of stalled replication forks, interacts with the ATM cofactor ATMIN via WRN-interacting protein 1 (WRNIP1). ATMIN, WRNIP1 and RAD18, the E3 ligase responsible for PCNA monoubiquitination, are specifically required for ATM signalling and 53BP1 focus formation induced by replication stress, not ionising radiation. Thus, WRNIP1 connects PCNA monoubiquitination with ATMIN/ATM to activate ATM signalling in response to replication stress and contribute to the maintenance of genomic stability.
Collapse
|
30
|
Kanu N, Zhang T, Burrell RA, Chakraborty A, Cronshaw J, DaCosta C, Grönroos E, Pemberton HN, Anderton E, Gonzalez L, Sabbioneda S, Ulrich HD, Swanton C, Behrens A. Erratum: RAD18, WRNIP1 and ATMIN promote ATM signalling in response to replication stress. Oncogene 2016; 35:4020. [DOI: 10.1038/onc.2015.500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
García-Rodríguez N, Wong RP, Ulrich HD. Functions of Ubiquitin and SUMO in DNA Replication and Replication Stress. Front Genet 2016; 7:87. [PMID: 27242895 PMCID: PMC4865505 DOI: 10.3389/fgene.2016.00087] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/27/2016] [Indexed: 12/14/2022] Open
Abstract
Complete and faithful duplication of its entire genetic material is one of the essential prerequisites for a proliferating cell to maintain genome stability. Yet, during replication DNA is particularly vulnerable to insults. On the one hand, lesions in replicating DNA frequently cause a stalling of the replication machinery, as most DNA polymerases cannot cope with defective templates. This situation is aggravated by the fact that strand separation in preparation for DNA synthesis prevents common repair mechanisms relying on strand complementarity, such as base and nucleotide excision repair, from working properly. On the other hand, the replication process itself subjects the DNA to a series of hazardous transformations, ranging from the exposure of single-stranded DNA to topological contortions and the generation of nicks and fragments, which all bear the risk of inducing genomic instability. Dealing with these problems requires rapid and flexible responses, for which posttranslational protein modifications that act independently of protein synthesis are particularly well suited. Hence, it is not surprising that members of the ubiquitin family, particularly ubiquitin itself and SUMO, feature prominently in controlling many of the defensive and restorative measures involved in the protection of DNA during replication. In this review we will discuss the contributions of ubiquitin and SUMO to genome maintenance specifically as they relate to DNA replication. We will consider cases where the modifiers act during regular, i.e., unperturbed stages of replication, such as initiation, fork progression, and termination, but also give an account of their functions in dealing with lesions, replication stalling and fork collapse.
Collapse
|
32
|
Choi K, Batke S, Szakal B, Lowther J, Hao F, Sarangi P, Branzei D, Ulrich HD, Zhao X. Concerted and differential actions of two enzymatic domains underlie Rad5 contributions to DNA damage tolerance. Nucleic Acids Res 2015; 43:2666-77. [PMID: 25690888 PMCID: PMC4357696 DOI: 10.1093/nar/gkv004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many genome maintenance factors have multiple enzymatic activities. In most cases, how their distinct activities functionally relate with each other is unclear. Here we examined the conserved budding yeast Rad5 protein that has both ubiquitin ligase and DNA helicase activities. The Rad5 ubiquitin ligase activity mediates PCNA poly-ubiquitination and subsequently recombination-based DNA lesion tolerance. Interestingly, the ligase domain is embedded in a larger helicase domain comprising seven consensus motifs. How features of the helicase domain influence ligase function is controversial. To clarify this issue, we use genetic, 2D gel and biochemical analyses and show that a Rad5 helicase motif important for ATP binding is also required for PCNA poly-ubiquitination and recombination-based lesion tolerance. We determine that this requirement is due to a previously unrecognized contribution of the motif to the PCNA and ubiquitination enzyme interaction, and not due to its canonical role in supporting helicase activity. We further show that Rad5′s helicase-mediated contribution to replication stress survival is separable from recombination. These findings delineate how two Rad5 enzymatic domains concertedly influence PCNA modification, and unveil their discrete contributions to stress tolerance.
Collapse
|
33
|
|
34
|
Ulrich HD. Two-way communications between ubiquitin-like modifiers and DNA. Nat Struct Mol Biol 2014; 21:317-24. [PMID: 24699080 DOI: 10.1038/nsmb.2805] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/28/2014] [Indexed: 12/18/2022]
Abstract
Many aspects of nucleic acid metabolism, such as DNA replication, repair and transcription, are regulated by the post-translational modifiers ubiquitin and SUMO. Not surprisingly, DNA itself plays an integral part in determining the modification of most chromatin-associated targets. Conversely, ubiquitination or SUMOylation of a protein can impinge on its DNA-binding properties. This review describes mechanistic principles governing the mutual interactions between DNA and ubiquitin or SUMO.
Collapse
|
35
|
Stevens RC, Hsieh-Wilson LC, Santarsiero BD, Wedemayer GJ, Spiller B, Wang LH, Barnes D, Ulrich HD, Patten PA, Romesberg FE, Schultz PG. Structural Studies of Catalytic Antibodies. Isr J Chem 2013. [DOI: 10.1002/ijch.199600018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Zilio N, Williamson CT, Eustermann S, Shah R, West SC, Neuhaus D, Ulrich HD. DNA-dependent SUMO modification of PARP-1. DNA Repair (Amst) 2013; 12:761-73. [PMID: 23871147 PMCID: PMC3744807 DOI: 10.1016/j.dnarep.2013.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/13/2013] [Accepted: 07/01/2013] [Indexed: 11/28/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) plays an important role in DNA repair, but also contributes to other aspects of nucleic acid metabolism, such as transcriptional regulation. Modification of PARP-1 with the small ubiquitin-related modifier (SUMO) affects its function as a transcriptional co-activator of hypoxia-responsive genes and promotes induction of the heat shock-induced HSP70.1 promoter. We now report that PARP-1 sumoylation is strongly influenced by DNA. Consistent with a function in transcription, we show that sumoylation in vitro is enhanced by binding to intact, but not to damaged DNA, in a manner clearly distinct from the mechanism by which DNA damage stimulates PARP-1's catalytic activity. An enhanced affinity of PARP-1 for the SUMO-conjugating enzyme Ubc9 upon binding to DNA is likely responsible for this effect. Sumoylation does not interfere with the catalytic or DNA-binding properties of PARP-1, and structural analysis reveals no significant impact of SUMO on the conformation of PARP-1's DNA-binding domain. In vivo, sumoylated PARP-1 is associated with chromatin, but the modification is not responsive to DNA damage and is not affected by PARP-1 catalytic activity. Our results suggest that PARP-1's alternative modes of DNA recognition serve as a means to differentiate between distinct aspects of the enzyme's function.
Collapse
|
37
|
Morawska M, Ulrich HD. An expanded tool kit for the auxin-inducible degron system in budding yeast. Yeast 2013; 30:341-51. [PMID: 23836714 PMCID: PMC4171812 DOI: 10.1002/yea.2967] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 11/11/2022] Open
Abstract
Fusion of inducible degradation signals, so-called degrons, to cellular proteins is an elegant method of controlling protein levels in vivo. Recently, a degron system relying on the plant hormone auxin has been described for use in yeast and vertebrate cells. We now report the construction of a series of vectors that significantly enhance the versatility of this auxin-inducible degron (AID) system in Saccharomyces cerevisiae. We have minimized the size of the degron and appended a series of additional epitope tags, allowing detection by commercial antibodies or fluorescence microscopy. The vectors are compatible with PCR-based genomic tagging strategies, allow for C- or N-terminal fusion of the degron, and provide a range of selection markers. Application to a series of yeast proteins, including essential replication factors, provides evidence for a general usefulness of the system.
Collapse
|
38
|
Ulrich HD. New insights into replication clamp unloading. J Mol Biol 2013; 425:4727-32. [PMID: 23688817 DOI: 10.1016/j.jmb.2013.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 12/31/2022]
Abstract
The sliding clamp protein proliferating cell nuclear antigen (PCNA) is situated at the core of the eukaryotic replisome, where it acts as an interaction scaffold for numerous replication and repair factors and coordinates DNA transactions ranging from Okazaki fragment maturation to chromatin assembly and mismatch repair. PCNA is loaded onto DNA by a dedicated complex, the replication factor C, whose mechanism has been studied in detail. Until recently, however, it was unclear how PCNA is removed from DNA upon completion of DNA synthesis. Two complementary studies now present data strongly implicating the replication factor C-like complex, Elg1/ATAD5-RLC, in the unloading of PCNA during replication in yeast and human cells. They indicate that an appropriate control over PCNA's residence on the chromatin is important for maintaining genome stability. At the same time, they suggest that the interaction of Elg1/ATAD5 with SUMO, which was also reported to contribute to its role in genome maintenance, affects aspects of its function distinct from its unloading activity.
Collapse
|
39
|
Ulrich HD, Takahashi DT. Readers of PCNA modifications. Chromosoma 2013; 122:259-74. [PMID: 23580141 PMCID: PMC3714560 DOI: 10.1007/s00412-013-0410-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 01/29/2023]
Abstract
The eukaryotic sliding clamp, proliferating cell nuclear antigen (PCNA), acts as a central coordinator of DNA transactions by providing a multivalent interaction surface for factors involved in DNA replication, repair, chromatin dynamics and cell cycle regulation. Posttranslational modifications (PTMs), such as mono- and polyubiquitylation, sumoylation, phosphorylation and acetylation, further expand the repertoire of PCNA’s binding partners. These modifications affect PCNA’s activity in the bypass of lesions during DNA replication, the regulation of alternative damage processing pathways such as homologous recombination and DNA interstrand cross-link repair, or impact on the stability of PCNA itself. In this review, we summarise our current knowledge about how the PTMs are “read” by downstream effector proteins that mediate the appropriate action. Given the variety of interaction partners responding to PCNA’s modified forms, the ensemble of PCNA modifications serves as an instructive model for the study of biological signalling through PTMs in general.
Collapse
|
40
|
|
41
|
Abstract
Modification of the replicative sliding clamp, PCNA, by monoubiquitin, polyubiquitin, and SUMO contributes to the processing of DNA damage during replication. In order to investigate the properties of the relevant conjugation enzymes, their interactions, substrate recognition, and the regulation of their activities, reconstitution of the modification reactions from purified components in vitro is an instructive exercise. Here we describe the purification of the relevant enzymes and accessory proteins from E. coli or S. cerevisiae as well as protocols for setting up small-scale ubiquitylation and sumoylation reactions with budding yeast PCNA. In addition, we provide a method for the purification of monoubiquitylated PCNA for further biochemical studies.
Collapse
|
42
|
Ulrich HD. Ubiquitin, SUMO, and phosphate: how a trio of posttranslational modifiers governs protein fate. Mol Cell 2012; 47:335-7. [PMID: 22883623 DOI: 10.1016/j.molcel.2012.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this issue of Molecular Cell, Guo et al. (2012) demonstrate how a series of sequential posttranslational modifications, phosphorylation, sumoylation, and ubiquitylation, cooperate to target human flap endonuclease FEN1 to degradation by the proteasome at the end of S phase.
Collapse
|
43
|
Parker JL, Ulrich HD. A SUMO-interacting motif activates budding yeast ubiquitin ligase Rad18 towards SUMO-modified PCNA. Nucleic Acids Res 2012; 40:11380-8. [PMID: 23034805 PMCID: PMC3526273 DOI: 10.1093/nar/gks892] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
SUMO-targeted ubiquitin ligases (STUbLs) recognize sumoylated proteins as substrates for ubiquitylation and have been implicated in several aspects of DNA repair and the damage response. However, few physiological STUbL substrates have been identified, and the relative importance of SUMO binding versus direct interactions with the substrate remains a matter of debate. We now present evidence that the ubiquitin ligase Rad18 from Saccharomyces cerevisiae, which monoubiquitylates the sliding clamp protein proliferating cell nuclear antigen (PCNA) in response to DNA damage, exhibits the hallmarks of a STUbL. Although not completely dependent on sumoylation, Rad18’s activity towards PCNA is strongly enhanced by the presence of SUMO on the clamp. The stimulation is brought about by a SUMO-interacting motif in Rad18, which also mediates sumoylation of Rad18 itself. Our results imply that sumoylated PCNA is the physiological ubiquitylation target of budding yeast Rad18 and suggest a new mechanism by which the transition from S phase-associated sumoylation to damage-induced ubiquitylation of PCNA is accomplished.
Collapse
|
44
|
Finley D, Ulrich HD, Sommer T, Kaiser P. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 2012; 192:319-60. [PMID: 23028185 PMCID: PMC3454868 DOI: 10.1534/genetics.112.140467] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/28/2012] [Indexed: 12/14/2022] Open
Abstract
Protein modifications provide cells with exquisite temporal and spatial control of protein function. Ubiquitin is among the most important modifiers, serving both to target hundreds of proteins for rapid degradation by the proteasome, and as a dynamic signaling agent that regulates the function of covalently bound proteins. The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins. The resulting ubiquitin code is interpreted by an extensive family of ubiquitin receptors. Here we review the components of this regulatory network and its effects throughout the cell.
Collapse
|
45
|
Abstract
PCNA modifications by members of the ubiquitin family are associated with a range of different transactions during replication of damaged and undamaged DNA. This chapter describes detailed protocols for the detection and isolation of ubiquitin and SUMO conjugates of PCNA from total budding yeast cell lysates, using Ni-NTA affinity chromatography under denaturing conditions. We describe approaches based on the purification of PCNA itself and on the isolation of total ubiquitin or SUMO conjugates. The chapter covers the construction of the appropriate strains, methods for the detection of modified PCNA, and the use of various DNA-damaging agents as well as mutants of PCNA and relevant conjugation enzymes to examine the cellular response to replication stress.
Collapse
|
46
|
Saugar I, Parker JL, Zhao S, Ulrich HD. The genome maintenance factor Mgs1 is targeted to sites of replication stress by ubiquitylated PCNA. Nucleic Acids Res 2011; 40:245-57. [PMID: 21911365 PMCID: PMC3245944 DOI: 10.1093/nar/gkr738] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mgs1, the budding yeast homolog of mammalian Werner helicase-interacting protein 1 (WRNIP1/WHIP), contributes to genome stability during undisturbed replication and in response to DNA damage. A ubiquitin-binding zinc finger (UBZ) domain directs human WRNIP1 to nuclear foci, but the functional significance of its presence and the relevant ubiquitylation targets that this domain recognizes have remained unknown. Here, we provide a mechanistic basis for the ubiquitin-binding properties of the protein. We show that in yeast an analogous domain exclusively mediates the damage-related activities of Mgs1. By means of preferential physical interactions with the ubiquitylated forms of the replicative sliding clamp, proliferating cell nuclear antigen (PCNA), the UBZ domain facilitates recruitment of Mgs1 to sites of replication stress. Mgs1 appears to interfere with the function of polymerase δ, consistent with our observation that Mgs1 inhibits the interaction between the polymerase and PCNA. Our identification of Mgs1 as a UBZ-dependent downstream effector of ubiquitylated PCNA suggests an explanation for the ambivalent role of the protein in damage processing.
Collapse
|
47
|
Ulrich HD. Timing and spacing of ubiquitin-dependent DNA damage bypass. FEBS Lett 2011; 585:2861-7. [PMID: 21605556 DOI: 10.1016/j.febslet.2011.05.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/10/2011] [Indexed: 11/17/2022]
Abstract
During its duplication, DNA, the carrier of our genetic information, is particularly vulnerable to decay, and the capacity of cells to deal with replication stress has been recognised as a major factor protecting us from genome instability and cancer. One of the major pathways controlling the bypass of DNA lesions during replication is activated by ubiquitylation of the sliding clamp, PCNA. Whereas monoubiquitylation of PCNA allows mutagenic translesion synthesis by damage-tolerant DNA polymerases, polyubiquitylation is required mainly for an error-free pathway that likely involves template switching. This review is focussed on our understanding of the timing of damage bypass during the cell cycle and the question of how it is coordinated with the progression of replication forks.
Collapse
|
48
|
Davies AA, Neiss A, Ulrich HD. Ubiquitylation of the 9-1-1 Checkpoint Clamp Is Independent of Rad6-Rad18 and DNA Damage. Cell 2010; 141:1080-7. [DOI: 10.1016/j.cell.2010.04.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/09/2010] [Accepted: 04/08/2010] [Indexed: 12/30/2022]
|
49
|
Daigaku Y, Davies AA, Ulrich HD. Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature 2010; 465:951-5. [PMID: 20453836 PMCID: PMC2888004 DOI: 10.1038/nature09097] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 04/20/2010] [Indexed: 02/06/2023]
Abstract
Postreplication repair (PRR) is a pathway that allows cells to bypass or overcome lesions during DNA replication1. In eukaryotes, damage bypass is activated by ubiquitylation of the replication clamp PCNA through components of the RAD6 pathway2. Whereas monoubiquitylation of PCNA allows mutagenic translesion synthesis by damage-tolerant DNA polymerases3-5, polyubiquitylation is required for an error-free pathway that likely involves a template switch to the undamaged sister chromatid6. Both the timing of PRR events during the cell cycle and their location relative to replication forks, as well as the factors required downstream of PCNA ubiquitylation, have remained poorly characterised. Here we demonstrate that the RAD6 pathway normally operates during S phase. However, using an inducible system of DNA damage bypass in budding yeast, we show that the process is separable in time and space from genome replication, thus allowing direct visualisation and quantification of productive PRR tracts. We found that both during and after S phase ultraviolet radiation-induced lesions are bypassed predominantly via translesion synthesis, whereas the error-free pathway functions as a backup system. Our approach has for the first time revealed the distribution of PRR tracts in a synchronised cell population. It will allow an in-depth mechanistic analysis of how cells manage the processing of lesions to their genomes during and after replication.
Collapse
|
50
|
Ulrich HD, Daigaku Y. Timing and spacing of ubiquitin‐dependent DNA damage bypass. FASEB J 2010. [DOI: 10.1096/fasebj.24.1_supplement.67.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|